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ABSTRACT Detecting and preventing industrial machine failures are significant in the modern
manufacturing industry becausemachine failures substantially increase bothmaintenance andmanufacturing
costs. Recently, state-of-the-art deep learning techniques that use acoustic signals have beenwidely applied to
solve industrial machine malfunction detection problems in order to reduce maintenance and manufacturing
costs. The authors of this research propose a deep learning-based industrial machine malfunction detection
model that uses acoustic signals to classify normal and abnormal conditions of industrial machines.
In particular, a weighted ensemble model based on EfficientNet-B0, B5, and B7 is considered to improve
classification performance. Case studies involving an open dataset for Malfunctioning Industrial Machine
Investigation and Inspection (MIMII) validate that the proposed EfficientNet-based weighted ensemble
model provides better classification performance than individual classifiers and other ensemble models.

INDEX TERMS Weighted ensemble, convolutional neural networks, industrial machines, malfunction
detection, acoustic signals.

LIST OF ABBREVIATIONS
AE AutoEncoder.
AUC Area Under the Curve.
CNN Convolutional Neural Network.
CUDA Compute Unified Device Architecture.
DCASE Detection and Classification of Acoustic

Scenes and Events.
DenseAE Dense AutoEncoder.
DenseNet Dense Network.
FCN Fully Convolutional Network.
FLOPs Floating-point Operations.
FN False Negative.
FP False Positive.
GPU Graphics Processing Unit.
HPSS Harmonic and Percussive Source Separation.
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IDNN Interpolation Deep Neural Network.
IoT Internet of Things.
Kappa Cohen’s Kappa Coefficient.
MCC Matthews Correlation Coefficient.
MDF Motif Difference Field.
MFCC Mel Frequency Cepstral Coefficient.
MIMII Malfunctioning Industrial Machine Investigation

and Inspection.
MV Majority Voting.
PHM Prognostics and Health Management.
ResNet Residual Network.
ROC Receiver Operating Characteristic.
SGD Stochastic Gradient Descent.
SNR Signal to Noise Ratio.
SVM Support Vector Machine.
t-SNE t-Distributed Stochastic Neighbor Embedding.
TN True Negative.
TP True Positive.
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VAE Variational AutoEncoder.
WMV Weighted Majority Voting.
XAI Explainable Artificial Intelligence.

I. INTRODUCTION
In the modern manufacturing industry, industrial machines
are prone to failure due to their age-long operations.
Detecting and preventing machine failures are important
for the manufacturing industry, because machine failures
significantly affect maintenance cost management and man-
ufacturing cost management. Due to the development of
the IoT and data-driven methods in manufacturing, utilizing
large amounts of data collected from linked machines and
big manufacturing data has been enabled. Several methods
for monitoring industrial machines’ conditions that use
various sensors and microphones, such as collecting speeds
from vibration signals using accelerometers [1], temperature-
based sensors [2], and pressure-based sensors [3], have
been proposed. Recently, research on machinery failure
predictions using anomalous sounds has been developed
rapidly and a large number of state-of-the-art approaches in
this field have been proposed [4]–[8].

The manufacturing data can be transformed into meaning-
ful and actionable information intelligence using data-driven
approaches [9], [10]. Data-driven approaches bring a new
paradigm into the modern industry for both fault detection
of particular malfunctions (e.g., diagnosis) as well as PHM
[9], [11]. As opposed to physics-based approaches, where
modeling noisy and complex systems is not straightforward,
data-driven approaches, which are more effective and flexible
for fault prediction, can be updated using real-time man-
ufacturing data [12], [13]. Data-driven approaches heavily
rely upon powerful tools, machine learning techniques,
to extract meaningful information from raw data [14]. Deep
learning, a cutting-edge subsidiary of machine learning,
possesses a remarkable role as a link that bridges big
manufacturing data and fault prediction. Deep learning aims
to model structured hierarchy representations underlying
the data and categorize them by stacking multiple layers
of hierarchical architecture-based information processing
[15], [16]. Recently, the potential of deep learning has been
increasing due to increased computing power, increased size
of available data, and the development of state-of-the-art deep
learning techniques. Since deep learning can cope with a
large size of manufacturing data and learn from hierarchical
representations, it is also a promising technique for fault
detection [17], [18].

