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ABSTRACT Failure mode and effects analysis (FMEA) is a widely used, powerful tool to identify and assess
potential failuremodes in products and tomake productsmore reliable. Due to the complexity of products and
lack of knowledge, FMEA involves many uncertainties in practice. In previous studies, numerous modified
FMEA methods based on fuzzy logic and Dempster-Shafer (D-S) evidence theory have been employed to
address these uncertainties. These studies focus on how to handle uncertainties and to identify a more reliable
prioritization of risk priority numbers (RPNs). However, studies have not sufficiently examined how many
uncertainties are present in resulting RPNs. To better model and process various types of uncertainties in
FMEA, two new area-based metrics are constructed in this paper. One is the interval area metric (IAM),
which is used in RPN representation. The other is the dimensionless uncertainty metric (DUM), which
is used to measure how many uncertainties there are in RPN. IAM is used to rank the risks in failure
modes, and DUM is used to rank the uncertainties in failure modes. Then, an expert system is presented to
qualitatively evaluate the DUM, which can help FMEA users intuitively judge whether further investigation
should be performed to alleviate the epistemic uncertainties in each failure mode. Finally, a practical risk
evaluation case regarding the grinding wheel system of a numerically controlled (NC) machine is provided
to demonstrate the application and effectiveness of the proposed FMEA. The case study shows that the
calculation programs of IAM and DUM do not require any assumptions or need to address conflict among
experts. In addition, proposed method can not only give a more accurate rating of each failure mode, but also
help designers intuitively see the uncertainty grade of each RPN, which is useful to help them understand
FMEA results.

INDEX TERMS Failure mode and effects analysis, D-S evidence theory, area-based metrics, epistemic
uncertainty metric, risk priority number.

I. INTRODUCTION
Failure mode and effects analysis (FMEA) is a systematic
procedure for analyzing a system/process to identify potential
failure modes, their causes and their effects on system per-
formance [1]. In engineering practice, F-FMEA (Function
FMEA) is applied in the concept phase, D-FMEA (Design
FMEA) in the design phase, and P-FMEA (Process FMEA)
in the manufacturing phase. A good FMEA can help analysts
identify known or potential failure modes and their causes
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and effects so that effective actions with respect to the fail-
ure modes can be carried out to improve product reliability.
Generally, a complex product contains hundreds or thousands
of failure modes. Only a small part of the identified failure
modes need to be considered for corresponding prevention
measures to be proposed. Therefore, identifying the most
serious failure modes is vitally important. The risk priority
number (RPN) is a powerful and widely used tool to prioritize
identified failure modes. It is the product of the occurrence
(O), severity (S) and detection (D) of a failure, namely,

RPN = O× S × D (1)
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The three factors O, S and D are all evaluated using scores
from 1 to 10 [1]; the higher the RPN of a failure mode is, the
greater priority it has.

Since its introduction, FMEA has proven to be one of
the most important early preventative initiatives in the con-
ceptualization, design and manufacturing phases. In recent
decades, it has been widely used in various fields, such as
the electric power system [2], logistics system [3], shipbuild-
ing [4], software [5], and aircraft [6] industries. However,
despite its wide application, the conventional RPN method
for failure mode prioritization has received some criticism
[7]–[10]. One criticism is that it fails to address uncertainties
in risk evaluation.

In real-life engineering, due to the complexity of prod-
ucts and lack of knowledge in certain aspects, FMEA users
often have difficulty evaluating failure modes with precise
values. Instead, imperfect or uncertain judgments are more
common. More flexible representations, such as fuzzy logic,
intervals, linguistic terms, and evidence structures, have been
introduced into the FMEA process in recent years. If there are
uncertainties inO, S andD, then there also have uncertainties
in the result of RPN. Although above methods can handle
uncertainties in judgments of failure modes, however, how
many uncertainties are included in the RPN results has not
attracted enough attention. For example, if the RPN of a
failure mode (denoted as FM1) is interval [102, 136], and
another is [115, 125], then expected RPN value of FM2 is
bigger than FM1. This means that the risk in FM2 is greater
than that in FM1. However, in the worst case, the RPN value
of FM1 reaches 136, exceeding 125 of FM1. If interval is
used to measure the uncertainty in each failure mode, then
uncertainty in FM1 is 34, and FM2 is 10. This means that
more analysis, simulation and even testing of FM1 are needed
to reduce the uncertainty of FM1, and obtain more accurate
risk assessment results. This is just a simple example. For
more complex uncertainty (such as evidence bodies, hesitant
evidence bodies, etc.), we should not only pay attention to
the size of the RPN converted into an accurate value, but
also pay attention to how much uncertainty is in the RPN
evaluation results. This is very important for product design
improvement and test verification in the next stage.

