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ABSTRACT Tensors are multi-way arrays which can be used to model systems spanning many domains.
This work proposes to use tensors for characterizing, analyzing, and designing multi-domain communication
systems. Most modern day communication systems make use of coding and modulation across different
domains such as space, frequency, time. Hence a unified mathematical framework characterizing such a
multiple-domain system in an intuitive manner is well needed. In this paper, we present such a unified
framework that characterizes a communication system with N input domains, M output domains and
an M + N domains multi-linear tensor channel. The proposed framework is generic where the physical
interpretation of the domains is system specific. We illustrate a few examples from multi-antenna multi-
carrier and multi-user systems that fit the proposed framework. Assuming a fixed tensor channel, we provide
an information theoretic analysis by deriving its Shannon capacity and input power allocation under a variety
of power constraints. In this paperwe show how the tensor framework’s suitability tomathematically describe
a family of power constraints can be used to design and analyze various multiple domain communication
systems. The tensor based approach extends water-filling from a matrix setting to tensors, encapsulating
the effects of multiple domains thereby allowing joint multi-domain precoding. We show that the capacity
pre-log for a tensor channel increases exponentially in the number of domains, indicating the potential
of tensor based multi-domain communication systems to provide the large information transmission rates
envisaged for 5G and beyond systems.We also show the application of the tensor framework in characterizing
the capacity and rate regions of multi-user MIMO channels. Both multiple access and interference channels
are considered where the tensor based approach leads to a coordinated users transmission scheme. Such a
scheme ensures higher achievable sum rates as compared to independent user transmissions.

INDEX TERMS Tensors, MIMO channels, multi-user MIMO, Shannon capacity, tensor SVD and EVD.

I. INTRODUCTION
A tensor is a multi-domain array that can be seen as an
N th order generalization of a vector or a matrix, where a
vector is a tensor of order one and a matrix is a tensor of
order two [1]. Tensors were introduced in the early nineteenth
century with applications in Physics where such mathemati-
cal structures can be seen as a mapping from a linear space
to another whose coordinates transform multi-linearly under
a change of bases [2]. Later, tensors found applications in
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psychometrics in the sixties with the work of Tucker [3]
as an extension of two-way data analysis to higher-order
datasets, and in chemometrics in the eighties [4], [5]. In the
last few decades, tensors as an extension of matrices have
found extensive applications in various engineering disci-
plines including computer vision [6], [7], data mining [8], [9],
machine learning [10], neuroscience [11], signal process-
ing [12]–[14] and multi-linear system theory [15], [16].
Tensors provide a unified and intuitive framework to repre-
sent processes with dependencies on more than two indices.
Through a tensor based approach, we can develop models
which capture interactions between various parameters
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enhancing the understanding of their mutual effects.
A detailed summary of tensor algebra results can be found
in many publications such as [1], [9], [10], [17]–[20].

In the field of communication systems, so far tensors have
been used primarily from a signal processing point of view.
Most modern communication systems use multi-domain
modulation and coding schemes for effectively exploiting
resources in transmission and reception. A common example
in wireless communications is that of using the space domain,
i.e. multiple input multiple output (MIMO) systems based on
multiple antennas, to achieve a significant increase in chan-
nel capacity [21]. Systems including MIMO in conjunction
with multi-carrier techniques such as Orthogonal Frequency
Division Multiplexing (OFDM) [22], [23], Generalized Fre-
quency Division Multiplexing (GFDM) [24], [25], Filter
Bank Multi-carrier (FBMC) [26], etc., have been widely
researched over past few years. Techniques have been devel-
oped to improve link reliability through space-time, space-
frequency, and space-time-frequency coding methods [27]
that exploit diversity in all spatial, temporal and frequency
domains. Hence the received and transmitted signals have
an inherent multi-domain structure which can be represented
by tensors. Such a multi-domain approach using tensors has
been considered in [28], [29], where the focus has been
around developing blind detection techniques at the receiver.
A tensor based space-time-frequency coding structure is pro-
posed in [30] for a MIMO OFDM-Code Division Multiple
Access (CDMA) system where signals are represented using
order-5 tensors. Applications of tensors are also being con-
sidered for modelling various 5G and 6G communication
technologies such as Intelligent Reflecting Surfaces [31],
massiveMIMO [32], [33], millimeter wave [34], [35],MIMO
relay systems [36]. Recently, a tensor based framework
for a general multi-domain communication system using
the tensor contracted product has been developed in [37].
In addition, [37] also considers tensor based joint-domain
equalization at the receiver to combat inter-domain interfer-
ences. Hence the tensor approach of handling a multi-domain
communication system can lead to design of new and
improved transmission and reception schemes. This paper
considers information theoretic aspects of discrete version
of the tensor-modelledmulti-domain communication systems
of [37].

The domains in a communication system can represent
space, time, frequency, users, propagation delay, spreading
sequence etc. This necessitates a generic unified mathemati-
cal framework with which we can model any multi-domain
communication system, and hence tensors naturally come
into play. Having such a framework would not only provide a
mathematical basis for existing schemes, but would also act
as a stepping stone for developing new and improved sys-
tems spanning multiple domains such as G.hn networks [38],
5G and beyond [39], as well as 6G [40]. The main con-
tribution of this paper is the generic tensor based system
model where an order M + N channel tensor is used to
connect an orderN input tensor with an orderM output tensor

using the Einstein product. We find the Shannon capacity of
such a deterministic tensor channel with various input con-
straints, revealing its exponential increase with the number
of domains. A tensor framework endowed with the Einstein
product has been used in [15], [16] to extend basic linear sys-
tem concepts to the multi-linear realm. Our work introduces
the multi-linear tensor channel and extends basic information
theoretic concepts to such models.

The initial motivation to use tensors for our purpose stems
from their unique suitability to retain the distinction between
multiple domains in the system model, thereby allowing a
convenient representation of a variety of power constraints
across domains. Even though tensor entities occur naturally
in multi-domain communication systems, it should be noted
that in principle a tensor can be represented using a matrix
or a vector. For instance, the slices of a third order tensor
can be stacked together to form a bigger matrix. Such matrix
representations are sometimes used in order to leverage the
well established linear algebra concepts for analysis. How-
ever, representing a naturally occurring higher order tensor
using a lower order array such as a matrix or vector col-
lapses the distinct multiple indices which are used to iden-
tify the domains. Thus in order to restore the identifiability
of domains, it becomes imperative to use tensors [41]. In addi-
tion, the tensor based approach leads to joint domain pre-
coding and power allocation operations which perform much
better than matrix approaches using per domain processing.
Also, the proposed framework in this paper can be used to
find the capacity of multi-user MIMO channels. The ten-
sor model allows to keep users and antennas as distinct
domains in amulti-user system. Hence the problem of finding
the channel capacity under per user power constraints for
any number of users can be approached using the tensor
framework.

Capacity of theMIMOmatrix channel was analyzed in [21]
by converting theMIMO channel into parallel non-interfering
scalar channels through a singular value decomposition of
the channel matrix. Since the late 1990’s and early 2000’s a
significant research effort has been invested in extending the
work in [21] under various assumptions. A detailed summary
can be found in [42]. Capacity behaviour of OFDM based
MIMO systems has been explored in [43] by concatenating
the transmit vectors over different antennas and different
sub-carriers into a single vector and using a block-diagonal
channel matrix. There has not been an attempt so far to
quantify the capacity for a channel spanning more than
two domains in terms of the number of domains itself and
also to find the multi-domain power allocation required to
achieve capacity, which calls for a tensor based approach.
One impediment en-route such application of tensors in Infor-
mation Theory is the inability to completely diagonalize
a tensor and thereby convert a higher order channel into
scalar channels. Complete diagonalization of any tensor with
tensor decomposition techniques such as Parallel Factoriza-
tion (PARAFAC) or Tucker decomposition is not achievable
in general [1]. However, recent work in [18], [44] proposes
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a tensor singular value decomposition (SVD) and eigenvalue
decomposition (EVD) approach as special cases of Tucker
decomposition for solving multi-linear systems of equations.
A generalization of such a tensor SVD and EVD is pre-
sented in this paper which is used to compute the channel
capacity.

The capacity of a MIMO GFDM channel modelled as a
sixth order tensor, under sum power constraint is considered
in [45]. Further, [46] presents the notion of tensor partial
response signalling as a means to generate multi-domain
signals with desired spectral and cross-spectral properties.
The trade-off between domains of a communication sys-
tem as revealed through the tensor approach is also studied
in [46]. In [47], the capacity of tensor channels under a
family of power constraints, which includes per antenna or
sum power constraints as its specific cases, is considered.
Going beyond [47], in this paper we consider the channel
characterization as a tensor and its Shannon capacity under
different power constraints in detail with new results and
applications. In particular, we consider the application of
the tensor framework for MIMO multiple access and inter-
ference channels. We use our proposed solution to char-
acterize rate regions and quantify achievable sum rates in
a multi-user system under user cooperation with per user
power constraints. A comparison of these results with other
methods in literature which assume independent user trans-
missions is also included. We also present examples of sev-
eral multi-domain systems such as multi-user MIMO OFDM
where the channel can be characterized as higher order tensor.
For any such multi-domain system, we present an algorith-
mic approach of approximating the optimal input covari-
ance under a variety of input power constraints along with
a discussion on its computational complexity. For MIMO
GFDM systems, we use our proposed solution to prescribe
a precoding scheme under per antenna power constraints and
analyze its BER performance.We also present results onmul-
tiplexing gain achieved by the tensor channel. Through sev-
eral numerical examples, we present the capacity behaviour
of tensor channels for various channel sizes, with differ-
ent domain power constraints, and channel with correlated
entries.

This paper is organized as follows: A brief review of ten-
sor algebra is presented in section II. Section III introduces
the discrete system model for a multi-domain communica-
tion system using tensors. The notion of a channel as a
higher order tensor is proposed with an example. Section IV
presents the required information theoretic notions for ten-
sors. Section V considers the capacity of tensor channels
under a family of power constraints, an algorithm for finding
the input covariance along with its complexity, and multi-
plexing gain provided by tensor channels. Section VI presents
numerical and simulation results showing an application of
our work to MIMO GFDM systems. Section VII considers
multi-user MIMO Multiple Access Channels (MAC) and
Interference Channels (IC) using the tensor framework. The
paper is concluded in Section VIII.

II. ELEMENTS OF TENSOR ALGEBRA
In this section we present essential tensor algebra results
needed for this paper. A detailed treatment of tensor algebra
can be found in [1], [18], [37] and references within.

A. NOTATIONS
Throughout this paper, deterministic vectors are represented
using lower-case underline fonts, e.g. x, matrices using upper-
case fonts, e.g. X and tensors using upper-case calligraphic
fonts, e.g. X. Their corresponding random quantities are
denoted by bold fonts, e.g. x, X and XXX for random vectors,
matrices and tensors respectively. The individual entries of a
tensor are denoted by indices in subscript, e.g. the (i, j, k)th
element of a third order tensorX is denoted byXi,j,k . A colon
in subscript is used to indicate all elements of a mode, e.g.
X:,j,k represents all the elements of first mode corresponding
to the jth second and the kth third mode. The nth element in
a sequence is denoted by a superscript in parentheses, e.g.
A(n) denotes the nth tensor in a sequence of tensors. Expecta-
tion is denoted by E[·], entropy by H(·) and mutual infor-
mation by I(·; ·). The set of complex numbers is denoted
by C. An all-zero tensor is represented by 0T .