In this work, a deep learning-based industrial machine
malfunction detectionmodel that uses acoustic signals, which
are extracted from industrial machines, is proposed to classify
the machines’ normal and abnormal conditions. In order to
improve classification performance, an ensemble approach
that integrates multiple weak learning classifiers is consid-
ered. In particular, the EfficientNet-based weighted ensemble
model (hereinafter called as WMV), which provides better

classification performances than other ensemble models,
is used in this work. Furthermore, an open benchmark dataset
(i.e., MIMII [19]) is used for the experiments that validate the
classification performances of the proposed model.

In this work, a WMV model is proposed for industrial
machine malfunction detection using acoustic signals with
the following main contributions:
• To our knowledge, this work is the first to utilize the
EfficientNet backbone network in an ensemble model
for supervised industrial machinemalfunction detection.

• Utilizing the EfficientNet backbone network with
a weighted ensemble strategy has shown increased
accuracy in supervised industrial machine malfunction
detection compared to state-of-the-art models. Unlike
the common ensemble method strategy, which assigns
an equal weight for each ensemble member, this work
utilizes different weights to determine each ensem-
ble member’s contribution that indicates the trust or
expected performance of the model.

• Rather than the traditional exhaustive grid search
approach, this work adopts the Dirichlet distribution
process to identify and assign an appropriate weight
for each model in order to adapt the contribution’s
importance of the weighted ensemble model at hand.

• This work demonstrates the system’s capabilities using
mixed ensemble learning algorithms and an EfficientNet
backbone to mitigate the detrimental effects of over-
fitting and initialization that improve the efficiency of
supervised industrial machine malfunction detection.
The proposed method’s efficiency is demonstrated
through detailed experimental results.

The remainder of the paper is structured as follows.
Section II describes the datasets utilized in this work, the
data augmentation techniques, and the suggested weighted
ensemble model based on EfficientNet. The experimental
results and discussion are presented in Section III. Section IV
details related works, and the paper concludes in Section V.

II. MATERIAL AND METHOD
This work is comprised of five primary stages (see Figure 2).
First, audio data representing normal and abnormal operating
conditions of industrial machines (i.e., valves and pumps)
are selected. Then, audio file augmentation techniques
are applied to increase the number of samples that have
abnormal operating conditions, followed by a data conversion
into spectrogram images. An EfficientNet-based weighted
ensemble model that uses audio data is then proposed to
classify normal and abnormal operating conditions. Finally,
weighting strategies are considered to improve classification
performance.

A. DATASET
The MIMII dataset contains 26,092 sound recordings rep-
resenting normal operating circumstances and 6,065 sound
recordings representing abnormal operating conditions for
four different kinds of industrial machinery (i.e., pumps,
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FIGURE 1. Dataset visualization in a two-dimensional space of (a) pumps
and (b) valves that represent two distinct operational conditions (i.e.,
normal and abnormal).

valves, fans, and slide rails). Industrial machinery emits
two distinct sorts of sounds: stationary and non-stationary.
Additionally, these sounds vary in terms of characteristics
and degree of difficulty. The sound recordings for pumps and
valves are chosen for this work because of their increased
difficulties in diagnosing system faults compared to other
machine types (i.e., fans and slide rails). Figure 1 shows
the t-SNE for sound files of pumps and valves used in this
work. The t-SNE defines a soft border between the local
and global structures of the data. The t-SNE determines the
local neighborhood size for each data point separately based
on the local density of the data by forcing each conditional
probability distribution to have the same perplexity [20].

B. DATA AUGMENTATION
Data augmentation is a technique for generating additional
training data from the original data. Data augmentation

TABLE 1. Total amount of audio samples for each machine dataset after
data augmentation.

cannot replace actual training data. However, it may assist in
generating synthetic data, which allow the model to function
more effectively. Based on the audio files used in this
work, several appropriate ways are considered to increase the
amount of training data. To artificially increase the dataset
size and diversity of the data in this work, seven well-known
methods for audio file augmentation utilizing the Librosa
library [21] are applied, including the following:

1) Change pitch: randomly change the baseline pitch in a
file between−4 and 4 provided for favorable outcomes
per audio files selected for this work.