With the model presented this study, experts can flexibly
express their opinions with crisp values, evidence bodies,
hesitant evidence bodies, and interval values. To better model
and process uncertainty in risk analysis, two new area metrics
are constructed. One is the interval area metric (IAM), which
is used in RPN representation. The other is the dimensionless
uncertainty metric (DUM), which is used to measure in the
number of uncertainties in an RPN. IAM is used to rank
the risks in failure modes, and DUM is used to rank the
uncertainties in failure modes.

The rest of this paper is organized as follows. The related
works are reviewed in Section 2. In Section 3, the basic
concepts of D-S evidence theory and the interval algorithm
are briefly introduced. In Section 4, a new risk prioritiza-
tion model is proposed to calculate novel RPNs and their

uncertainties. In Section 5, a practical risk evaluation case
regarding the grinding wheel system of a numerically con-
trolled (NC) machine is provided to demonstrate the appli-
cation and effectiveness of the proposed FMEA. Finally, the
paper concludes in Section 6.

II. LITERATURE REVIEW
In general, there are two popular ways to model uncertainties:
fuzzy logic and Dempster Shafer (D-S) evidence theory. So in
this section, literature reviewwill be discussed from these two
aspects.

A. FUZZY LOGIC APPROACH IN FMEA
Fuzzy logic is the oldest and most widely discussed
method for processing uncertainties in FMEA. Bowles and
Peláez [11] represented O, S and D as members of a fuzzy
set and evaluated RPNs with min-max inferencing. In [12],
the three parameters were represented as members of a fuzzy
set fuzzified by using appropriate membership functions and
were evaluated in a fuzzy inference engine that used a well-
defined rule base and fuzzy logic operations to determine
the criticality/risk level of failure. Tay and Lim [13] used
fuzzy rule interpolation and reduction techniques to design a
new fuzzy RPN model. Renjith et al. [14] used fuzzy FMEA
to prioritize the failure modes in LNG storage facilities,
and Jong et al. [15] applied fuzzy FMEA to edible bird
nest processing. Although fuzzy FMEA is effective, there
remain two issues pertaining to the practical implementa-
tion of classical FIS_RPN models: 1) the fulfillment of the
monotonicity property between the FIS_RPN score (output)
and the risk factors (inputs) and 2) difficulty in obtaining a
complete and monotone fuzzy rule base [16]. To solve these
problems, Kerk et al. [16] proposed an analytical interval
fuzzy inference system for risk evaluation and prioritiza-
tion in FMEA. The intuitionistic fuzzy approach has been
another popular approach in the last few years. This approach
offers some advantages over earlier models, as it accounts
for degrees of uncertainty in relationships among various
criteria or options, specifically when relations cannot be
expressed in definite numbers [17], [18]. To better model
uncertainty and impreciseness in experts’ opinions, double
upper approximated rough number (DUARN) is proposed
to to improve the utilization the risk assessment informa-
tion [19]. To express FMEA users’ judgments more flexibly,
interval-valued intuitionistic fuzzy sets (IVIFSs) are applied
in FMEA to handle uncertainty, vagueness, and incomplete
information. New models have been constructed by means
of COmplex PRoportional Assessment (COPRAS) and ana-
lytic network process (ANP) [20], TOPSIS and entropy [21]
and the IVIF-MULTIMOORA method [22]. In [23], a novel
fuzzy rough number extended multi-criteria group decision-
making (FR-MCGDM) strategy to determine a more rational
rank of failure modes by integrating the fuzzy rough num-
ber, AHP (analytic hierarchy process), and VIKOR (Serbian:
VIseKriterijumska Optimizacija I Kompromisno Resenje) is
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studied. Additionally, some scholars have studied RPN evalu-
ation under hesitant fuzzy linguistic environments [24], [25].

In addition to the above literature, Bian et al. [26] and Liu
and Deng [27] proposed a new risk priority model based on
D number. D numbers can process various types of uncer-
tainties, such as imprecision, fuzziness, and ignorance, in the
failure analysis process.