B. BASIC TENSOR OPERATIONS AND DEFINITIONS
Tensors are multi-way arrays with components indexed by
N indices also known as modes. The number of modes,
N is called the order of the tensor. The set of all tensors
of size I1 × · · · × IK over C forms a linear space, denoted
as TI1,...,IK (C).
Definition 1 (Matricization Transformation): Let us den-

ote the linear space of P × Q matrices over C as MP,Q(C).
For an order K = N + M tensor A ∈ CI1×···×IN×J1×···×JM ,
the transformation fI1,...,IN |J1,...,JM : TI1,...,IN ,J1,...,JM (C) ⇒
MI1·I2···IN ,J1·J2···JM (C) with fI1,...,IN |J1,...,JM (A) = A is defined
component-wise as [18]:

Ai1,i2,...,iN ,j1,j2,...,jM

fI1,...,IN |J1,...,JM
−−−−−−−−−→

Ai1+
∑N

k=2(ik−1)
∏k−1
l=1 Il ,j1+

∑M
k=2(jk−1)

∏k−1
l=1 Jl

(1)

This transformation is referred to as matricization,
or matrix unfolding by partitioning the indices into two dis-
joint subsets [17]. The vectorization operation as defined
in [48] can be seen as a specific case of (1) by using J1 =
· · · = JM = 1. The bar in subscript of fI1,...,IN |J1,...,JM
represents the partitioning after N modes of an N + M
order tensor where first N modes correspond to the rows of
the representing matrix, and the last M modes correspond
to the columns of the representing matrix. This mapping is
bijective [49], and it preserves addition and scalar multiplica-
tion operations. Hence the linear spaces TI1,...,IN ,J1,...,JM (C)
and MI1·I2···IN−1·IN ,J1·J2···JM−1·JM (C) are isomorphic and the
transformation fI1,...,IN |J1,...,JM is an isomorphism between the
linear spaces.
Definition 2 (Tensor Contracted product [17]): Consider

two tensors X ∈ CI1×···×IM×J1×···×JN and Y ∈

CI1×···×IM×K1×···×KP . A contraction between the two
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tensors along their M common modes denoted by
〈X,Y〉{1,...,M;1,...,M} leads to a resulting tensor, Z ∈

CJ1×···×JN×K1×···×KP given by:

Zj1,...,jN ,k1,...,kP =
∑

i1,...,iM

Xi1,...,iM ,j1,...,jNYi1,...,iM ,k1,...,kP

(2)

In general for the contracted product, the modes to be
contracted need not be consecutive and can be in any loca-
tion. However, the dimensions of the corresponding modes
must be equal. For instance, tensors X ∈ CI×J×K×L and
Y ∈ CJ×P×L×Q can be contracted as Z = 〈X,Y〉{2,4;1,3}
to generate Z ∈ CI×K×P×Q with elements Zi,k,p,q =∑

j,l Xi,j,k,lYj,p,l,q. Other tensor products, such as the Ein-
stein product or the mode-n product of tensor with matrices
can be seen as special cases of the tensor contracted product.
Definition 3 (Einstein product [18]): For any positive

integer N , the Einstein product is defined using the
operation ∗N by

(A ∗N B)i1,...,iP,j1,...,jM
=

∑
k1,...,kN

Ai1,i2,...,iP,k1,...,kNBk1,...kN ,j1,j2,...,jM (3)

whereA∈CI1×···×IP×K1×...×KN andB∈CK1×···×KN×J1×···×JM .
Einstein product is a tensor contracted product where con-

traction is over the last N consecutive modes of A and first
N consecutive modes of B. The outer and inner products
can be seen as special cases of Einstein product. For tensors
X,Y ∈ CI1×···×IN and Z ∈ CJ1×···×JM , we have:

Inner Product : 〈X,Y〉 = X ∗N Y = Y ∗N X

=

I1∑
i1=1

· · ·

IN∑
iN=1

Xi1,...,iNYi1,...,iN (4)

Outer Product : (X ◦ Z)i1,i2,...,iN ,j1,j2,...,jM
= Xi1,i2,...,iNZj1,j2,...,jM = X ∗0 Z (5)

where 〈X,Y〉 is a scalar and (X ◦ Z) ∈ CI1×···×IN×J1×···×JM .
Definition 4 (mode-n product [50]): The mode-n product

of a tensor X ∈ CI1×I2×···×IN with a matrix U ∈ CJ×In is
denoted by X×nU and is defined as

(X×nU)i1,i2,...,in−1,j,in+1,...,iN =
In∑

in=1

Xi1,i2,...,iNUj,in (6)

where (X×n U) ∈ CI1×···×In−1×J×In+1×···×IN .
Definition 5 (Square tensors [49]): A tensor A ∈

CI1×···×IN×J1×···×JM is called a square tensor if N = M and
Ik = Jk for k = 1, . . . ,N .
For square tensors A,B of size I × J × I × J , it was

shown in [18] that fI ,J |I ,J (A ∗2 B) = fI ,J |I ,J (A) · fI ,J |I ,J (B)
where · refers to the usual matrix multiplication. This prop-
erty can be easily generalized to square or rectangular
non-square tensors of any order in the form of the following
Lemma [51]:

Lemma 1: For tensors A ∈ CI1×···×IN×J1×···×JM and B ∈
CJ1×···×JM×K1×···×KP under the transformation from (1), the
following holds:

fI1,...,IN |K1,...,KP (A ∗M B)
= fI1,...,IN |J1,...,JM (A) · fJ1,...,JM |K1,...,KP (B). (7)

Definition 6: (Pseudo-diagonal Tensors):Any tensorD ∈
CI1×···×IN×J1×···×JM of orderN+M is called pseudo-diagonal
if its transformation to a matrix, D = fI1,...,IN |J1,...,JM (D) ∈
CI1···IN×J1···JM results into a diagonal matrix such that Di,j is
non-zero only when i = j. In case of a rectangular D, such
a matrix is often called main diagonal or principal diagonal
matrix [52].

A square tensor D ∈ CI1×···×IN×I1×···×IN is pseudo-
diagonal if all its entries Di1,...,iN ,j1,...,jN are zero except
when i1 = j1, i2 = j2, . . . , iN = jN . In [18], [53],
such a tensor is termed as diagonal. However, we tend to
call it pseudo-diagonal for our purpose of discussion, so as
to make a clear distinction from the diagonal tensor defi-
nition more widely found in literature. A diagonal tensor
is one whose entries Di1,...,iN are zero except when i1 =
i2 = · · · = iN [1]. An illustration of the difference
between diagonal and pseudo-diagonal tensor is presented
in [37]. Note that pseudo-diagonality for a non-square tensor
as in Definition 6 is defined with respect to partition after
N modes. For instance, if we refer to a third order tensor
as pseudo-diagonal, it is important to specify whether it is
pseudo-diagonal with respect to partition after the first mode
or the second mode. Hence to avoid overload of notation
in this paper whenever we write a tensor explicitly as order
N+M or order 2N and call it pseudo-diagonal, then it is with
respect to a partition after N modes.
Using the Einstein product and Lemma 1, we can extend

many linear algebra concepts to a multi-linear setting [18],
[49]. For instance, a square pseudo-diagonal tensor of order
2N denoted as IN ∈ CI1×···×IN×I1×···×IN is called an iden-
tity tensor if (IN )i1,...,iN ,i1...,iN = 1 for all i1, . . . , iN . The
tensor X−1 ∈ CI1×···×IN×I1×···×IN is an inverse of a square
tensor of same size, X ∈ CI1×···×IN×I1×···×IN if X ∗N
X−1 = X−1 ∗N X = IN . The Hermitian of a tensor A ∈
CI1×···×IN×J1×···×JM is a tensor B ∈ CJ1×···×JM×I1×···×IN

with entries B∗j1,j2,...,jM ,i1,i2,...,iN = Ai1,i2,...,iN ,j1,j2,...,jM and
it is denoted as AH . Also, the transpose is denoted as AT .
A square tensor X ∈ CI1×···×IN×I1×···×IN is called Hermitian
ifX = XH and is called unitary ifXH

∗NX = X∗NX
H
= IN .

Tensor SVD: For A ∈ CI1×···×IN×J1×···×JM , the tensor
Singular Value Decomposition (SVD) of A has the form
A = U ∗N D ∗M VH where U ∈ CI1×···×IN×I1×···×IN

and V ∈ CJ1×···×JM×J1×···×JM are unitary tensors and D ∈

CI1×···×IN×J1×···×JM is a pseudo-diagonal tensor whose non-
zero values are the singular values of A. The existence of
such a tensor SVD can be shown by using Lemma 1 and
the SVD of matrix fI1,...,IN |J1,...,JM (A) [18]. Note that Tucker
decomposition of a tensor can also be seen as a higher order
SVD of tensors [50] and has found many applications partic-
ularly in extracting low rank structures in higher dimensional
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data [54]. The relation between Tucker decomposition and
the tensor SVD presented here is explained in [18].

Tensor EVD: Let A ∈ CI1×···×IN×I1×···×IN ,X ∈

CI1×···×IN , λ ∈ C, where X and λ satisfy A ∗N X = λX,
then we call X and λ as eigentensor and eigenvalue of A
respectively. The tensor Eigenvalue Decomposition (EVD)
of a Hermitian tensor A ∈ CI1×···×IN×I1×···×IN is given as
A = U ∗N D ∗N UH where U ∈ CI1×···×IN×I1×···×IN is
a unitary tensor and D ∈ CI1×···×IN×I1×···×IN is a square
pseudo-diagonal tensor with its non-zero values being the
eigenvalues ofA andU containing the eigentensors ofA. As a
generalization of matrix eigenvalues, several other definitions
exist in literature for tensor eigenvalues [55], [56]. But most
of these definitions apply to super-symmetric tensors which
are defined as a class of tensors that are invariant under
any permutation of their indices [56]. Such an approach has
applications in Physics and Mechanics [56]. But there is no
single generalization to the tensor case that preserves all the
properties of matrix eigenvalues [57]. For our purposes,
we have presented a particular generalization from [44]which
can be used for any square tensor, irrespective of symmetry
in its elements.

The eignevalues of a Hermitian tensor are real. Subse-
quently, a Hermitian tensor X ∈ CI1×···×IN×I1×···×IN is
defined as positive semi-definite, denoted by X � 0, if all
its eigenvalues are non-negative, and as positive definite,
denoted by X � 0, if all its eigenvalues are strictly positive.
Determinant of X, denoted by det(X), is defined as the prod-
uct of its eigenvalues. Trace of a tensor A, denoted as tr(A),
is defined as the sum of its pseudo-diagonal entries. Also, the
following properties can be established using Lemma 1:
(a) Associativity: For tensors A ∈ CI1×···×IP×J1×···×JN , B ∈

CJ1×···×JN×K1×···×KM and
C ∈ CK1×···×KM×T1×···×TQ , we have

(A ∗N B) ∗M C = A ∗N (B ∗M C)

(A ∗N B) ◦ C = A ∗N (B ◦ C) (8)

(b) Commutativity: Einstein product is not commutative in
general. However for the specific case where the contrac-
tion is over all the N modes of one of the tensors, say for
tensors A ∈ CI1×···×IP×J1×···×JN and B ∈ CJ1×···×JN ,
we have

A ∗N B = B ∗N AT (9)

(c) For invertible tensors A and B ∈ CI1×···×IN×I1×···×IN ,
we have

(A ∗N B)−1 = B−1 ∗N A−1 (10)

det(A ∗N B) = det(B ∗N A) = det(A) · det(B) (11)

(d) For A,B ∈ CI1×···×IN of same size and order N ,

A ∗N B = B ∗N A = tr(A ◦B) = tr(B ◦A) (12)

(e) For tensors A ∈ CI1×···×IN×J1×···×JM and B ∈

CJ1×···×JM×I1×···×IN , we have:

det(IN +A ∗M B) = det(IM +B ∗N A) (13)

To prove (13), we can use Lemma 1 and Sylvester’s
matrix determinant identity [58].