2) Change speed: stretch the time series of audio files by
a fixed rate.

3) Change pitch and speed: combination of the first and
second methods.

4) Random shifting: shift the audio to the right (back
forward) or left (fast forward) with a random second.

5) Stretching: change the speed or the duration of the
sound without affecting the pitch of the sound. This
method takes wave samples and a factor by which to
stretch as inputs. A factor of 0.45 is used in this work,
since it has a small difference from the original audio
files.

6) Value augmentation: add some small random value into
the data to alter the quality of the audio files so that
they only differ by small factors from the original audio
files.

7) Add distribution noise: add some random values
into the data using NumPy and several options of
data distributions, such as Gaussian distribution, Beta
distribution, log-normal distribution, etc.

These augmentations will not affect the quality of the
audio files and ensure that the synthetic audio files only
differ by small factors from the original audio files. Two
Librosa methods, shift silence and HPSS method, are not
used. Shift silence is not appropriate because the data do
not have a silence sequence, therefore it does not make any
difference. The HPSS method divides one sound sample into
harmonic or percussive sound. This means a mono sound file
is changed into a stereo sound file. Stereo sound has two
sound data, meaning they have a spectrogram for each type
(i.e., harmonic and percussive), which will cause the data to
deviate significantly from the original audio files. As a result,
a total of 7,397 audio files for pumps and 7,523 audio files for
valves are obtained, respectively. The details of both audio
sample types are shown in Table 1.

C. EfficientNet-BASED WEIGHTED ENSEMBLE MODEL
An ensemble model can integrate multiple weak learning
classifiers to obtain better predictive performance [22]. The
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FIGURE 2. A workflow of the proposed approach.

FIGURE 3. A detail framework of the proposed EfficientNet-based weighted ensemble model.

two voting models (i.e., hard-voting and soft voting) are
first considered as an ensemble classifier for this work.
In both voting models, the weights of the classifiers are
equal. It indicates that the different predictive performances
of the weak classifiers across the machine malfunction
types cannot be fully used. To address this issue, a new
ensemble model (i.e., WMV) is proposed in this work,
as shown in Figure 3. A weighted ensemble is an extension
of model averaging ensembles, where we rank members
of an ensemble according to their contribution to the final
prediction. Therefore, the multiple output model weights
are weighted differently among the classifiers based on

their predictive performance. Specifically, each classifier is
assigned a distinct weight, determined by the classifier’s
performance.

In the experiments, the EfficientNet-B0, B5 and B7
are chosen. These architectures are chosen based on the
performance results reported in the original paper [23].
The EfficientNet-B0 has the lowest performance among
the EfficientNet family but outperforms ResNet-50 and
Inception-v2. Additionally, EfficientNet-B5 is chosen,
because it outperforms DenseNet, ResNet-152, Inception-
ResNet-v2, and even AmoebaNet-A, all of which are
currently employed in this field. Lastly, EfficientNet-B7
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FIGURE 4. EfficientNet architecture comparison of EfficientNet-B0, EfficientNet-B5, and EfficientNet-B7.

is chosen as the best performer among the EfficientNet
family, AmoebaNet family, ResNet family, and SENet [23].
EfficientNet-B7 can improve the performance of the pro-
posed model. As a result, the proposedWMVmodel achieves
the best performance against state-of-the-art models (see
Section III).