B. D-S EVIDENCE THEROY IN FMEA
D-S evidence theory is another extensively studied approach
to uncertainty modeling in FMEA. Evidence theory is a con-
venient framework for modeling imperfections in data and for
combining information. Crisp values, intervals, incomplete
distributions, multiple probabilities, and P-boxes can all be
handled in an evidence structure [28]. In evidence theory,
uncertainty is divided into two parts: aleatory uncertainty and
epistemic uncertainty [29], [30]. Aleatory uncertainty, also
called inherent uncertainty and irreducible uncertainty, can-
not be reduced even if there are enough samples. Epistemic
uncertainty is also called reducible uncertainty and subjective
uncertainty. In FMEA, as the evaluation information consid-
ered by experts is always subjective, there are many epistemic
uncertainties. Chin et al. [31] presented FMEA using eviden-
tial reasoning (ER) to handle different types of information.
The proposed FMEAwas examined with an illustrative appli-
cation to a fishing vessel and proved to be useful and practical.
However, the ER method still has drawbacks. Du et al. [32]
asserted that in the ER approach, the number of frames of
discernment is 210 in FMEA, which heavily increases the
computational load. To solve this problem, Du et al. [32]
proposed an evidential downscaling method to greatly reduce
the computational complexity in FMEA. Yang et al. proposed
a modified evidence theory to deal with different opinions
of multiple experts, multiple failure modes and three risk
factors in RPN analysis of FMEA. In real-world practice,
when there are highly conflicting opinions among experts,
evidence cannot be fused by Dempster’s combination rule.
Addressing this problem, Su et al. [33] proposed a method
to transform experts’ opinions into uncertain opinions by
univariate normal distribution, while Suo et al. [34] proposed
an abnormity test and a weighted average method to alle-
viate the conflicts among experts’ opinions. From another
point of view, Certa et al. [35] used belief and plausibility
distributions to synthesize interval-valued judgments without
requiring an aggregation stage; consequently, input informa-
tion was not forced to have nonempty intersections. Zheng
and Tang [36] proposed a triangular distribution-based basic
probability assignment (TDBPA) method to model and fuse
the conflict risk level coming from different experts’ assess-
ments in the framework of evidence theory. To extend the
evidence theory-based FMEA, the gray relational projection
method (GRPM) was used to rank the risk priorities of failure
modes [37]. Huang et al. applied evidence theory using the
evidential downscaling method and belief entropy function
in fuzzy FMEA [38]. Kalathil et al. [39] compared evidence
theory-based and fuzzy FMEA by a case study applied to an

LNG storage facility. Qin et al. [40] presented a way to com-
bine interval type-2 fuzzy sets (IT2FSs) with the evidential
reasoning (ER) method.

C. SUMMARY
As discussed above, there have been many valuable research
efforts in FMEA under uncertain environments. Previous
studies have focused on how to handle these uncertainties and
obtain a more reliable prioritization of RPNs. Nevertheless,
previous studies have not sufficiently considered how many
uncertainties are presented in the resulting RPNs. If one
failure mode’s RPN is larger than another’s, while the former
mode’s amount of uncertainty is also larger, it is difficult
to determine whether the risk in the former failure mode
is greater than that in the latter. That is, if FMEA users
can obtain more information about a product, then they can
include more accurate evaluations in their judgments. In this
situation, the uncertainty in the first failure mode can be
reduced and a more accurate RPN, which may be smaller
than that of the last failure mode, can be obtained. Therefore,
measuring howmany uncertainties there are in evaluated risks
is very important. It can not only reflect the reliability of pri-
oritization but also provide direction to reduce uncertainties
in judgments of failure modes.

III. PRELIMINARIES
A. D-S EVIDENCE THEORY
D-S evidence theory is a convenient framework for modeling
imperfections in data and for combining information. Due to
its outstanding performance in uncertainty modeling and pro-
cessing, D-S evidence theory has been widely used in various
fields, such as reliability analysis [42], [43], decision-making
[44], [45], pattern recognition [46], and fault diagnosis [47].