Tensor Gradient: Consider a real-valued scalar function
g(X) of a complex matrix X. The corresponding complex gra-
dient matrix is defined as ∇Xg , ∂g/∂X∗, where [∇Xg]i,j =
∂g
∂X∗i,j

,
1
2

( ∂g
∂Re{Xi,j}

+ j
∂g

∂Im{Xi,j}

)
[59]. We similarly

define the complex gradient of a scalar function f (X) of a
tensor X ∈ CI1×···×IN as ∇Xf , ∂f /∂X∗ where the gradient
is a tensor of the same size as X whose individual compo-
nents are the derivatives with respect to the components of
X∗, i.e. [∇Xf ]i1,...,iN = ∂f /∂X∗i1,...,iN . Using this definition,
we can extend several results on matrix complex gradients
from [59], [60], [61, Appendix A.7] to a tensor setting. For
instance, given A ∈ CJ1×···×JM×I1×···×IN and Hermitian
positive semi-definite tensors B,C ∈ CI1×···×IN×I1×···×IN ,
using results from [59], [60] and Lemma 1, we can write:

∇C log[det(IM +A ∗N C ∗N AH )]

= AH
∗M (A ∗N C ∗N AH

+ IM )−1 ∗M A, (14)

∇C tr(B ∗N C) = B. (15)

III. DISCRETE TENSOR SYSTEM MODEL
A. THE TENSOR CHANNEL
We define the input and output in a multi-domain communi-
cation system as tensor symbols of order N and M respec-
tively. Let XXX ∈ CI1×···×IN represent the input (transmitted)
tensor symbol with I1, I2, . . . , IN as the dimensions of its
N domains where each componentXXXi1,...,iN is a discrete com-
plex symbol. Similarly, we represent the output (received)
tensor symbol by YYY ∈ CJ1×···×JM with J1, J2, . . . , JM as
the dimensions of its M domains. We define a multi-linear
channel between the transmit and the receive side as a tensor
of order M + N represented by H ∈ CJ1×···×JM×I1×···×IN .
With additive noise, the system model can be specified by
using the Einstein product of the channel tensor with the input
tensor where we contract along all the modes of the input
tensor:

YYY = H ∗N XXX+NNN (16)

where

YYYj1,...,jM =

I1∑
i1=1

I2∑
i2=1

· · ·

IN∑
iN=1

Hj1,...,jM ,i1,...,iNXXXi1,...,iN

+NNNj1,...,jM (17)

with NNN representing the received noise tensor of same size
as YYY. It is straightforward to see that the narrowband discrete
time MIMO matrix channel model is a special case of this
tensor model where input and output are order-1 tensors
(vectors), the channel is an order-2 tensor (matrix) and the
Einstein product reduces to regular matrix multiplication,
y = Hx+ n.
In case of a matrix representation of a discrete MIMO

channel which characterizes only the space domain, each
component of the channel matrix Hi,j represents the complex
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gain (i.e. amounting for both phase change and amplitude
gain) of different paths between transmit and receive anten-
nas. In (17), each component of the tensor channel is a
complex gain that couples the elements between the order
N input and order M output tensors. The proposed system
model is generic and the number of modes along with the
physical interpretation of the individual modes is system-
specific. Such modes can represent space, time, frequency,
propagation delay, users, spreading sequence, etc., depending
on the system.

For a MIMO communication system with NR receive and
NT transmit antennas, the continuous time input-output rela-
tion in a linear time varying channel is given as [62]:

y(t) =
∫

H(t, τ )x(t − τ )dτ + n(t) (18)

where x(t) is theNT×1 continuous time input vector, n(t) and
y(t) are the NR × 1 noise and received vectors respectively.

The NR × NT matrix H(t, τ ) has components Hnr ,nt (t, τ )
that represent the channel impulse response between transmit
antenna nt and receive antenna nr at time instant t and delay τ .
If the channel is assumed time-invariant with a maximum
delay τmax , the discretization of (18) at a sampling frequency
fs gives the input/output relation at an instant k as [62]:

y[k] =
D∑
d=1

H[d]x[k − (d − 1)]+ n[k],

k = 0, 1, . . . , (N − 1) (19)

where x[k] is the NT × 1 channel input at time index k ,
n[k] and y[k] are the NR × 1 noise and received vectors
respectively. The NR × NT matrix H[d] has components
Hnr ,nt [d] which represents the length D channel impulse
response between transmit antenna nt and receive antenna nr
at delay d , where D = dfsτmaxe. Delay can be considered as
another domain in the system model. So for a time-invariant
channel, at any time instant k the relation in (19) can be
expressed using tensor model as [63]:

y[k] = H ∗2 X[k]+ n[k] (20)

where all the individual vectors x[k], x[k − 1], . . . , x[k −
(D − 1)] from (19) form the columns of the matrix X[k] of
size NT × D and all the individual matrices H[1], . . . ,H[D]
from (19) are stacked together where they form the slices
of the order-3 channel tensor H of size NR × NT × D. For
D = 1, H reduces to a matrix and X[k] to a vector in (20).
As D increases, the tensor framework allows capturing the
time dispersion in the system model by increasing the dimen-
sion of the third domain in the channel and the input. Now
assuming channel is time variant, the discretized input/output
relation can be given as [23]:

y[k] =
D∑
d=1

H[k, d]x[k − (d − 1)]+ n[k],

k = 0, 1, . . . , (N − 1) (21)

where each element Hnr ,nt [k, d] represents complex chan-
nel gain between nt th transmit and nr th receive antenna for
delay d at time instant k . In [23], assuming a cyclic prefix
addition to each input block, (21) is expressed in matrix
notation as y′ = H′x′ + n′ over a time block of N symbol
durations by appending vectors y[k], x[k − (d − 1)] and n[k]
for different k into vectors y′, x′ and n′ of size N ·NR, N ·NT
and N ·NR respectively, and the channel matrix H[k, d] into a
larger matrix H′ of size N ·NR×N ·NT . However, appending
the vectors implies making the two distinct domains indistin-
guishable in the system formulation. Hence a more obvious
and intuitive way to represent such a system would be using
tensors where the channel can be expressed as NR × N ×
NT × D′ tensor where D′ = N + D − 1. We do not assume
any cyclic prefix addition here. Since output at index k i.e.
y[k] will depend on inputs x[k], x[k−1], . . . , x[k− (D−1)],
so corresponding to output being indexed by N time indices
0, 1, . . . , (N−1), the input will be indexed byN+D−1 time
indices −(D− 1), . . . , (N − 1). So in the system model (20),
we include a domain of length N time slots in the channel
tensor and the output tensor to account for time variation
and increase the delay domain length to N + D − 1 in the
channel tensor and the input tensor. Thereby, our system
model becomes:

Y = H ∗2 X+ N (22)

where all the individual vectors y[k] from (21) for k =
0, . . . , (N − 1) form the columns of the matrix Y of size
NR × N . Similarly vectors n[k] from (21) form the columns
of the matrix N of size NR × N and vectors x[d ′] where
d ′ = k − (d − 1) form the columns of the matrix X of
size NT × D′. All the individual matrices H[k, d] from (21)
are now sub-tensors of the order-4 channel tensor H of size
NR × N × NT × D′ where H:,k,:,d = H[k, d]. We can see
how the tensor system model in (20) simply evolved in (22)
to account for time variation of the channel as well.

B. TENSOR MODEL APPLIED TO MU-MIMO OFDM
The model presented in (16) can be used for a wide variety
of systems. For instance, the system model used in [44] for
image restoration is a specific case of the system model
of (16). To stress the relevance of the proposed tensor
model, particularly in multi-domain communication systems,
we now present an example of a multi-user MIMO OFDM
system which can be represented using the tensor framework.

OFDM is one of the most popular multi-carrier schemes
and has been used extensively with MIMO in 4G standards
and Wi-Fi [64]. A conventional model for a MIMO OFDM
system in the frequency domain is given by [23]:

y̌[p] = Ȟ[p, p]x̌[p]+
Nsc−1∑

q=0,q6=p

Ȟ[p, q]x̌[q]+ ň[p] (23)

where y̌[p], x̌[p] and ň[p] are the frequency domain received,
transmitted and noise symbol vectors at sub-carrier p, while
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Nsc denotes the number of sub-carriers. The model repre-
sented by (23) can be obtained from (21) by taking the
Nsc−point discrete Fourier Transform (DFT) of {y[k]} where
DFT {y[k]} = y̌[p], DFT {n[k]} = ň[p] and DFT {x[k]} =

x̌[p]. The frequency domainNR×NT channel matrix between
transmit sub-carrier q and receive sub-carrier p is Ȟ[p, q],
whose individual elements Ȟnr ,nt [p, q] can be obtained from
the discrete time varying channel between the nr th receive
antenna and nt th transmit antenna, Hnr ,nt [k, d] (based on
DFT of (21)) as:

Ȟnr ,nt [p, q]

=
1
Nsc

Nsc−1∑
k=0

D−1∑
d=0

Hnr ,nt [k, d]e
j2πk(q−p)/Nsce−j2πqd/Nsc

(24)

where 1 ≤ nr ≤ NR, 1 ≤ nt ≤ NT and 0 ≤ p, q ≤
Nsc−1. Using tensors, we can represent the frequency domain
input/output relation in MIMO OFDM of (23) as:

Y̌ = Ȟ ∗2 X̌+ Ň (25)

where each vector y̌[p] and ň[p] from (23) for p =

0, . . . ,Nsc − 1 form the columns of matrices Y̌ and Ň of
size NR × Nsc, and vectors x̌[p] form the columns of matrix
X̌ ∈ CNT×Nsc . The input and output are connected by an

order-4 tensor channel Ȟ ∈ CNR×Nsc×NT×Nsc where each ele-
ment Ȟnr ,nt [p, q] from (24) is now an element in the channel
tensor as Ȟnr ,p,nt ,q.We can expand theMIMOOFDM system
model to include users as an additional domain in the model
which will lead to a sixth order tensor channel. In the case
of multi-user MIMO OFDM, the frequency domain channel
matrix is often represented as an NR×NT matrix correspond-
ing to a specific user and a specific sub-carrier [65], [66].
To account for inter-carrier interference (ICI) as well, the
channel matrix could be represented as Ȟ[u, p, q] ∈ CNR×NT

corresponding to the uth user for transmit sub-carrier q and
receive sub-carrier p. Consider a multi-user MIMO OFDM
downlink system where a base station is catering to U users
having NR receive antennas each. The system model is a
generalization of (23) and it is given by

y̌[u, p] = Ȟ[u, p, p]x̌[p]+
Nsc−1∑

q=0,q6=p

Ȟ[u, p, q]x̌[q]

︸ ︷︷ ︸
ICI for uth user

+ň[u, p]

(26)

for p, q = 0, . . . ,Nsc − 1 and u = 1, . . . ,U . The entities
y̌[u, p] ∈ CNR×1 and ň[u, p] ∈ CNR×1 represent the received
signal vector and noise vector on sub-carrier p for the uth user,
respectively. Also, x̌[q] ∈ CNT×1 denotes the transmit vector
from the base station at sub-carrier q, which is given by [67]:

x̌[q] =
U∑

u′=1

M[u′, q]ď[u′, q] (27)

where M[u′, q] ∈ CNT×NT denotes the precoding matrix used
to transmit data vector ď[u′, q] ∈ CNT×1 to user u′ on sub-
carrier q. Hence the system model of (26) becomes

y̌[u, p] =
Nsc−1∑
q=0

Ȟ[u, p, q]
( U∑
u′=1

M[u′, q]ď[u′, q]
)
+ ň[u, p]

(28)

Let Ȟ[u, p, q] ·M[u′, q] = G[u, u′, p, q] ∈ CNR×NT denote
the equivalent channel between transmit data vector ď[u′, q]
and receive vector y̌[u, p], then the input/output relation can
be written as:

y̌[u, p] =
Nsc−1∑
q=0

U∑
u′=1

G[u, u′, p, q]ď[u′, q]+ ň[u, p]. (29)

In this case, the output and noise tensors can be rear-
ranged into order-3 tensors Y̌YY, ŇNN ∈ CU×NR×Nsc . The compo-
nents y̌

nr
[u, p] and ňnr [u, p] are mapped to elements of third

order tensors, denoted by Y̌YYu,nr ,p and ŇNNu,nr ,p respectively.
Similarly, the input can be rearranged as an order-3 tensor
ĎDD ∈ CU×NT×Nsc where ďnt [u

′, q] is mapped to ĎDDu′,nt ,q.
Subsequently, the channel can be represented as an order-6
tensor Ǧ ∈ CU×NR×Nsc×U×NT×Nsc where each element of
matrix Gnr ,nt [u, u

′, p, q] from (28) is mapped to an element
Ǧu,nr ,p,u′,nt ,q of the sixth order tensor channel. The system
model then becomes:

Y̌YY = Ǧ ∗3 ĎDD+ ŇNN (30)

The tensor model represented by (30) can be considered as an
evolution of the common matrix MIMO model in the space
domain only, to a tensor MIMO model that in addition to
space it encapsulates also the frequency and user domains.
Similarly, other systems such as MIMO DSL [68], MIMO
CDMA [69], MIMO FBMC [26] andMIMOGFDM [24] can
be represented using the tensor based system model.