Figure 4 illustrates the intricacies and distinctions between
EfficientNet-B0, B5, and B7. The EfficientNet-B0 is the
simplest among the EfficientNet family. From EfficientNet-
B0 to EfficientNet-B7, the depth, width, resolution, and
model size increase incrementally, but accuracy continually
improves. EfficientNet-B7 is known as the most accurate
and best-performing model. The EfficientNet architecture
comprises seven blocks of networks, each of which is
composed of several modules. As seen in Figure 4, the
input module and the output module of the EfficientNet
architecture are identical in all three models, with the input
module handling the start of the experiment and the output
modules acting as output layers. Following that, each of them
has seven blocks. The number of sub-blocks/modules in such
blocks varies from EfficientNet-B0 to EfficientNet-B7. The
first and final blocks of the EfficientNet-B0 architecture are
made up of three modules, while the EfficientNet-B5 and
EfficientNet-B7 architectures are made up of six modules
with varying degrees of repetition. EfficientNet-B0 has a
total of 237 layers, while EfficientNet-B7 has an aggregate
of 813 layers. These differences lead to different numbers
of parameters and FLOPs for the three models as shown in
Table 2.

TABLE 2. Number of parameters and FLOPs for EfficientNet-B0, B5, and
B7 according to the observations of Russakovsky et al. [24].

Deep learning training processes, as they are commonly
known, may be quite expensive in terms of time, computa-
tional power, and limited GPU availability [25]–[27]. These
difficulties and constraints frequently deter practitioners from
implementing deep learning techniques.Mitigating these bot-
tlenecks will significantly improve the use of deep learning
in real-world applications, particularly in real-time indus-
trial machine malfunction detection. Russakovsky et al. [24]
discover that the number of FLOPs is dependent on the
architecture of the deep neural network and the amount of
input data. The number of FLOPs limits the execution time
required by the neural network [28], [29]. Additionally, the
execution time increases roughly linearly with the number of
FLOPs performed. EfficientNet has been proven to have the
optimum performance based on their FLOPs. Therefore, the
EfficientNet backbone network is the optimum choice for the
proposed weighted ensemble model.

D. WEIGHTED VOTING STRATEGY
The use of mixed ensemble learning algorithms to mitigate
the detrimental effects of overfitting and initialization sen-
sitivity on learning performance by combining individual
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learners from heterogeneous and homogeneous models has
attracted considerable interest [30], [31]. The classification
output of each ensemble member is assigned a different
weight. This approach has shown great success in a variety of
areas, such as precisionmedicine [32], spatial prediction [33],
and mortality prediction [34], [35]. The contribution of each
ensemble member is weighted by a coefficient that indicates
the trust or expected performance of themodel.Weight values
are between 0 and 1 and are expressed as a percentage,
such that the total of the weights of all individual members
equals one. To identify an appropriate weight for each model,
the Dirichlet distribution process [36] is employed rather
than the more traditional exhaustive grid search approach.
The Dirichlet distribution and its compound variant, the
Dirichlet-multinomial, are two of the most basic models for
proportional data. Formally, the following terms are defined,
where m models are trained on a dataset of n samples, and
the outputs of the models are pooled to calculate the final
classification (i.e., prediction) of any instance x:

y(x) =
m∑
j=1

βj(x)hj(x) (1)

Here weights βj correspond to probabilities:

m∑
j=1

βj(x) = 1 and 0 < βj(x) ≤ 1 (2)

The weight optimizations are carried out via the fit()
function, which uses a validation dataset and the Dirichlet
distribution to do a greedy randomized search to opti-
mize weights. For a more extensive description of the
Dirichlet distribution, see [37]. The Dirichlet distribution
is a model of how proportions vary. An experiment with
possible outcomes 0, 1 and having respective probabilities
of β1, β2, . . . , βm is considered, and a probability distri-
bution on the vector (β1, β2, . . . , βm),

∑m
j=1 βj(x) = 1 is

assumed. Because
∑m

j=1 βj(x) = 1, it cannot be defined
a density on β1, β2, . . . , βm, but it may be defined one on
β1, β2, . . . , βm−1 and then take βm = 1 −

∑m−1
j=1 βj(x).

Therefore, β denotes a random vector whose elements sum
to 1, so that pm represents the proportion of model m. Under
the Dirichlet model with parameter vector α, the probability
density at β is:

p(β) ∼ Dir(α1,...,αm) =
0(

∑
m αm)

5k0(αm)
5kpαm−1m (3)

where ∑
k

pm = 1 and pm > 0 (4)

The parameters α can be estimated from a validation dataset
D = {β1, . . . , βn}. The maximum-likelihood estimate of α
maximizes p(D|α) = 5ip(βi|α).