In this section, the basic notations of evidence theory are
introduced, and themain concepts that are essential for under-
standing the rest of the paper are briefly discussed.
Definition 1 (BPA and Focal Elements):Abasic measure in

evidence theory is a basic probability assignment (BPA) [41].
Let 2 be a finite set of mutually exclusive and exhaustive
hypotheses, called the frame of discernment. Let 22 be the
set of all subsets of 2. For a given evidential event A, BPA
is represented by m(A), which defines a mapping of 22 to
the interval between 0 and 1, i.e., m:22 −→ [0, 1]. m(A)
expresses the proportion of all relevant and available evidence
that supports the claims that certain particular elements of
2 belong to set A and makes no additional claims about
any subsets of A. The value of m(A) only belongs to set A
and makes no additional claims about any subsets of A. For
example, if B⊂ A, thenm(B) is another BPA. Generally,m(A)
must satisfy the following constraints:

m(A) > 0 for all A ∈ 22

A(∅) = 0∑
A⊆22

m(A) = 1
(2)
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Definition 2 (Dempster’s Rule of Combination): Demp-
ster’s rule of combination [41] is an operation that plays
a key role in evidence theory. BPAs introduced by several
sources are aggregated using this rule to yield a global
BPA that synthesizes the knowledge of different sources. Let
m1,m2, . . . ,mn be n distinct BPAs to combine, and their
corresponding focal elements are Ai(i = 1, 2, . . . , n). Then,
Dempster’s rule is defined as follows:

m(A) =


1

1− K

∑
a Ai=A

∏
16 i 6 n

mi(Ai) A 6= ∅

0 A = ∅
(3)

where

K =
∑

a Ai=∅

∏
16 i6 n

mi(Ai) (4)

Coefficient K represents the mass that the combination
assigns to ∅ and reflects the conflict among sources. If there
are no conflicts in the evidence, K is assigned the minimal
value of 0. IfK arrives at its maximum value of 1, the evidence
is completely conflicting and cannot be combined by Eq.(3).
On most occasions, the range of the K value is 0 < K < 1.
Definition 3 (Belief and Plausibility Functions):2 denotes

a frame of discernment, which is a nonempty set. If m is a
BBA on 2, then function Bel:22 ı [0, 1] defined by

Bel(A) =
∑
B⊆A

m(B) (5)

Bel(A) is a belief function, and function Pl:22 → [0, 1]
defined by

Pl(A) =
∑

BaA6=∅
m(B) (6)

Pl(A) is a plausibility function, where A ∈ 22 and A 6= ∅.
These two functions can be derived from each other. For

example, the belief function can be derived from the plausi-
bility function as follows:

Bel(A) = 1− Pl(A) (7)

The relationship between the belief and plausibility
functions is

Bel(A) 6 Pl(A) (8)

Eq.(4) shows that as a measure of ‘‘event A is true,’’ if P(A)
is the true value of the measure of set {A is true}, then Pl(A) is
the upper bound of P(A) and Bel(A) is the lower bound. Thus,

Bel(A) 6 P(A) 6 Pl(A) (9)

B. INTERVAL ALGORITHM
R denotes a real number field. For two specified real numbers
a, a ∈ R and a 6 a,

[a] = [a, a] = {A : A ∈ R, a 6 A 6 a} (10)

[a] is called a bounded closed interval, and interval number
or interval for short.

Let � ∈ {+,−, ·, /} be the operation of intervals; then,
we define the corresponding operations for intervals [a] and
[b] by

[a]� [b] = {A� B|A ∈ [a],B ∈ [b]} (11)

where A, B∈R, and we assume 0 /∈ [b] in the case of division.
When � is one of the symbols ‘‘+,’’ ‘‘−,’’ ‘‘·’’ or ‘‘/,’’ the

following rules hold [48]:

[a]+ [b] = [a+ b, a+ b] (12)

[a]− [b] = [a− b, a− b] (13)

[a] · [b] = [min{ab, ab, ab, ab},max{ab, ab, ab, ab}]

(14)

If we define
1
b
= {

1
B
|B ∈ [b]} if 0 /∈ [b] (15)

where B ∈ R, Then

[a]/[b] = [a] ·
1
[b]

(16)

If a is a constant value, it can also be expressed as special
interval [a] = [a, a].

IV. PROPOSED RISK PRIORITIZATION MODEL
A. FMEA USERS’ ASSESSMENTS
Due to various subjective and objective conditions, such as
lack of knowledge, lack of familiarity with products, and
inadequate historical data, there are many epistemic uncer-
tainties in the assessments of FMEA users. Different users
may have different opinions. In this paper, their opinions can
be represented in the following ways:
• Evidence bodies. For example, there are confidence
degrees of 40% and 60% for values ‘‘4’’ and ‘‘5’’ in
experts’ subjective judgments, which can be written as
‘‘m(4) = 0.4, m(5) = 0.6’’ in the evidence structure.