Representing (29) using (30), or (23) using (25) gives us
a unified framework which encapsulates the multitude of
signalling domains into well structured tensor entities. The
matrix representations from (29) and (23) often leads to a per
user or per sub-carrier processing of the signals, where the
inter-domain interferences are treated in combination with
the additive noise term. On the contrary, the tensor model
from (30) and (25) can be employed to design transceivers
jointly across domains such as users, sub-carriers, and anten-
nas, using tools from tensor algebra. We present several
numerical examples in sections VI-B and VII illustrating the
advantages of the joint domain processing for multi-domain
communication systems. Note that an alternate representation
of (29) can also be achieved via a large matrix channel based
model, where the input and output signals are concatenated
across users, sub-carrier and antenna domains to form vec-
tors. However, such representation will obscure the indices
u′, nt , q and u, nr , p into single indices with no well defined
physical meaning. Such a lower order representation of high
order entities makes it difficult to incorporate domain specific
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constraints such as those explained in section V-A which
are well handled using tensors. As a prelude to the capacity
of tensor channels, we first present some basic information
theoretic notions for tensors in the next section.

IV. INFORMATION THEORETIC NOTIONS FOR TENSORS
A tensor is said to be random if its components are random
variables. Expectation of a random tensor XXX ∈ CI1×···×IN

denoted by M̄ = E[XXX] ∈ CI1×···×IN , is a tensor with each
component consisting of the expected value of the corre-
sponding component ofXXX.

COVARIANCE AND PSEUDO-COVARIANCE
Covariance of a random tensor XXX ∈ CI1×···×IN can be rep-
resented using a tensor Q ∈ CI1×···×IN×I1×···×IN defined as
Q = E[(XXX−M̄)◦(XXX−M̄)∗]. It can be shown that a covariance
tensor is Hermitian, i.e. Q = QH . The pseudo-covariance of
XXX is also an order 2N tensor defined asE[(XXX−M̄)◦(XXX−M̄)].
A random tensor is called proper if its pseudo-covariance is
an all zero tensor [14].

TENSOR GAUSSIAN DISTRIBUTION
The probability density function (pdf) of a random tensor
XXX ∈ CI1×···×IN is a scalar function of all its elements. Hence
the pdf of a tensor having proper complex Gaussian entries
can be specified by vectorizing the tensor and using the
pdf of a proper complex Gaussian vector. However, using
the properties of the Einstein product, the pdf can also be
expressed without vectorizing as explained in [14]. The pdf of
a proper complex Gaussian distributed tensorXXX ∈ CI1×···×IN

is given as:

pXXX(X) =
exp

{
− (X− M̄)∗ ∗N Q−1 ∗N (X− M̄)

}
(π )I1I2...IN det(Q)

(31)

where M̄ = E[XXX] is the order-N mean tensor andQ = E[(XXX−
M̄) ◦ (XXX− M̄)∗] is the order-2N covariance tensor.

A. DIFFERENTIAL ENTROPY OF A CIRCULAR COMPLEX
GAUSSIAN DISTRIBUTED TENSOR
A complex random tensor XXX is defined as circular if it is
rotationally invariant, i.e. XXX and YYY = ejαXXX have the same
probability distribution for any given real α. A complexGaus-
sian random vector is circular if and only if it is zeromean and
proper [70]. This statement can be extended to tensor case
also:
Lemma 2: A complex Gaussian random tensor is circular

if and only if it is zero mean and proper.
The proof of Lemma 2 directly follows from the definition

of proper and circular tensors. The distribution of a circularly
symmetric complex Gaussian tensor XXX ∈ CI1×···×IN with
covariance Q is given by (31), with M̄ = 0. Subsequently,
the differential entropy of such a tensor is given by:

H(XXX) = E
[
− log pXXX(XXX)

]

= E
[
− log

{
exp

(
−XXX∗ ∗N Q−1 ∗N XXX

)
(π )I1I2...IN det(Q)

}]
= log

(
(π )I1...IN det(Q)

)
+ (log e)E

[(
(XXX∗ ∗N Q−1) ∗N XXX

)]
= log

(
(π )I1...IN det(Q)

)
+ (log e)E

[
tr
(
XXX ◦ (XXX∗ ∗N Q−1)

)]
(from (12))

= log
(
(π )I1...IN det(Q)

)
+ (log e) tr

(
E[XXX ◦XXX∗] ∗N Q−1︸ ︷︷ ︸

identity tensor

)
(from associativity rule, (8))

= log
(
(eπ)I1...IN det(Q)

)
(32)

The following lemma regarding the differential entropy of
a circularly symmetric complex Gaussian random tensor is
proven in [45]:
Lemma 3: Let XXX ∈ CI1×···×IN be a circularly symmetric

complex Gaussian random tensor with covariance tensor Q.
Let YYY ∈ CI1×···×IN be another zero-mean random tensor
with same covariance tensor. Then, H(XXX) ≥ H(YYY), i.e. for
a given covariance tensor, a circularly symmetric Gaussian
distribution is the entropy maximizer.

B. MUTUAL INFORMATION
For the system model defined in (16), the output covariance
tensor is

QYYY = cov(YYY) = E[YYY ◦YYY∗]
= E

[
(H ∗N XXX+NNN) ◦ (H∗ ∗N XXX∗ +N∗N∗N∗)

]
(33)

QYYY = E
[
(H ∗N XXX) ◦ (H∗ ∗N XXX∗)

]︸ ︷︷ ︸
Main term

+ E
[
NNN ◦NNN∗

]︸ ︷︷ ︸
Noise Covariance

+ E
[
(H ∗N XXX) ◦NNN∗

]
+ E

[
NNN ◦ (H∗ ∗N XXX∗)

]︸ ︷︷ ︸
cross terms

(34)

AssumingXXX andNNN are zero mean and independent, it can be
shown that the cross terms are zero. Based on commutativity
rule (9), we get H∗ ∗N XXX∗ = XXX∗ ∗N (H∗)T = XXX∗ ∗N HH .
Using the associativity rule (8), we get:

QYYY = E
[
(H ∗N XXX) ◦ (XXX∗ ∗N HH )

]
+ QNNN

=
(
H ∗N E[XXX ◦XXX∗] ∗N HH )

+ QNNN

= H ∗N QXXX ∗N HH
+ QNNN (35)

where QXXX and QNNN are the input and noise covariance tensors
respectively. The following two lemmas can be proven using
the definition of circularly symmetric complex Gaussian
tensors:
Lemma 4: If XXX ∈ CI1×I2×···×IN is a circularly symmetric

complex Gaussian tensor, then so is YYY = H ∗N XXX for any
deterministic tensor,H ∈ CK1×K2×···×KP×I1×I2×···×IN .
Lemma 5: If XXX and YYY are independent circularly symmet-

ric complex Gaussian tensors of same order and size, then
ZZZ = XXX+YYY is also circularly symmetric complex Gaussian.
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Assuming noise to be a zero-mean Gaussian distributed
tensor with covariance QNNN that is independent of the input
tensorXXX, we can write the mutual information between input
and output tensors as:

I(XXX;YYY) = H(YYY)−H(YYY|XXX) = H(YYY)−H(NNN)

= H(YYY)− log
(
(eπ )J1J2···JM det(QNNN)

)
(36)

Based on Lemma 3 and received covariance derived in (35),
we can write:

H(YYY) ≤ log
(
(eπ )J1J2···JM det(H ∗N QXXX ∗N HH

+ QNNN)
)

(37)

⇒ I(XXX;YYY) ≤ log
[
det

(
H ∗N QXXX ∗N HH

+ QNNN

)
det(QNNN)

]
(38)

where equality is achieved only if YYY is Gaussian.

V. CAPACITY OF A FIXED TENSOR CHANNEL
Finding the Shannon capacity of the tensor channel requires
the maximization of the mutual information between the
input and the output tensors over input distributions under
possible constraints. In this work, we assume that the chan-
nel tensor is known and the noise tensor is zero-mean
Gaussian distributed having independent components with
variance σ 2, and hence the noise covariance tensor is given
by QNNN = σ 2IM . For simplicity we assume σ 2

= 1. Now
let us consider the mutual information inequality of (38)
where equality is achieved only if YYY is Gaussian. In our
tensor channel model (16), since NNN is zero-mean circularly
symmetric complex Gaussian, then using Lemma 4 and 5
implies that YYY will also be zero-mean circularly symmetric
complex Gaussian ifXXX is so. Hence for the purpose of maxi-
mizingmutual information, we takeXXX as zeromean circularly
symmetric complex Gaussian with covariance QXXX = Q. Thus
with noise covariance tensor as identity tensor IM , we get

I(XXX;YYY) = log
[
det

(
H ∗N Q ∗N HH

+ IM
)]

(39)

and the capacity is given by,

max
Q

(
log

[
det

(
H ∗N Q ∗N HH

+ IM
)])

s.t. f (Q) ≤ 0, Q � 0. (40)

where the inequality constraint f (Q) ≤ 0 can represent a
family of power constraints.

A. FAMILY OF POWER CONSTRAINTS
In a practical system, the transmit power constraints can span
multiple domains. For instance, in a transmission scheme
employing the space, time and frequency domains, instead
of imposing power across the tensor symbol, the power con-
straint might be on each antenna, or each antenna and time
slot, or each antenna, time slot and frequency bin. In our
framework, we have the flexibility of mathematically repre-
senting any such power constraint.

First we introduce some notations for a simplification.
We denote the sequence of indices (i1, i2, . . . , iN ) as i. Let
ic denotes the sequence of indices indicating tensor symbol
elements under power constraint and let ir represents the
rest of the indices in i which are not in ic. For example,
in an order-5 tensor of size I1 × I2 × I3 × I4 × I5, we have
i = (i1, i2, i3, i4, i5). Let the domains which are under
individual power constraints be 2 and 3, then ic = (i2, i3)
and ir = (i1, i4, i5). With this choice of notations, we will
write

∑I2
i2=1

∑I3
i3=1

as simply
∑

ic
. Notations corresponding

to cases when either ic or ir is empty are explained in Table 1.

TABLE 1. Simplified notation for indices.

Using these simplified notations, we will now describe a
family of optimization problems to find capacity which can
cover different types of power constraints, as follows:

max
Q

(
log

[
det

(
H ∗N Q ∗N HH

+ IM
)])

(41)

s.t.
∑
ir

Qi,i ≤ Pic ∀ic, (42)

Q � 0. (43)

To understand how the above framework represents a large
variety of constraints, let us consider a few specific cases. The
case ic = i, hence ir is empty, will represent the situation
where we have per element power constraints with Pic =
Pi1,...,iN and (42) becomes:

Qi1,...,iN ,i1,...,iN ≤ Pi1,...,iN , ∀i1, i2, . . . , iN (44)

When ic = iK , where K ≤ N , we have the case with
per domain element constraint for K th domain where each
element iK has a different budget of PiK , i.e. Pic = PiK and
(42) becomes:

I1∑
i1=1

· · ·

IK−1∑
iK−1=1

IK+1∑
iK+1=1

· · ·

IN∑
iN=1

Qi1,...,iK ,...,iN ,i1,...,iK ,...,iN

≤ PiK , ∀iK (45)

Now let’s assume we have power constraints on two domains
K and L such that K < L ≤ N . Then ic = (iK , iL) and
ir = (i1, . . . , iK−1, iK+1, . . . iL−1, iL+1, . . . , iN ). In this case
Pic = PiK ,iL and (42) becomes:

I1∑
i1=1

· · ·

IK−1∑
iK−1=1

IK+1∑
iK+1=1

· · ·

IL−1∑
iL−1=1

IL+1∑
iL+1=1

· · ·

IN∑
iN=1

Qi1,...,iK ,...,iL ,...,iN ,i1,...,iK ,...,iL ,...,iN ≤ PiK ,iL , ∀(iK , iL)

(46)
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Similarly, we can represent constraints on any number of
domains. Lastly, let’s assume that ic is empty, hence ir = i and
the power constraint translates to the sum power constraint,
i.e. Pic = P and we get:

I1∑
i1=1

· · ·

IN∑
iN=1

Qi1,...,iN ,i1,...,iN = tr(Q) ≤ P (47)

All these power constraints are linear, and the objective func-
tion in (41) is concave. Notice that the feasible set for this
optimization problem is the set of positive semi-definite ten-
sors satisfying the given power constraints which are linear.
Hence the feasible set is convex. Thereby (41), (42) and (43)
represent a family of convex optimization problems which
can be solved using the Karush-Kuhn-Tucker (KKT) condi-
tions [71]. Furthermore, since Pic are finite and non-negative,
a simple choice of covariance tensor belonging to the feasible
set could be a pseudo-diagonal tensor with all non-negative
entries such that they satisfy the power constraints. So the
feasible set is a non-empty convex set, and hence by Slater’s
condition [71], strong duality holds and the optimal solution
always exist. Next we will find the optimal solution using the
KKT conditions.