III. RESULTS AND DISCUSSION
A. EXPERIMENTAL DESIGN AND PARAMETER SELECTION
All experiments are conducted using the Keras deep learning
library [38]. Experiments are conducted using the proposed
ensemble model from three different individual models based
on EfficientNet. There exists a total of 14,920 industrial
machine audio recordings of pumps and valves allocated
to the EfficientNet-B0, B5, and B7. The dataset is split
into 90% for training and 10% for random testing. In the
training set, the training files are split into 80% for training
(10,830 files) and 20% (2,708 files) for validation. The
code of the proposed method is implemented using Python
3.9.4,1 and the deep convolutional neural network structures
are established based on the Keras2 framework with a
TensorFlow backend.3 Each training is carried out on a
single GPU NVIDIA GeForce RTX 3060Ti on a Windows
workstation with CUDA 11.3. It has taken nine days of
training and twelve minutes and sixteen seconds of testing
to complete the process. The configuration used for the
individual models is as follows. The proposed network
is trained using the SGD optimizer [39] with a learning
rate of 1e-6 for EfficientNet-B0 and EfficientNet-B5 and
5e-5 for EfficientNet-B7, a batch size of twelve image
samples for EfficientNet-B0 and EfficientNet-B5 and a batch
size of eight image samples for EfficientNet-B7, and the
proposed network is trained for 1,000 epochs. The best model
configuration as evaluated by the loss of the test set is chosen.

B. RESULTS
A real-life machinery sound dataset from MIMII [19] is
used to evaluate the effectiveness of the proposed WMV.
The dataset used in this research consists of recordings from
two industrial machine types (i.e., pumps and valves) under
normal and anomalous operations. The anomalous recordings
exhibit various scenarios, such as leakage, clogging, voltage
change, a loose belt, and poor lubrication. In addition,
background noise recorded in real-world factories is added to
each recording according to a certain SNR. This experiment
uses sounds with an SNR of −6 dB, 0 dB, and 6 dB.
Therefore, the proposed WMV model represents a practi-
cal use-case scenario incorporating real-world complexity
and unpreventable situations, such as when microphones
capture background noises in a factory environment. Each
single-channel recording is 10 seconds long and has a
sampling rate of 16 kHz. The most complex datasets
containing sound files of pumps and valves are selected for
this experiment. Four different datasets (i.e., ID 00, ID 02,
ID 04, and ID 06) are selected for each machine.

Figure 5 summarizes the performance using the selected
dataset. MV and stacking are selected as ensemble models for
comparison with the WMV. According to the experimental
results shown in Figure 5, weighing the weighted ensemble

1https://www.python.org/downloads/release/python-394/
2https://github.com/fchollet/keras.
3https://www.tensorflow.org/
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as a whole outperforms the best individual model and other
ensemble models (i.e., MV and Stacking). As the experiment
demonstrates, models with higher scores also get weighted
with greater weights.

A number of measurement metrics are used in the evalua-
tion of the experimental results to measure the performance
of the proposedmodel as well as various individual classifiers
and ensemble models. As in a classic measurement, the
confusion matrix is utilized to perform classic measurements
by using four variables: TP, FP, TN , and FN .
• TP: the number of predictions where the classifier
correctly classifies the positive class as positive.

• FP: the number of predictions where the classifier
incorrectly classifies the negative class as positive.

• TN : the number of predictions where the classifier
correctly classifies the negative class as negative.

• FN : the number of predictions where the classifier
incorrectly classifies the positive class as negative.