• Hesitant evidence bodies. For example, the confidence
degrees for ratings ‘‘{6, 7}’’ and ‘‘8’’ are 60% and 40%,
respectively, and can be written as ‘‘m({6, 7}) = 0.6,
m(8) = 0.4’’ in the evidence structure.{6, 7} means an
expert hesitates to give a specific judgment between the
ratings of 6 and 7.

• A crisp value such as ‘‘3’’ can be written as ‘‘m(3)= 1.’’
• Interval values such as ‘‘[3, 4]’’ can be written as
‘‘m([3, 4]) = 1.’’

B. BPA ASSIGNMENT
Assume that there are L experts (denoted as E1,E2, . . . ,EL)
performing FMEA, and N failure modes (denoted as
F1,F2, . . . ,FN ) of the product are considered. Generally,
different experts have different weights, which are denoted as
wl for lth experts. If there is no information to determine the
weights, it suggests that each expert is equally credible and
has an equal weight of 1/L. In this paper, multiple sources of
judgments need not be combined. Keeping the conventional
definition of RPN as the product of risk factors S, O and D,
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TABLE 1. Experts’ judgments on risk factors.

all possible RPN values among L judgments related to each
failure mode are calculated.

If there are a total of Li(i = S,O,D) single-atom BPAs in
each risk factor, then the number of RPN values is LS ×LO×
LD. As the judgments are all transferred to evidence bodies
as described in Section 3.1, the value of each RPN can be
obtained by the following equation:

RPN j
n = Sk1n · O

k2
n · D

k3
n (17)

where n = 1, 2, . . . ,N , ki ∈ [0,Li] (i = S,O,D), and j =
1, 2, . . . ,LS × LO × LD.
Note that there may be interval values in experts’ judg-

ments, so the classical interval arithmetic rules are used in
Eq.(17).

For lth expert, The BPA of jth RPN for Fn is

mjRPN ,n = wrwpwq · mlnS (k1)m
l
nO(k2)m

l
nD(k3) (18)

where r, p, q = 1, 2, . . . ,L, and wr ,wp,wq are correspond-
ing expert weights of factors S, O and D; k1, k2, k3 ∈ [1, 10];
j = 1, 2, . . . ,LS × LO × LD.
For clarity, an example involving two FMECA users is

discussed here.
Example 1: The judgments of the experts on three risk

factors are shown in Table 1.
All possible values of RPN are calculated, as shown in

Table 2. For example, in the second line of Table 2, as all
comments are come from expert 1, the weights of S, O, D
are all 0.4. In the comments of D for 1st expert, m(3) = 0.8.
So BPA of this combination is 0.4 × 0.4 × 0.4 × 0.8 =
0.0512. The calculation program of the remaining com-
binations is similar. As there are 3 single atoms in S,
and 2 in O, and 3 in D, the number of single-atom RPNs is
3 × 2 × 3 = 18.

C. AREA METRIC FOR RPN
As shown in Table 2, all possible values of RPN are intervals
(precise values can also be expressed as intervals). The lower
bound of for failure mode n is

LBRPN ,n = min(infi=1,2,...,L3 (RPN
j
n)) (19)

and the upper bound is

UBRPN ,n = max(supi=1,2,...,L3 (RPN
j
n)) (20)

From Eq.(5), the belief function can be obtained as

Bel(RPNn < RPN ∗)

=


∑

sup(RPN j
n)<RPN∗

mjRPN ,n RPN ∗ ∈ [LBRPN ,n,UBRPN ,n]

0 RPN ∗ < LBRPN ,n
1 RPN ∗ > LBRPN ,n

(21)

TABLE 2. All possible values of RPN and their BPAs.

and the plausibility function is

Pl(RPNn < RPN ∗)

=



∑
inf (RPN j

n)<RPN∗

mjRPN ,n RPN ∗ ∈ [LBRPN ,n,

UBRPN ,n]
0 RPN ∗ < UBRPN ,n
1 RPN ∗ > UBRPN ,n

(22)

Then

Bel(RPNn > RPN ∗)

= 1− Bel(RPNn < RPN ∗)

=



1−
∑

sup(RPN j
n)<RPN∗

mjRPN ,n RPN ∗ ∈ [LBRPN ,n,

UBRPN ,n]
1 RPN ∗ < LBRPN ,n
0 RPN ∗ > UBRPN ,n

(23)

Pl(RPNn > RPN ∗)

= 1− Pl(RPNn < RPN ∗)

=



1−
∑

inf (RPN j
n)<RPN∗

mjRPN ,n RPN ∗ ∈ [LBRPN ,n,

UBRPN ,n]
1 RPN ∗ < LBRPN ,n
0 RPN ∗ > UBRPN ,n

(24)

Example 2: The known information about S, O and D
is the same as that in Example 1. Then, from Table 5, the
lower and upper bounds of RPN j

n are LBRPN ,n = 56 and
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FIGURE 1. Belief and plausibility functions of Example 2.