B. SOLUTION USING KKT CONDITIONS
LetM � 0 be the Lagrange multiplier tensor for the positive
semi-definite constraint from (43) of size I1 × . . . IN × I1 ×
. . . IN . Let µic ≥ 0 for all ic be the Lagrange multipliers
corresponding to all the linear constraints from (42). Then
the Lagrangian functional can be defined as:

L(Q, {µic},M) = − log[det(H ∗N Q ∗N HH
+ IM )]

+

∑
ic

µic (
∑
ir

Qi,i − Pic )− tr(M ∗N Q).

(48)

We arrange the values {µic} in a pseudo-diagonal tensor B
of same size as the input covariance such that its non-zero
entries are Bi,i = µic ,∀ir . For instance, if ic = (i1, i2), then
Bi1,...,iN ,i1,...,iN = µi1,i2 for all (i3, . . . , iN ). Then we get∑

ic

µic ·
∑
ir

Qi,i =
∑
ic

∑
ir

µic · Qi,i

=

∑
i

Bi,i · Qi,i = tr(B ∗N Q). (49)

Based on (49), we can re-write the Lagrangian from (48) as:

L(Q, {µic},M) = − log[det(H ∗N Q ∗N HH
+ IM )]

−

∑
ic

µicPic + tr(B ∗N Q)− tr(M ∗N Q).
(50)

Based on (14), (15) and the definition of tensor gradient as
presented in section II-B, the gradient of Lagrangian with
respect to Q can be written as:

∇QL=−HH
∗M (H ∗N Q ∗N HH

+IM )−1 ∗M H+B−M.
(51)

Equating ∇QL from (51) to 0T , we get the first KKT condi-
tion as

HH
∗M (H ∗N Q ∗N HH

+ IM )−1 ∗M H = B−M. (52)

The KKT equations also include complementary slackness
condition corresponding to each constraint and its associated
Lagrange multiplier [71]. For the linear constraints in (42),
the definition of complementary slackness leads to:

µic (
∑
ir

Qi,i − Pic ) = 0, ∀ic. (53)

For the constraint in (43), based on the approach taken for
semi-definite programming [71], the complementary slack-
ness can be written as tr(M ∗N Q) = 0. Since M,Q � 0,
similar to the matrix case as presented in [72], we have
tr(M ∗N Q) = 0 ⇒ M ∗N X = 0T . Also, since tr(M ∗N
Q) = tr(M ∗N Q1/2

∗N Q1/2) = tr(Q1/2
∗N M ∗N Q1/2),

the complementary slackness for the positive semi-definite
constraint is written as:

Q1/2
∗N M ∗N Q1/2

= 0T (54)

The tensor KKT conditions for the problem in (41)-(43) are
given by (52), (53) and (54).

Notice that all the entries of B, i.e µic , will be strictly
greater than 0 at optimum because the inequality constraint
must be met with equality at optimum. So B is a positive
definite tensor, i.e. B � 0 and hence invertible. Also since
µic > 0, (53) can be written as:∑

ir

Qi,i − Pic = 0, ∀ic. (55)

Let us define a tensor H̄ ∈ CI1×···×IN×I1×···×IN and its tensor
EVD as:

H̄ , B−1/2 ∗N (HH
∗M H) ∗N B−1/2 = V ∗N D̄ ∗N VH .

(56)

We can use the result of Theorem 1 from [73] by extending
it to tensor case to solve (52) and (54) subject to Q � 0,
M � 0 andB � 0 to obtain the optimal Q. The tensor version
of Theorem 1 from [73] alongwith its proof has been included
in Appendix A. Based on the results from Appendix A, the
optimal Q is given by

Qopt = B−1/2 ∗N V ∗N

(
IN − D̄−1

)+
∗N VH ∗N B−1/2

(57)

where D̄ and V are obtained through the tensor EVD of H̄
(56) and (Z)+ denotes a pseudo-diagonal tensor whose all the
pseudo-diagonal entries are non-negative, i.e. (Zi1,...,iN )

+
=

max{0,Zi1,...,iN }. Hence we can calculate the capacity as:

C = log
[
det

(
H ∗N Qopt ∗N HH

+ IM
)]

= log
[
det

(
Qopt ∗N HH

∗M H + IN
)]

= log
[
det(B−1/2 ∗N V ∗N (IN − D̄−1)+ ∗N VH

∗NB
−1/2
∗N HH

∗M H + IN )
]
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= log
[
det(V ∗N (IN − D̄−1)+ ∗N VH ∗N

B−1/2∗N HH
∗M H∗N B−1/2︸ ︷︷ ︸
H̄

+IN )
]
(using (13), (56))

= log
[
det(V ∗N ((IN − D̄−1)+ ∗N D̄+ IN ) ∗N VH )

]
.

(58)

Since the determinant is the product of eigenvalues, we get:

C =
∑

i1,...,iN

log((1− d̄−1i1,...,iN
)+ · d̄i1,...,iN + 1)

=

∑
i1,...,iN

(log(d̄i1,...,iN ))
+ (59)

where d̄i1,...,iN are the non-zero eigenvalues of H̄. Note that
the optimum covariance tensor from (57) depends not only on
the eigenvalues, but also the eigentensors of H̄. Hence ensur-
ing an optimum input covariance leads to not only an opti-
mum power allocation scheme, but also a joint multi-domain
precoding at the transmitter which is required for achieving
capacity. We will now simplify the expression for covari-
ance under high SNR assumption and develop an algo-
rithm to approximate the optimum covariance and capacity
using (55), (57) and (59).

The inverse of the tensor (HH
∗M H) exists if the trans-

formed matrix fI1,...,IN |I1,...,IN (H
H
∗M H) is full rank. In case

the inverse does not exist, then a minimum norm least square
solution can be adopted which aims to find an approximate
tensorT such that ||(HH

∗MH)∗NT−IN ||2 is minimized [18].
Assuming high SNR, we can ignore ()+ and write (57) as:

Q = B−1/2 ∗N

(
IN − V ∗N D̄−1 ∗N VH︸ ︷︷ ︸

H̄−1

)
∗N B−1/2

= B−1/2 ∗N
(
IN −B1/2

∗N (HH
∗M H)−1

∗NB
1/2)
∗N B−1/2 (using (56))

= B−1 − (HH
∗M H)−1 (60)

and (58) as:

C = log
[
det(V ∗N ((IN − D̄−1) ∗N D̄+ IN ) ∗N VH )

]
= log

[
det(V ∗N D̄ ∗N VH )

]
= log

[
det(H̄)

]
= log

[
det(B−1/2 ∗N (HH

∗M H) ∗N B−1/2)
]

= log
[
det(B−1 ∗N (HH

∗M H))
]

(using (11))

= log
[
det(B−1) · det(HH

∗M H)
]
. (61)

Thus under high SNR approximation, we can find the ele-
ments of B by substituting Q from (60) into (55) to get:∑

ir

(
B−1 − (HH

∗M H)−1
)
i,i = Pic ∀ic (62)

∑
ir

(B−1)i,i −
∑
ir

((HH
∗M H)−1)i,i = Pic ∀ic. (63)

Let Nir denote the number of values that ir can take. For
example, if ir = (i1, . . . , iN ), then Nir = I1 · · · IN , if ir =
(iK , iL), then Nir = IK · IL . Since B contains µic on its

pseudo-diagonal with each µic appearing exactly Nir times,
from (63) we can write:

Nir · µ
−1
ic
−

∑
ir

((HH
∗M H)−1)i,i = Pic ∀ic (64)

µic =
Nir

Pic +
∑

ir
((HH ∗M H)−1)i,i

∀ic (65)

which gives us all the entries of B. The proposed solu-
tion in (65), (61) and (60) assumes high SNR as we have
ignored the ()+ operation. To extend the solution for any
SNR, we now present a scaling approach to approximate the
input covariance tensor at any SNR setting, and verify that the
resulting covariance satisfies the constraints. If the covariance
Q obtained from (60) has negative eigenvalues, then we force
the negative eigenvalues of Q to be zero. If the tensor EVD of
Q is given as U ∗N D ∗N UH , the pseudo-diagonal elements
of Q can be written as, Qi,i =

∑
i′ Ui,i′Di′,i′U

H
i′,i Thus the

brute force approach of setting the negative values in D to
zero can result into larger values at the pseudo-diagonal of Q.
This in turn can make the solution infeasible, i.e. the power
constraint Pic from (42) might not be met and we may get a
different power allotted say P′ic where P

′
ic
≥ Pic . Note that

P′ic =
∑
ir

Qi,i, ∀ic. (66)

So we scale the resulting Q using another pseudo-diagonal
tensor S such that the power constraints remain satisfied, i.e.
Qscaled = S ∗N Q ∗N SH where the pseudo-diagonal entries
of scaling tensor S are given as:

Si,i =

√
Pic
P′ic
, ∀ir (67)

such that the pseudo-diagonal entries of Qscaled become:

(Qscaled )i,i = Qi,i ·
Pic
P′ic
. (68)

Hence, based on (66) we have∑
ir

(Qscaled )i,i =
∑
ir

Qi,i ·
Pic
P′ic
= Pic . (69)

Thus the choice of scaling operation ensures that Qscaled
satisfies the power constraints. A similar technique has been
used for matrix-field water-filling in [74] where the diagonal
entries of the covariance matrix are scaled to ensure that
the resulting matrix is positive semi-definite. Such a scaling
approach simplifies the computation of the input covariance
but also makes it suboptimal and hence leads to an approxi-
mation of the capacity. However, this approximation gets bet-
ter as SNR grows and is exact at sufficiently high SNR. The
procedure is systematically presented inAlgorithm 1. Finding
the capacity is a convex optimization problem, hence can be
solved using software tools such as CVX [75], which can be
compared with the capacity obtained via the approximation in
Algorithm 1 to assess the validity of the proposed approach.
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We present such a comparison in the numerical examples
(Figure 9) to illustrate the accuracy of the proposed approach.

Algorithm 1 Finding the Input Covariance Tensor.
1: InputH,Pic ,Nir
2: Initialize flag← 0
3: Find pseudo-diagonal elements of B by calculating µic

using (65)
4: Calculate Q using (60).
5: Perform tensor EVD of Q = U ∗N D ∗N UH

6: for all i1, i2, . . . , iN
7: if Di1,...,iN < 0
8: Di1,...,iN ← 0
9: flag← 1

10: end if
11: end for
12: if flag == 1
13: Update Q← U ∗N D ∗N UH

14: Calculate P′ic using (66)
15: Find pseudo-diagonal tensor S using (67)
16: Update Q← S ∗N Q ∗N SH

17: end if
18: return Q

C. COMPLEXITY ANALYSIS OF ALGORITHM 1
Algorithm 1 essentially approximates the optimal input
covariance tensor using (60) and a scaling process which
ensures a feasible solution. The algorithm requires fixed
amount of computational resources and can be deployed
off line. Thus it is of interest to analyze the computa-
tional resources required to execute this algorithm. Mod-
ern day computational strategies often employ cloud ser-
vices provided by suppliers such as AWS and Azure. Such
cloud services often provide both the infrastructure and the
platform/software as services on demand [76], [77], where
the cost depends on the amount of required computational
resources and time of execution. Given that Algorithm 1
requires extensive tensor operations which scale with the
tensor size, using cloud services to implement it is an appeal-
ing option. Such cloud services provide several parallel and
distributed computing infrastructures for faster and efficient
computations [78]. Thus depending on the platform being
considered and the amount of multi-core processors being
employed for such implementation, the time of execution of
the algorithm can significantly differ. However, independent
of the computing infrastructure available, a suitable measure
of the computational complexity can be specified in terms of
the required number of mathematical operations to be per-
formed in a given algorithm, as used in [79], [80]. Hence
in this section, we analyze the computational complexity of
Algorithm 1 in terms of the required number of flops for
a given step. A flop is defined as a single floating point
operation such as an addition, multiplication, subtraction,
division, comparison (>,<,==), or a scalar square root, etc.