The accuracy and AUC-ROC are selected, because this
experiment involves balanced datasets between the normal
and anomalous datasets as well as considers both positive and
negative predictions. Accuracy is the ideal choice, because it
embodies simplicity and ease of interpretation. Accuracy is
defined as follows.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(5)

The results reveal that the model demonstrating the most
effective performance on pumps (i.e., WMV) has an accuracy
of 0.97447 and the model demonstrating the most effective
performance on valves (i.e., WMV) has an accuracy of
0.98211. Additionally, an AUC metric indicates how well
the model distinguishes between two conditions (i.e., normal
and abnormal conditions) or how well the model performs.
This metric has a value between 0 and 1. A model with
100% incorrect prediction has an AUC of 0, whereas a
model with 100% correct prediction has an AUC of 1. The
proposed model (i.e., WMV) achieves an AUC of 0.99810 for
pumps and 0.99930 for valves. The experimental results are
also supported by the F1. The F1 is the harmonic mean of
precision and recall (see Equation 6). The proposed model
(i.e., WMV) achieves an F1 of 0.97562 for pumps and
0.98289 for valves.

F1=2×
precision×recall
precision+recall

=
TP

TP+0.5×(FP+FN )
(6)

Furthermore, Kappa and MCC [40] are considered to
measure performance. The MCC score analyzes the classi-
fication result and the ground truth as two sets and takes into
account TP and FN to compute a correlation coefficient that
ranges between−1 (complete disagreement) and 1 (complete
agreement). A value of zero shows that the classification does
not correlate with the ground truth. The Kappa and MCC
scores can be expressed as follows.

Kappa=
2×(TP× TN−FN × FP)

(TP+FP)× (FP+TN )+(TP+FN )× (TN+FN )
(7)

FIGURE 5. Performance comparison between various individual
classifiers and ensemble models (i.e., MV, stacking, and WMV) over two
distinct datasets (i.e., (a) pumps and (b) valves).

MCC=
TP×TN−FP×FN

√
(TP+FN )×(TP+FP)×(TN+FP)×(TN+FN )

(8)

As shown in Figure 5 and Table 3, the improvement in
the Kappa and MCC show that the proposed model achieves
the highest agreement with the ground truth compared to the
other individual classifiers and ensemble models. The Kappa
score ranges between 0-1, while the MCC ranges between
−1 to 1, where a score of 1 represents a perfect agreement
between the observation and the results. In probabilistic
measures, the best possible score is 1. The results of the
proposed model (i.e., WMV) illustrate Kappa and MCC
scores of 0.94884 and 0.94893 for pumps and 0.96414 and
0.96414 for valves, respectively.

C. DISCUSSION
A statistical significance test is run using the Quade test to
check whether performance differences among classification
models are significant. Table 4 shows that the proposed
model (i.e., WMV) is significantly different (p-value <
0.05) from the other classification models (i.e., EfficientNet-
B0, EfficientNet-B5, EfficientNet-B7, MV, and stacking)
with respect to accuracy, AUC, Kappa, F1, and MCC
metrics. The result of the Friedman rank also indicates the
superiority of WMV, where the proposed model maintains
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TABLE 3. Precision, Recall, Accuracy, F1, Kappa, MCC, and AUC score between individual classifiers and various ensemble models.

TABLE 4. Average Friedman rank and Quade omnibus test of the
proposed model (i.e., WMV) in comparison with other models.

TABLE 5. Performance improvement (%) of the proposed model (i.e.,
WMV) over individual classification models across different datasets and
metrics.

the top position in rank order across all performance metrics.
In addition, Table 5 summarizes the relative improvement
that Classifier A (i.e., WMV) produces over Classifier B
(i.e., base classification models) on two acoustic signal
datasets. Overall, WMV offers a performance enhancement
(with at least 0.08%) over the base classification models in
all performance metrics. The maximum enhancement (i.e.,
36.55%) is achieved on valves in terms of the Kappa metric.

The proposed WMV model is compared with several
existing models, such as MIMII AE, DCASE AE, DenseAE,
VAE, and several other recently usedmodels. In unsupervised

TABLE 6. Performance comparison between the proposed WMV model
and existing models in terms of AUC metric.