FIGURE 2. Lower bound of area metric for failure mode n.

UBRPN ,n = 160, respectively. According to the data in
columns 5 and 6, the belief function and plausibility function
can be calculated by Eq. (23) and (24), and the results are
shown in Figure 1.

From the definitions of the belief and plausibility func-
tions, it can be seen that the belief function is a conservative
estimate of probabilityP(RPNn > RPN ∗) and the plausibility
function is an overestimate. As the RPN value of failure mode
n is not a precise value but a distribution, area metrics are
proposed to measure and prioritize the risks.

For the plausibility function, as shown in Figure 2, the
upper bound area metrics for the nth failure mode are defined
as

An =
∫ 1

0
Pl−1(P)dP (25)

where P is the probability within domain [0, 1], and Pl−1n (P)
is the inverse of the plausibility function for the nth failure
mode. Obviously, An is the upper bound expected value of
RPNn. For easier calculation, Eq.(25) can also be expressed
as

An =
∫ UBRPN ,n

0
Pl(RPNn > x∗)dx∗ (26)

Correspondingly, the lower bound area metrics for the
nth failure mode are defined as

An =
∫ 1

0
Bel−1(P)dP (27)

where P is the probability within domain [0, 1], and Bel−1n (P)
is the inverse of the plausibility function for the nth failure

FIGURE 3. Epistemic uncertainty measure of RPN in failure mode n.

mode. An is can also be expressed as

An =
∫ UBRPN ,n

0
Bel(RPNn > x∗)dx∗ (28)

Obviously, An is the upper bound expected value of RPNn.
The real expected value of RPNn is within the interval An =
[An,An], i.e., RPNn ∈ [An,An].

D. EPISTEMIC UNCERTAINTY METRIC OF RPN
As shown in Figure 1, there are epistemic uncertainties in
the failure modes. If the uncertainties are too large, then the
RPN result of this failure mode is not credible. Therefore,
uncertainty ranking is necessary when there are epistemic
uncertainties in experts’ judgments. Figure 1 shows that if
the plausibility and belief curves overlap, then there is no
epistemic uncertainty in the nth failure mode. Otherwise,
the greater the distance between the two curves is, the more
uncertainty there is in the failure mode. Therefore, the area
between the belief and plausibility curves (as shown in
Figure 3) can express the amount of uncertainty in an RPN,
which is defined as

Un =
∫ UBRPN ,n

LBRPN ,n
(Pl(RPN j

n > x∗)− Bel(RPN j
n > x∗))dx∗

(29)

Un is assigned its minimum value Umin
n = 0 when

Bel(RPNn > RPN ∗) = Pl(RPNn > RPN ∗). When
Bel(RPNn > RPN ∗) = 0, Un is assigned its maximum value
of

Umax
n =

∫ UBRPN ,n

LBRPN ,n
Pl(RPN j

n > x∗)dx∗ (30)

As Un is a metric with dimensions, to measure the uncer-
tainties among different failure modes, the DUM is proposed
and is defined as

ρn = Un/mid(An) (31)

where mid(An) = (An + An)/2. Obviously, ρn = 0 when
Un = 0, and ρn = 1 when Un = An. Therefore, the domain
of ρn is ρn ∈ [0, 1].
In engineering, decision makers usually want to obtain

a qualitative assessment (e.g., ‘‘large,’’ ‘‘moderate,’’ or
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TABLE 3. Expert system of epistemic uncertainty measurement in RPN
ranking.

‘‘small’’) of the DUM to determine whether to accept a risk
ranking. Hence, in this paper, an expert system is presented
to qualitatively evaluate the DUM, in which four grades are
considered, as shown in Table 3.