The complexity of Algorithm 1 primarily depends on find-
ing the tensor inversion and the tensor EVD for a tensor of
size I1×· · ·× IN × I1×· · ·× IN . Such tensor operations can
be performed using various algorithms by employing the Ein-
stein product as discussed in [18], [44], [49], [81]. Consider
the definition of Einstein product across N modes between
tensor A of size I1 × · · · × IP ×K1 × · · · ×KN and tensor B
of size K1×· · ·×KN × J1×· · ·× JM from (3). Based on (3),
computing a single element inA∗N B requires K1 ·K2 · · ·KN
multiplications and alsoK1·K2 · · ·KN−1 additions. There are
total I1 · I2 · · · IP ·J1 ·J2 · · · JM elements in the tensorA∗N B.
For ease of notation, we use I =

∏P
i=1 Ii, J =

∏M
j=1 Jj, and

K =
∏N

k=1 Kk . So there are total IJ elements in A ∗N B

where each element is computed using K multiplications and
K − 1 additions. Subsequently finding all the elements of
A∗N B requires IJK multiplications and (K −1)IJ additions.
Hence a total of IJK + (K − 1)IJ = (2K − 1)IJ flops are
required for computing all the elements in A ∗N B. Note
that for any operation where the number of required flops is
polynomial in its size n, i.e. the operation requires a0np +
a1np−1 + · · · + ap flops (for fixed constants a0, a1, . . . , ap),
we represent the complexity only using the highest power in
n as O(np). Hence the complexity of the Einstein product
which requires (2K − 1)IJ flops is given as O(IKJ ) which
is same as O((I1 · · · IP) · (K1 · · ·KN ) · (J1 · · · JM )). Thus for
the specific case where bothA andB are order 2N tensors of
size I1 × · · · × IN × I1 × · · · × IN each, the complexity of
A ∗N B is given as O((I1 · · · IN )3).
Now assume channel H is of size J1 × · · · × JM × I1 ×
· · · × IN and Nic denotes the number of values that ic can
take. In Algorithm 1, the first two steps are input initializa-
tion. Step 3 requires computing the Einstein product over
the common M modes of HH and H, which based on the
discussion in the previous paragraph has a complexity of
O((I1 · · · IN )2(J1 · · · JM )). Further within step 3, it is required
to find the inverse of HH

∗M H which is an order 2N
tensor. The inverse of an order 2N tensor can be calculated
using the higher order bi-conjugate gradient (HOBG) method
described in [18] or Newton’s method (NM) which solves an
iterative equation involving Einstein product between tensors
of size I1 × · · · × IN × I1 × · · · × IN . Thus each itera-
tion in NM has a computational cost of O((I1 · · · IN )3) [81].
It is important to note that the complexity of such iterative
methods depends on the number of iterations, which in turn
depends on the desired accuracy level set to achieve con-
vergence. It was shown in [81] that NM requires a lower
number of iterations as compared to HOBG to reach the
same accuracy. The NM requires O(log(I1 · · · IN )) iterations
to converge to a fixed error bound [14]. Furthermore, [14]
shows a method to reduce the per iteration complexity of
NM, and thus perform tensor inversion in O(log2(I1 · · · IN ))
parallel time units. Also, non-iterative methods such as Gauss
elimination based on triangular decomposition of tensors [49]
can be used for tensor inversion which requires a computa-
tional complexity of O((I1 · · · IN )3). Hence, the worst case
complexity of tensor inversion without any use of parallel
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processors is O((I1 · · · IN )3). Eventually step 3 calculates
each µic using (65) which requires Nir + 1 additions and
1 division, and this needs to be done for all the Nic values
that ic can take. Thus this step requires (Nir + 2) · Nic flops
and its complexity is O(Nir · Nic ). Note that since Nir · Nic =
I1 · · · IN , the complexity of finding µic can be written as
O(I1 · · · IN ). Step 4 which finds Q using (60) subtracts an
order 2N tensor from a pseudo-diagonal tensor. Since the
number of pseudo-diagonal elements are I1 · · · IN , step 4
performs I1 · · · IN subtractions and thus has a complexity of
O(I1 · · · IN ). Further step 5 finds the tensor EVD of an order
2N tensor Q. The complexity of finding the EVD of a tensor
of size I1 × · · · × IN × I1 × · · · × IN using the Einstein
product properties is O((I1 · · · IN )3) [16]. Algorithms which
generalize the matrix eigen decomposition approaches to
tensor EVD using the Einstein product properties can be
found in [44], [49], [16, Algorithm C.2]. Steps 6 to 11 essen-
tially perform the operation max(0,Di1,...,iN ) on each of the
I1 · · · IN pseudo-diagonal elements of the tensor D. Hence
it has a complexity of O(I1 · · · IN ). Step 12 is just a single
scalar comparison, and step 13 updates Q using the Einstein
product between tensors of order 2N with size I1 × · · · ×
IN × I1×· · ·× IN for which the complexity isO((I1 · · · IN )3).
Step 14 finds P′ic for all the Nic values of ic. Thus it performs
Nir additions for each of the Nic values that ic can take. Hence
step 14 requires Nir · Nir flops and thus has a complexity of
O(Nir ·Nir ) which is same asO(I1 · · · IN ). Step 15 calculates
the scaling factor for all ic, thus performs Nic divisions and
square roots. Hence it has a complexity of O(Nic ). Finally,
step 16 updates Q using the Einstein product between tensors
of order 2N and thus has a complexity of O((I1 · · · IN )3).

TABLE 2. Computational complexity of Algorithm 1.

Table 2 summarizes these step by step computational com-
plexity cost of Algorithm 1. The first column in Table 2
indicates the step number from Algorithm 1, second col-
umn describes the operation and third column states the
complexity. We can observe that all the entries in com-
plexity column of Table 2, have a complexity order of 3
(cubic) or less in I1 · · · IN except the first operation which
has a complexity of O((I1 · · · IN )2 · J1 · · · JM ). Hence on
summing all the entries of the third column in Table 2,

we see that the overall complexity of Algorithm 1 is given as
O((I1 · · · IN )2 ·J1 · · · JM )+O((I1 · · · IN )3). Further in the case
when J1 · · · JM ≤ I1 · · · IN , the complexity of Algorithm 1
can be written as O((I1 · · · IN )3).

Note that the steps in Algorithm 1 with complexity of
O((I1 · · · IN )3) primarily rely on the Einstein product oper-
ation. However, since this algorithm can be executed on
multi-core computer systems, the time complexity of per-
forming all the operations in Einstein product can be signifi-
cantly reduced by making use of parallel processing. Several
flops in the Einstein product can be executed simultaneously
on a parallel computing platform. To see this, assume tensors
X and Y of size I1 × · · · × IN × I1 × · · · × IN each and
Z = X ∗N Y. Then all the elements of Z can be computed
using multiple processors as shown in Figure 1.

The white rectangular nodes in Figure 1 correspond to the
individual multiplication operations. All the white nodes need
to be added to compute a single element (the gray rectangular
nodes) in tensor Z. The addition of white nodes to generate
the gray nodes can be done using a binary tree approach
as shown in Figure 1 where all the addition operations at
a given level of the tree are performed simultaneously. The
figure illustrates this process for a single gray node, but
further all the gray nodes can be computed simultaneously
using similar binary tree approach if multiple processors are
available.

For a specific gray node, the number of nodes in a
binary tree at each level starting from root (gray node) are
20, 21, 22, . . . , 2h where h is the depth of the tree and 2h is
the number of leaf nodes. We can have similar binary trees
for each of the gray nodes. Since in Figure 1, the number of
leaf nodes (white nodes) are I1 · · · IN , we get that the depth of
the tree corresponding to each gray node is dlog(I1 · · · IN )e.
We use the ceil operator as I1 · · · IN may not always be a
power of 2. Hence we can say that the height of the tree is
O(log(I1 · · · IN )). Since all the gray nodes can be computed
simultaneously, all the individual elements of X ∗N Y can
be calculated in O(log(I1 · · · IN )) parallel time units. Such a
parallel processing method can significantly reduce the time
complexity of calculating the Einstein product, and subse-
quently other tensor operations which rely on the Einstein
product such as tensor inversion and EVD. The other steps in
Algorithm 1 which have a complexity of O(I1 · · · IN ) or less
(step 15), can also be performed faster using parallel proces-
sors. For example in step 3, all the µic of (65) for different
ic can be calculated simultaneously on parallel processors.
Similarly all the I1 · · · IN operations in steps 4 and 6-11, can
be performed simultaneously. In steps 14 and 15, the P′ic
from (66) and the scaling factors from (67) for all the ic can
also be computed simultaneously. Hence Algorithm 1 can
be suitably adapted to run on parallel processing multi-core
computer systems depending on the number of proces-
sors available. Several platforms such as MATLAB pro-
vide support for parallel implementation of such algorithms.
A more detailed study into the parallelization of the proposed
algorithm for faster time complexity has been left for future
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FIGURE 1. Parallel execution of Einstein product.

investigation. In general, developing fast and efficient algo-
rithms for several tensor functions depending on the Einstein
product and its properties is an active area of research in the
numerical tensor algebra community [82]–[87].

D. COMPARING DIFFERENT CONSTRAINTS
Let the set of all possible positive semi-definite tensors of
size I1 × · · · × IN × I1 × · · · × IN be represented by Q.
Let the feasible set for the optimization problem in (41)-(43)
for two different settings ic1 and ic2 be Q1 and Q2 respec-
tively. Assume ic1 is a subsequence of ic2. For instance,
let ic2 = (i1, i2, i3), and ic1 = (i1, i2). So Q1 repre-
sents a set of all positive semi-definite tensors Q which
satisfies ∑

i3,i4,...,iN

Qi1,...,iN ,i1,...,iN ≤ Pi1,i2 ∀(i1, i2) (70)

andQ2 represents a set of all positive semi-definite tensors Q
which satisfies∑

i4,...,iN

Qi1,...,iN ,i1,...,iN ≤ Pi1,i2,i3 ∀(i1, i2, i3). (71)

In (70), the first two domains are under power constraints,
whereas in (71), the power constraints span the third domain
as well with

∑
i3 Pi1,i2,i3 = Pi1,i2 . Summing over i3 in (71)

gives (70). Hence every Q that satisfies (71) will also sat-
isfy (70), showing that the set of Q satisfying (71) is a subset
of the set of Q satisfying (70), i.e. Q2 ⊆ Q1.
Let the optimal value of the objective function in the opti-

mization problem in (41)-(43) for set Q1 be C1 and for Q2
be C2. From the basic principles of convex optimization [71],
it is known that a globally optimal point is also locally opti-
mal. Hence if C1 is the maximum of the objective function

over the set of constraints Q1, then C1 is also the maximum
of the objective function over Q2 since Q2 ⊆ Q1. Hence
C2 ≤ C1, where equality is possible if the optimal Q lies
in the set Q2. This holds for any configuration of ic1 and
ic2 so far as ic1 is a subsequence of ic2. Essentially, as more
domains are put under constraints, the feasible set for the opti-
mization problem shrinks, possibly lowering the achievable
capacity.

For instance, consider a 2×2 input where the two domains
are antenna and time slots. Let the capacity achieved under
total power constraint P, be C1. Let the capacity achieved
under per antenna power constraints of P1 for antenna 1 and
P2 for antenna 2 such that P1 + P2 = P, be C2. Since the
set of feasible solution with per antenna power constraints
is a subset of the set of feasible solution with total power
constraint we have C2 ≤ C1. Similarly, capacity achieved
under power constraints per element, i.e. P11,P12,P21,P22
where Pi,j represents power budget on the ith antenna and the
jth time slot, such thatP11+P12 = P1,P21+P22 = P2, beC3,
then C3 ≤ C2. This has also been shown in [88] for a MIMO
channel where capacity under per antenna power constraint is
always smaller than the capacity under sum power constraint.