TABLE 7. Performance comparison between the proposed WMV model
and existing models in terms of F1 metric.

and semi-supervised AE, the best performing models are
compared with the proposed model. This can be seen in
Tables 6 and 7. Table 6 shows the value of an AUC
achieved by several existing models and the proposed model.
The performance results of the proposed model achieve
significant improvement compared to existing models, with
an AUC of 0.7233 to a near perfect performance of an AUC
of 0.9981 for pumps. The AUC for valves also improves from
0.6125 into 0.9993. This illustrates that the proposed model
significantly outperforms all existing models for both tested
machines (i.e., pumps and valves). The malfunction detection
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TABLE 8. Summary of previous works (in chronological order) that consider similar acoustic signal datasets.

in terms of the performance of an AUC increases by up to
9.51% and 3.23% for the pumps and valves, respectively,
compared to the newest model developed this year by
Thoidis et al. [41]. This improvement is also supported by
the F1 value of pumps compared to a previous model that
increased malfunction detection by 9.56%.

In this experiment, it is shown that the proposed model is
effective with both pump and valve machine types due to
balanced AUC between pumps and valves (less than 1%),
while other existing models, such as SPIDERnet, AE by
Purohit et al. [19], andMDF-FCN, aremore suited for pumps
than valves. Talmoudi and Hirata [42], Ribeiro et al. [6] and
RawdNet by Thoidis et al. [41] are more suited for valves.
These are shown due to their performance of an AUC
that differs from 3.7% up to 21.5% for pumps compared
to valves. In general, most models performs better for
pumps than valves. This finding indicates that malfunction
detection for valves is more challenging compared to pumps,
because valves have non-stationary signals, while pumps
have stationary signals. Pumps’ stationary signals have a
constant time period, frequency and spectral content, while
valves’ non-stationary signals do not have these fundamental
assumptions. Therefore, the proposed model demonstrates
its robustness to process both stationary and non-stationary
signals.

IV. RELATED WORKS
Industrial machine malfunction detection using acoustic
signals has garnered considerable interest in recent years.
A sound anomaly might signal an issue or malfunction;

therefore, early recognition of the anomaly can avert a variety
of problems, including predictive monitoring of industrial
equipment and auditory monitoring of highways [4], [52],
[53]. Detecting anomalies include supervised, unsupervised,
and semi-supervised approaches. Supervised anomaly detec-
tion is a form of a binary classification problem that needs
the full dataset to be labeled ‘‘normal’’ or ‘‘abnormal.’’
An unsupervised method uses unlabeled data, as it will
understand which data is normal and abnormal. Semi-
supervised anomaly detection needs only ‘‘normal’’ data to
be annotated so themodel can learn which data are ‘‘normal’’.

A brief overview of current machine malfunction detectors
that use acoustic sound signals, particularly the MIMII
dataset, is presented as follows. Table 8 presents a summary
of existing works that utilize the MIMII dataset for fault
detection. TheMIMII dataset is originally introduced by [19].
The authors then use AE for detecting the anomaly. Different
AEs are constructed for each machine type and model
ID using a training dataset consisting only of normal
data. Nguyen and Huang [50] utilize CNN for machine
fault detection based on sound signals analysis. The find-
ings demonstrate that, despite their modest structure (e.g.,
1–3 convolutional layers), the developed models achieve
a high level of accuracy and surpassed ALexNet in most
classification tests. When the training and testing data come
from the same platform, a basic CNN model with a single
convolution layer performs very well (96.51%–99.52%).
An AE/VAE interpolation error is considered an anomaly
score for anomalous sound detection, which overcomes the
problem of predicting edge frames [49]. It is shown that
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the suggested method achieves a 27% improvement in the
conventional AUC score, particularly when it comes to
non-stationary industrial machine noises.