E. RISK PRIORITIZATION
With the area metric for an RPN, the failure modes can be
ordered. As described in Section 3.3, the expected value of
the RPN for Fn is interval [An,An]. To compare two overlap-
ping intervals, many methods have been proposed [49]–[52].
In this section, a simple and effective method of interval
number ranking based on the possibility degree is used to
order these interval RPNs.
Definition 1 [51]: Considering two interval numbers ãn =

[An,An] and ãm = [Am,Am], the possibility degree of ãn �
ãm is defined as

pnm = p(ãn � ãm)

=
1
2

(
1+

(An − Am)+ (An − Am)

|An − Am| + |An − Am| + lnm

)
(32)

where lnm is the length of overlap. If [An,An]
⋂
[Am,Am] =

∅, then lnm = 0. If ãn and ãm are crisp values, then

pnm = p(ãn � ãm) =
1
2
(1+

(ãn − ãm)
|ãn − ãm|

)

=


1 if ãn > ãm
0 if ãn < ãm
1
2

if ãn = ãm

(33)

Based on Definition 1, RPN interval set ã =

{ã1, ã2, . . . , ãN } = {[A1,A1], [A2,A2], . . . , [AN ,AN ]} can
be ranked by the following steps:

(1) Calculate the possibility degree between each pair of
intervals, and then, the possibility degree matrix is obtained
as P = (pnm)N×N .

(2) Calculate the ranking vector λ = {λ1, λ2, . . . , λN } by
the following equation [50]:

λn =

N∑
m=1

pnm, n = 1, 2, . . . ,N (34)

Then, we can rank the RPN intervals ãn(n = 1, 2, . . . ,N )
in descending order in accordance with the value of λn(n =
1, 2, . . . ,N ). If there are moderate or large degrees of uncer-
tainty in the top 5 (which can also be set to 10 or another
number, depending on the complexity of the product and
the decision makers) failure modes, then further investiga-
tion should be performed to alleviate epistemic uncertainties.

FIGURE 4. Flowchart of the prioritization procedure.

Examples of measures to reduce uncertainties include simu-
lation, analysis, and tests.

For clarity, a flowchart related to the failure modes and
their epistemic uncertainty prioritization procedure is shown
in Figure 4.

V. CASE STUDY
In this section, a practical risk evaluation case regarding the
grinding wheel system of an NC machine [53] is provided to
demonstrate the application and effectiveness of the proposed
FMEA. The grinding wheel system is an important part of
NC machine MK2120, which affects the processing quality.
In reality, there are many failure modes and causes related
to the grinding wheel system. However, only 5 failure modes
with high risk are selected for further analysis; these modes
are named FM1,FM2, . . . ,FM5 in this study.
In the FMECA of the grinding wheel system, there are

three experts named E1,E2 and E3, each giving different
opinions on risk factors S,O and D. Considering the experts’
professional background and familiarity levels, they are
assigned distinct weights in the risk analysis, i.e., w = (0.35,
0.4, 0.25). Each expert evaluates the failure modes and iden-
tifies the rating information of the three risk factors on
the 5 failure modes, as shown in Table 4. In order to reduce
the length of contents, the expression of experts’ opinions in
Table 4 is different from that in Table 1. For example, ‘‘8:80%
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TABLE 4. Evaluation information of risk factors.

FIGURE 5. Belief and plausibility functions of RPN for FM1.

9:20%’’ in third row and second column of Table 4 represents
‘‘m(8) = 0.8, m(9) = 0.2.’’
Step 1: BPA assignment. For FM1, all possible values

of RPN and their BPAs are shown in Table 5. As there
are 4 atoms for risk factor S, 4 atoms forO, and 3 atoms forD,
the number of possible RPN values is 4× 4× 3 = 48.
Step2: Calculate Bel(RPNn > RPN ∗) and Pl(RPNn >

RPN ∗). For FM1, the belief and plausibility functions are
shown in Figure 5.

Step 3: Calculate the expected RPN (An, and an interval
value of [An, An]), uncertainty area (Un), and DUM (ρn) for
each failure mode, as shown in Table 6.

Step 4: Risk ranking with possibility degrees. By Eq. (27),
the possibility degree matrix is obtained as

P =


0.5000 0.4702 0.6666 0.6626 0.6572
0.1879 0.1773 0.4146 0.5000 0.5913
0.5316 0.5000 0.6845 0.6778 0.6685
0.1959 0.1838 0.5000 0.5613 0.6031
0.2216 0.1635 0.3061 0.3445 0.5000


Then, ranking vector λ = {λ1, λ2, . . . , λ5} is obtained,

as shown in Table 7. The RPN and uncertainty ratings of the
five failure modes are also shown in Table 7.