E. CAPACITY UNDER SUM POWER CONSTRAINT
Under the sum power constraint of (47), ic is empty and
hence there is a single Lagrange multiplier µ associated with
the constraint (47). Hence the tensor B, which contains the
Lagrange multipliers on its pseudo-diagonal, will be a scaled
identity tensor. Substituting B = µIN in (56) gives H̄ =

µ−1 · (HH
∗M H) = V∗N (µ−1 ·D)∗N VH , and subsequently

(57) becomes

Q = V ∗N

(
µ−1IN −D−1

)+
∗N VH . (72)
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Substituting d̄i1,...,iN = di1,...,iN /µ in (59) gives:

C =
∑
i1...,iN

log
[( 1
µ
−

1
di1,...,iN

)+
· di1,...,iN + 1

]
=

∑
i1,...,iN

(
log

(di1,...,iN
µ

))+
(73)

where a+ denotes max{0, a}, di1,...,iN are the non-zero eigen-
values ofHH

∗M H and 1/µ is chosen to satisfy (55)

tr(Q) =
∑

i1,...,iN

( 1
µ
−

1
di1,...,iN

)+
= P. (74)

The optimum covariance derived in (72) is a generalization of
water-filling solution for the MIMO matrix channel to multi-
ple domains. Hence under sum power constraint, we perform
the tensor EVD ofHH

∗M H to get V andD. Further, we use
(74) to find µ and subsequently use (73) to find the capacity.

F. MULTIPLEXING GAIN
We can also characterize the capacity contribution by each
constrained domain separately and the multiplexing gain
under various power constraints. For a fixed tensor channel,
the tensor B−1 is pseudo-diagonal with entries µ−1ic , hence

det(B−1) =
∏
i
µ−1ic

=
∏
ir

(
∏
ic

µ−1ic
) =

(∏
ic

µ−1ic

)Nir . For
instance, assume that out of N input domains, elements of
the first domain are under individual power constraints such
that ic = (i1) and ir = (i2, . . . , iN ), then

det(B−1) =
∏

i1,i2,...,iN

µ−1i1 =
(∏

i1

µ−1i1

)I2·I3···IN
(75)

Also det(HH
∗M H) =

∏
i
di where di are eigenvalues of

HH
∗M H. Hence using (61) we have

C = log
[∏

i

di
µi1

]
=

∑
i

log
di
µi1

=

∑
i1

( ∑
i2,...,iN

log
di
µi1

)
=

∑
i1

Ci1 (76)

where Ci1 =
∑

i2,...,iN log
di
µi1

can be seen as the contribu-

tion of the i1th element of the constrained domain to the
overall capacity. For instance if the first domain refers to
space domain, then Ci1 is the capacity contribution of the i1th
antenna. For any general case where ic contains the indices of
domains under constraint, we can write:

C = log
[∏
ic,ir

di
µic

]
=

∑
ic

(∑
ir

log
di
µic

)
=

∑
ic

Cic (77)

where Cic =
∑

ir
log

di
µic

can be seen as the contribution

of the icth element of the constrained domains to the overall

capacity. Substituting µic from (65) into Cic , we can further
write:

Cic (Pic )

=

∑
ir

log
di
µic

(78)

=

∑
ir

log
(
di ·

Pic +
∑

ir
((HH

∗M H)−1)i,i

Nir

)
(79)

=

∑
ir

[
log

(
Pic +

∑
ir

((HH
∗M H)−1)i,i

)
+ log

( di
Nir

)]
(80)

We can write the multiplexing gain provided by icth con-
strained domain as:

χic = lim
Pic→∞

Cic (Pic )

log(Pic )
(81)

Since for large Pic , we have log
(
Pic +

∑
ir
((HH

∗M

H)−1)i,i
)
≈ log(Pic ), hence using (81) and (80) we get

χic = lim
Pic→∞

∑
ir

[
log

(
Pic

)
+ log

( di
Nir

)]
log(Pic )

(82)

= lim
Pic→∞

Nir log(Pic )+
∑

ir
log

( di
Nir

)
log(Pic )

(83)

= Nir (84)

In general, since Nir represents the product of dimensions
of the domains not under individual constraints, it increases
exponentially in the number of unconstrained domains. As a
result, for tensor channels the multiplexing gain increases
exponentially with the increase in the number of uncon-
strained domains. Note that in deriving the multiplexing gain,
for simplicity we have assumed that all the eigenvalues of
HH
∗M H are non-zero, which may not always be the case.

In general, the capacity is a function of the given channel’s
specific singular values, some of which may be zero. In that
case depending on which and how many singular values are
zero, the multiplexing gain will be different and may not
increase exponentially with increase in domains.

Based on (84), the multiplexing gain achieved under sum
power constraint is I1 · · · IN . However (84) assumes that
inverse of (HH

∗M H) exists which will be the case if all
its eigenvalues are non-zero. If that is not the case, then
an approximation of the inverse (HH

∗M H) can be calcu-
lated using the higher order bi-conjugate gradient method
described in [18]. Next we analyze the multiplexing gain,
also known as pre-log, associated with a tensor channel under
sum power constraint. Note that the number of non-zero
eigenvalues of (HH

∗M H) will be same as the number of
non-zero singular values of H. Let I1 · I2 · · · IN = I and
J1 · J2 · · · JM = J , then the number of non-zero singular
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values R are less than or equal to I and J , i.e. R ≤ min{I , J}
where equality is met if all the the singular values of H are
non-zero.

The pre-log, denoted by χ , is calculated at a very high
SNR, for which water-filling reduces to uniform power

allocation over the non-zero eigen channels, i.e.
( 1
µ
−

1
di1,...,iN

)+
≈
P
R
. Hence using (73), the capacity becomes

C =
∑

i1,...,iN
di1,...,iN 6=0

(
log

(
1+

P
R
di1,...,iN

))
(85)

As P→∞, (85) simplifies to:

C =
∑

i1,...,iN
di1,...,iN 6=0

log
(P
R
di1,...,iN

)
(86)

=

∑
i1,...,iN
di1,...,iN 6=0

[
log(P)+ log

(di1,...,iN
R

)]
(87)

= R log(P)+
∑

i1,...,iN
di1,...,iN 6=0

log
(di1,...,iN

R

)
(88)

⇒ χ = lim
P→∞

C
log(P)

= R (89)

Assuming all the singular values of the tensor channel are
non-zero, we have R = min{I1 · I2 · · · IN , J1 · J2 · · · JM }.
For a conventional MIMOmatrix channel, capacity pre-log is
known to be less than or equal to the minimum of the number
of transmit and receive antennas [21] which is the specific
case of the tensor pre-log. For MIMO matrix channel N =
M = 1, and we have χ = min{I1, J1} where I1 and J1 are
the number of transmit and receive antennas respectively.
For a tensor case, it is interesting to see that assuming equal
dimension sizes on each domain i.e. I1 = I2 = · · · = IN =
J1 = J2 · · · JM = L, then the capacity pre-log can be given
as:

χ = min{I1 · I2 · · · IN , J1 · J2 · · · JM }

= min{LN ,LM } = Lmin{N ,M} (90)

which is exponential in the number of domains.

VI. NUMERICAL EXAMPLES AND APPLICATIONS
In this section, we present numerical examples to illustrate
previous results. We also present an example of a MIMO
GFDM system modelled using the tensor framework.

A. EXAMPLES OF ERGODIC CAPACITY WHEN CHANNEL
REALIZATIONS ARE KNOWN
Our results assume that the channel is deterministic. For
the numerical examples, rather than using a specific channel
tensor, we generate the channel using the Rayleigh model as
in [21], [89], [90]. The channel tensor consists of realizations
of i.i.d. circularly symmetric complex Gaussian entries of

zero mean and unit variance such thatE[|HHHj1,...,jM ,i1...,iN |
2] =

1 [89]. These channel realizations are known at the transmit-
ter and receiver.

Let the capacity of a deterministic tensor channel H be
denoted as C(H). Assume now that we have capacities of
K such channels denoted by C(H(k)) for k = 1, . . . ,K
where the tensor H(k) consist of realizations of complex
Gaussian random variables. The average capacity of K such
deterministic channels is given by C̄K = 1

K

∑K
k=1 C(H

(k)).
Due to law of large numbers, as K → ∞, we have C̄K →
E[C(HHH)] whereHHH is a tensor of Gaussian random variables.
All the numerical results presented in this section present
C̄K for K = 100, which can be interpreted as the ergodic
capacity of a random tensor channel when its realizations
are known at the transmitter and the receiver. The SNR is
defined as P/σ 2 as used in [21], where P is the sum power
constraint or the total transmit power and the noise tensor
contains i.i.d. circularly symmetric complex Gaussian entries
with zero mean and variance σ 2

= 1.

1) COMPARISON WITH UNIFORM POWER ALLOCATION
If the channel is not known then the ergodic capacity of a
random tensor channel, E[C(HHH)] will be a function of the
pdf of HHH. For a MIMO matrix channel, capacity when the
channel is Rayleigh distributed with channel state informa-
tion available at only the receiver is achieved by uniform
power allocation at the transmitter [21]. In this paper we
present a comparison between uniform power allocation and
the tensor water-filling power allocation for a tensor channel.
Figure 2 presents capacity in bits-per-tensor-symbol under
sum power constraint for 2 different sizes of tensor channel
with uniform power allocation across all the transmit tensor
elements and optimal tensor water-filling approach. Similar
to the MIMO matrix case, it can be seen that uniform power
allocation is suboptimal but at high SNR, it gives similar
capacity as achieved by optimal power allocation. Also, it can
be seen that the total capacity is higher when we increase
the number of input and output domains. Next, we present
examples to illustrate the impact of different domains and
their dimensions on tensor channel capacity.

2) CAPACITY FOR DIFFERENT SIZES OF CHANNEL TENSOR
In Figure 3 we present the channel capacity in bits/tensor-
symbol for a fourth order channel tensor under a sum power
constraint at SNR of 10 dB. Input and output are order-2
tensors of size X×Y each, corresponding to a X×Y ×X×Y
tensor channel. It is seen that increasing X and Y individu-
ally causes an increase in total capacity. To understand the
effect of different types of channel, we also find capacity
when the channel is normalized such that the total receive
average power is identical to the transmitted power. Such a
normalization has been suggested in [91], [92] for the MIMO
channel case. In tensor channels, such a normalization is
achieved when the individual entries of the channel tensor
H ∈ CJ1×···×JM×I1×···×IN are generated as circular complex
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FIGURE 2. Capacity [bits/tensor-symbol] vs SNR with uniform power
allocation.

FIGURE 3. Capacity [bits/tensor-symbol] vs X vs Y for channel with X × Y
size input and output tensor.

Gaussian with zero mean and variance 1/(J1 · · · JM ). Figure 4
shows the capacity of such a normalized tensor channel of
size X ×Y ×X ×Y with both input and output of size X ×Y
each, under sum power constraint at a fixed SNR of 10 dB.
On increasing the size of input and output tensors, the rate
of increase in capacity is lower as compared to Figure 3,

FIGURE 4. Capacity [bits/tensor-symbol] for normalized channel vs X
vs Y where X × Y is the size of input and output tensor.

and the capacity tends to reach a saturation for large values
of X and Y . For the case where channel gain is unity, and
hence transmit and receive signal power are same, capacity is
plotted against received SNR for a 2×2×2×2 tensor channel
in Figure 5. A comparison with corresponding scalar and
matrix channels with the same received signal power is also
presented. The gain in the capacity achieved by moving from
scalar to a tensor channel can be attributed to the multiplexing
gain provided by the tensor channel which increases with the
number of domains.

For the rest of the numerical examples, the more widely
used model from [21], [89] where the channel entries are
circular complex Gaussian with zero mean and unit variance
is employed, as for Figure 3. In Figure 6, we present the
capacity for a fourth order tensor channel under sum power
constraint where the output is fixed as a 2×2 tensor and input
is X × Y tensor at 10 dB SNR, under sum power constraint.
The rate of increase in capacity for X and Y is slower as
compared to Figure 3 for higher values of X and Y as the
output tensor size is fixed as 2 × 2. So the capacity pre-log
which is bounded by min{X · Y , 2 · 2} = 4, does not increase
with increasing X and Y . We see that increasing the size
of individual domains of the input tensor does not provide
significant gain if the number and size of the corresponding
domains of the output tensor are fixed.