An enhanced AE model named convolutional VAE is
used for industrial machine anomalous sound detection [48].
The proposed technique is well-suited for increasingly
complicated applications in which signal characteristics
are distributed over temporal and frequency domains.
Zhang et al. [46] solve an image encoding problem in time
series representations by using MDF. Then, a FCN is
applied to classify the MDF images in the MIMII dataset.
Furthermore, Koizumi et al. [44] design SPIDERnet, a sim-
ilarity function for one-shot anomaly detection in sounds.
An embedded spatial similarity measure using a neural net-
work and attention mechanisms that absorb time-frequency
stretching are the two main components of SPIDERnet’s
detection system for anomalous sounds. Instead of utilizing
deep AEs, Müller et al. [5] suggest neural networks that are
pre-trained on the image classification task to extract features.
Anomaly detection models are subsequently trained using
these characteristics. The proposed approach outperforms
convolutional AEs in noisy samples of four distinct industrial
machines. Similarly, Van Truong et al. [47] utilize normal
sound samples and a fully connected U-Net architecture
to generate an acoustic representation that is the closest
match to the input sound for comparison with an anomalous
sound.

In contrast with the previous works, Gantert et al. [51]
use spectral feature extraction techniques. In order to dis-
tinguish between normal and abnormal operations, spectral
characteristics derived from industrial sounds are employed
as inputs for supervised machine learning algorithms.
Classification results (e.g., SVM) demonstrate a superior
AUC score when compared to classical machine learning
models applied to the same dataset while maintaining a
small model parameter set for acceptable generalization.
Finally, Thoidis et al. [41] provide a method for extracting
discriminative embeddings from multi-channel raw audio for
diverse machinery sounds. To identify problems on specific
machines, a deep CNN learns machine embeddings and
transfers them to a deep one-class neural network. The
proposed model surpasses state-of-the-art audio-driven fault
detection approaches and is much more resilient in noisy
conditions.

V. CONCLUSION
The objective of this research is to propose a deep
learning-based industrial machine malfunction detection
model that uses acoustic signals to classify normal and
abnormal conditions of industrial machines. In particular,
a WMV model is proposed for improving classification
performance.

This research consists of five primary stages. First,
audio data that represent normal and abnormal operating
conditions for industrial machines are selected. Then, various
well-known methods for audio file augmentation are applied

to increase the number of samples that have abnormal
operating conditions, and a data conversion into spectrogram
images is considered. A WMV model is then proposed to
classify normal and abnormal operating conditions using
audio data. Finally, weighting strategies are considered to
improve classification performance.

Case studies involving audio data of two industrial machine
types (i.e., pumps and valves) from an open dataset (i.e.,
MIMII) are used to verify the proposed WMV model.
It is concluded that the proposed EfficientNet-based ensem-
ble model provides better classification performance than
individual classifiers (i.e., EfficientNet-B0, EfficientNet-B5,
EfficientNet-B7) for all selected measures (i.e., precision,
recall, accuracy, F1, Kappa, MCC, AUC) for both machine
types (i.e., pumps and valves). In addition, the weighted
ensemble applied for the proposed WMV model provides
better classification performance than other ensemble models
(i.e., MV and stacking) for all selected measures for both
machine types as well. The experimental results indicate
that the proposed WMV model can be used to detect
industrial machine malfunctions using acoustic signals with
high accuracy.

The authors will consider using audio data for other types
of industrial machines (i.e., fans and slide rails) from the
MIMII dataset as well as collecting and using other acoustic
signals of industrial machines (e.g., washing machines).
Future works also consider how the proposed WMV model
that uses acoustic signals of industrial machines can be
combined with existing industrial machine malfunction
detection models that use different types of data (e.g., image
data and tabular data) collected from industrial machines in
order to improve malfunction detection performance.

Most existing sound analysis research has been focused
on the detection power of algorithms rather than the
understanding behind these detections. Therefore, in the
future, the authors will seek to develop an industrial
machine malfunction detection system capable of explaining
the transparency of the features of normal and abnormal
conditions of industrial machines. This feature is essential
for artificial intelligence models due to the weight of
human factors, where human lives are in danger because
of malfunctioning industrial machines. There have been
extensive noteworthy works and interests in the field of XAI
covering different gaps in different domains [54]–[56], but
there is still a struggle with the applicability of XAI that
needs further research. It is important to better understanding
artificial intelligencemodels’ decisions andwhy they happen.
This understanding will increase trust in artificial intelligence
models with positive expected outcomes, enabling decisions
regarding whether to fully rely on artificial intelligence
models or consider human factors to address security attacks
on artificial intelligence model-based techniques.
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