Table 7 shows that although the RPN rating indicates that
FM3 is higher than FM1, the uncertainty in FM3 is also larger
than that inFM1. Thismeans that there aremore opportunities
to over or underestimate the risk in FM3, as there are more
uncertainties in this mode. For example, if the belief function
is used to compare the risks between FM1 and FM3, then the
result is FM1 > FM3. However, if the plausibility function is

TABLE 5. All possible values of RPNs and their BPAs for FM1.

TABLE 6. RPN and uncertainty for each failure mode.

used tomake a decision, then the result isFM1 < FM3. As the
uncertainty degree in FM3 is ‘‘moderate,’’ more investigation
should be performed to alleviate the uncertainties in this
mode. Then, new judgments of the risk factors of FM3 can
be made with fewer uncertainties.
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TABLE 7. FMEA results of five failure modes.

FIGURE 6. Contrast between the proposed method and Chin’s method.

The RPN rating of the proposed method is also compared
with that of Bian [26] and Chin [31]. As the three methods
have different dimensions, the RPN values are normalized to
the interval [0, 1], as shown in Figure 6. Figure 6 shows that
the RPN rating of the newmethod is the same as that in Chin’s
method, but different with the result of Bian’s. In proposed
method, the rating is FM3 > FM1 > FM4 > FM2 > FM5.
However, in Bian’s method, the result is FM1 > FM4 >

FM3 > FM2 > FM5. In other words, FM3 and FM4 are
in the opposite order of the two methods. The risk ranking of
other failure modes is the same.

According to Table 4, if the uncertainty in the evaluation
information is handled by a simple average method, it can
be obtained that RPN of FM3 and FM4 are 244.9824 and
214.3800 respectively. In other word, the rating is FM3 >

FM4, which is the same as that of the proposed method
and Chin’s method. However, Chin’s method cannot measure
how many uncertainties are presented in the RPN results.
So proposed method is correct and can get more effective
information for decision makers.

If more investigations on FM3 are performed and more
information is obtained about this mode’s effects when it
fails, then uncertainties in experts’ judgments can be reduced.
Consider two instances in which experts give two different

TABLE 8. Second-round evaluation information on FM3.

TABLE 9. FMEA results for FM3 under second-round evaluation
information.

FIGURE 7. Belief and plausibility functions of RPN for FM3 under
second-round evaluation information.

opinions, as shown in Table 8. In the same way, we can obtain
the new results of FM3, as shown in Table 9 and Figure 7.
Table 9 shows that when the uncertainties in FM3 are

decreased in instance 1, the RPN rating decreases from 1 to 3.
Otherwise, in instance 2, the RPN rating is not changed. That
is, if there are enormous uncertainties in FMEA, the results
may mislead designers to address an unimportant failure
mode or to ignore a very important failure mode, both of
which are unacceptable in engineering practice.

VI. CONCLUSION
FMEA under uncertain environments has received extensive
attention in recent years. In this paper, an area metric based
on belief and plausibility functions is proposed to represent
the RPN results, and the DUM is proposed to represent
how many uncertainties are presented in RPNs. Moreover,
an expert system is presented to qualitatively evaluate the
DUM based on four grades (‘‘minor,’’ ‘‘small,’’ ‘‘moderate,’’
and ‘‘large’’). The effectiveness of the proposed model has
been illustrated by a practical risk evaluation case regarding
the grinding wheel system of a numerically controlled (NC)
machine. The results are consistent with the practical engi-
neering background.

The FMEA proposed in this paper has the following
advantages:
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(1) The calculation program of the RPN interval area met-
ric (IAM) does not require any assumptions (such as fuzzy
distribution or uniform distribution) and does not need to
address conflict among experts.

(2) The DUM can express how many uncertainties are
presented in RPN results, which can help FMEA users judge
whether the results are reliable. If the DUM of a failure mode
is large, then more research needs to be performed to reduce
the uncertainties and obtain a more reliable risk evaluation
result.

(3) The expert system in Table 3 can help designers intu-
itively see the uncertainty grade of each failure mode, which
is useful to help them understand FMEA results.

The presented method of this study has some drawbacks
and limitations. First, the paper only studied three types
of uncertainties, which were intervals, evidence bodies and
hesitant evidence bodies. Other types of uncertainties, such
as interval fuzzy, interval-valued intuitionistic fuzzy, hesitant
fuzzy linguistic, etc., have not been addressed. Second, the
amount of calculation of the new method is large. There-
fore, the follow-up research can try to apply the proposed
method to other occasions (such as interval-valued intuition-
istic fuzzy, hesitant fuzzy linguistic, etc.), and propose more
efficient improved algorithms.
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