3) CAPACITY UNDER DIFFERENT DOMAIN POWER
CONSTRAINTS
In this section we compare different possible power
constraints. In order to approximate the optimum input
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FIGURE 5. Channel capacity for tensor, matrix and scalar channel with
same received signal power.

FIGURE 6. Capacity [bits/tensor-symbol] vs X vs Y for channel with X × Y
size input tensor and 2× 2 output tensor.

covariance and thereby capacity, under per domain element
and per element power constraints, we use Algorithm 1.

Figure 7 illustrates the capacity under sum power con-
straint and per domain element power constraints for a 2 ×
2 × 2 × 2 channel with power constraint on input tensor
of size 2 × 2. The power budgets on one of the domains

of the input tensor are P1 = x · P and P2 = (1 − x) · P.
To put it in context, let the two domains be space and time.
Then this constraint reflects that the power on first time slot
for both the antennas is P1 and on second slot for both the
antennas is P2 with total available power P1 + P2 = P. The
plot in Figure 7 is presented for capacity against x = P1/P
at 10 dB SNR. The flat line represents the capacity under
sum power constraint which shows no variation with x, and
the curved line shows the capacity with per domain element
power constraints. As can be observed from Figure 7, the
capacity under per domain element constraints is always
lower than the capacity under sum power constraint, and these
become very close to each other when x ≈ 0.5, i.e. uniform
power is allotted to the elements of the constrained domain.
Note that such a behaviour is observed over an average of
100 channel realizations. For a given specific realization, the
two curves may not meet at x = 0.5. For the MIMO case,
a similar numerical result has been presented in [88] under
per antenna power constraints.

In Figure 8 we present the capacity under per element
power constraints and compare it with sum power constraint.
If total available power is P, then as before P1 = x · P
and P2 = (1 − x) · P. Further, P11 = y · P1,P12 =
(1− y) · P1,P21 = y · P2 and P22 = (1− y) · P2. Thus, with
0 ≤ x, y ≤ 1, P11,P12,P21,P22 denote the individual power
constraints on all the four elements of the input tensor such
thatP11+P12+P21+P22 = P.With different choices of x and
y, we achieve different per element power constraints such
that total power remains P. The capacity with per element
power constraints against x and y at SNRof 15 dB is presented
in Figure 8. The flat surface represents capacity under sum
power constraint which shows no variation with x and y, and
the curved surface shows capacity under per element power
constraints. It can be seen that for different values of x and
y, the capacity achieved under per element constraints can
be significantly lower than the capacity achieved under sum
power constraint.

Note that Algorithm 1 only approximates the optimum
input covariance and thus does not provide the exact capac-
ity at low SNRs. However, since the problem at hand is
a convex optimization problem, several standard software
tools for numerical optimization can be used to find the
capacity. To analyze how well the scaling approximation in
Algorithm 1 works, we present a comparison between the
capacity calculated through the convex optimization soft-
ware tool CVX [75], and the capacity approximated through
Algorithm 1. Figure 9 presents the capacity for sum power
constraint, per domain element power constraints where a sin-
gle domain of dimension 2 is constrained with power budgets
P1,P2, and per element power constraints where all the four
elements have different power budgets P11,P12,P21,P22
against SNR for x = y = 0.1. We present such results for
capacity calculated by using two approaches. First approach
uses Algorithm 1 and the graphs are presented using solid
curves. Second approach uses CVX and the graphs are pre-
sented using dashed curves. As can be seen, the capacity
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FIGURE 7. Capacity [bits/tensor-symbol] for a 2× 2× 2× 2 tensor
channel under per domain element power constraints and total power
constraint at 10 dB SNR.

calculated via the approximation of Algorithm 1 matches
very closely to the one calculated via CVX, and is almost
indistinguishable at moderate to high SNR. This shows that
Algorithm 1 provides a reasonably good approximation to the
optimal solution at low SNR, while providing an exact solu-
tion at high SNR. Furthermore, it can be seen that the capacity
under per domain element and per element constraints is
always upper bounded by the capacity under sum power
constraint. The capacity increases with SNR for all three
cases, but the performance difference also gradually increases
between the three solid curves, with sum power constraint
performing the best, followed by per domain element and
lastly, the per element constraint.

Figure 10 compares capacity under sum power and per
domain element power constraints with x = 0.1 for different
N where both input and output are order N . The channel is an
order 2N tensor and the size of each domain is 2. The capacity
increases exponentially with N in both the cases. However,
the capacity under per domain element constraint is always
upper bounded by the capacity under sum power constraint.

4) CORRELATED TENSOR CHANNEL
Consider an order N random tensorHHH ∈ CI1×···×IN with i.i.d.
zero mean and unit variance entries. Let 9(n)

∈ CIn×In for
n = 1, . . . ,N be a sequence of Hermitian matrices such that
9(n)

= A(n)A(n)H where A(n)
∈ CIn×In is the square root

matrix of9(n). The mode-n product of tensorHHH across all the
modes with these matrices (also known as Tucker product) is
expressed as [93]:

HHHcorr
=HHH ×1 A(1)

×2 A(2)
×3 · · · ×N A(N ) (91)

FIGURE 8. Capacity [bits/tensor-symbol] for per element power
constraints vs x vs y at 15 dB SNR.

FIGURE 9. Capacity [bits/tensor-symbol] for different constraints vs SNR
using Algorithm 1 and CVX.

where the entries of HHHcorr are correlated. Let vec(HHH) be
denoted as h, then using the property of mode-n product
from [93], [94, Lemma 2.1], we can write (91) using Kro-
necker product denoted by ⊗ as:

vec(HHHcorr ) = (A(N )
⊗ · · · ⊗ A(1))h. (92)
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FIGURE 10. Capacity [bits/tensor-symbol] vs input order comparing sum
power and per domain element power constraints with P1/P = 0.1.

Then the correlation matrix of the vectorized channel is given
as :

E[vec(HHHcorr ) vec(HHHcorr )H ]

= E[(A(N )
⊗ · · · ⊗ A(1))h · hH (A(N )

⊗ · · · ⊗ A(1))H ]

(93)

= (A(N )
⊗ · · · ⊗ A(1))E[h · hH ](A(N )

⊗ · · · ⊗ A(1))H

(94)

= (A(N )
⊗ · · · ⊗ A(1))(A(N )

⊗ · · · ⊗ A(1))H (95)

= (A(N )A(N )H
⊗ · · · ⊗ A(1)A(1)H ) (96)

= 9(N )
⊗ · · · ⊗9(1) (97)

where (95) to (96) follow from matrix Kronecker product
properties [95, Corollary 4]. Hence the correlation matrix of
the vectorized tensor is given in terms of the Kronecker prod-
uct of different mode-n factor correlation matrices denoted
by9(n). Such a model is called separable and it is considered
for real random variables in [96]. While (97) expresses the
correlation as a matrix by vectorizing HHHcorr , it is shown
in [96, Proposition 2.1] that the correlation of HHHcorr from
(91) can also be expressed as an order 2N tensor obtained
via the outer product of the factor matrices 9(n) defined as
R̄ = 9(1)

◦ · · · ◦9(N ). Note that the correlation tensor when
defined as R = E[HHHcorr

◦HHHcorr∗] is just a permuted version
of R̄, where Ri1,...,iN ,i′1,...,i

′
N
= R̄i1,i′1,...,iN ,i

′
N
= E[HHHcorr

i1,...,iN
·

HHHcorr∗
i′1,...,i

′
N
] = 9

(1)
i1,i′1
· · ·9

(N )
iN ,i′N

. Hence the separable model
implies that each element in the correlation tensor can be
written in terms of the product of the elements of the factor

matrices. The proof in [96] is for real tensors, but can be easily
extended to complex tensors as well.

The well known MIMO matrix Kronecker correlation
model forms a special case of (91) where the tensor HHH is
order-2 and the factor matrices A(1) and A(2) represent the
square root of row and column correlation matrices respec-
tively [97]. The MIMO Kronecker model may not be very
accurate in all scenarios, but has been widely used because of
its tractable analytic form, see for example [98]–[101].

Now consider an order-4 tensor channel of size 3 ×
3 × 3 × 3 corresponding to an order-2 input and order-2
output. We generate such a channel HHHcorr with correlated
elements using (91), where the entries of HHH are i.i.d zero
mean complex Gaussian with unit variance. For numerical
illustration, we consider the correlation matrices generated
using the exponential model with different correlation factor
ρn where the elements of the correlation matrix 9(n) are
defined as 9(n)

i,j = ρ
|i−j|
n for ρn ∈ [0, 1) [102]. The four

correlation matrices 9(1), 9(2), 9(3) and 9(4) are generated
using the exponential model with correlation coefficients
ρ1, ρ2, ρ3 and ρ4 respectively. Assuming that the channel
realization is known at the transmitter and the receiver,
we find the capacity of such a channel with correlated
elements under sum power constraint. Figure 11 presents
capacity at 10 dB SNR for different values of correlation
coefficients where the receive domains are correlated with
ρ1 = ρ2 = ρR and the transmit domains are correlated with
ρ3 = ρ4 = ρT . The plot shows that the capacity decreases
with increase in ρT and ρR, and it is least when ρT and ρR
approach 1. Capacity is largest when both ρT and ρR approach
zero in which case the correlation matrices are identity and
the channel has only uncorrelated elements across all the
domains.

Next we investigate the impact of correlation on the tensor
channel capacity when the correlation spans over a variable
number of domains. Figure 12 presents the capacity against
SNR for different number of domains having correlated
entries. Capacity is lowest when ρn is non-zero (0.7 in the
figure) for all the domains (i.e. for n = 1, 2, 3, 4) and is
highest when ρn is zero for all n, i.e. all entries are uncorre-
lated. Further it can be observed that the capacity difference
between the various cases presented in Figure 12 is more sig-
nificant at higher SNR. It is seen that the capacity decreases
with increase in the number of domains having non-zero
correlation factor. Such a loss of capacity with increase in the
domains having correlation is further illustrated in Figure 13
for various tensor channel order.

Figure 13 presents the capacity against SNR for order 2M
correlated tensor channels with order M input and output
having individual dimensions of 3. The factor correlation
matrices along each of the 2M modes are based on the expo-
nential model with correlation factor ρ. The plot is presented
for M = 2, 3, 4, 5 and ρ = 0.4, 0.7. Note that different
values of M lead to different tensor channel sizes with order
4, 6, 8, and 10. Hence for a meaningful comparison of the
impact of correlation, the capacity plotted in Figure 13 is
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FIGURE 11. Capacity [bits/tensor-symbol] vs correlation coefficients for
tensor channel with correlated entries.

normalized with respect to the number of elements in the
transmit tensor symbol which is 3M . As can be seen in
Figure 13, for a fixed ρ, as the number of domains of the
tensor channel with all correlated elements increases, the
capacity per element decreases. Further, this loss is more
significant for higher values of ρ (increased correlation) as
can be seen by comparing the plots for ρ = 0.7 and 0.4.

B. TENSOR BASED MIMO GFDM SYSTEM
Generalized Frequency Division Multiplexing (GFDM) is a
multi-carrier modulation scheme where each GFDM sym-
bol consists of complex valued data symbols dk,m dis-
tributed across K sub-carriers and M time-slots known
as sub-symbols. Thus each GFDM block consists of
N = KM complex data symbols. Consider a data vec-
tor d ∈ CN×1 which contains the complex data symbols
dk,m. The transmitted signal x ∈ CN×1 is produced as
x = Ad, where A ∈ CKM×KM is the GFDM modu-
lation matrix. The modulator matrix is defined as A =

(g
0,0
, . . . , g

K−1,0
, g

0,1
, . . . , g

0,M−1
, . . . , g

K−1,M−1
), where

g
k,m
= (gk,m[0], . . . , gk,m[N − 1])T ∈ CN×1 with gk,m[n]

denoting the shifted version of the prototype filter impulse
response g[n] to the mth sub-symbol modulated on the kth
sub-carrier. A detailed description of the modulator struc-
ture can be found in [103]. After cyclic prefix addition to
ensure no inter-block interference, the transmission through
a wireless channel is modelled as y = Hx + n where
H ∈ CN×N is the circular channel convolution matrix and
y,n ∈ CN×1 represent the received signal and noise vectors
respectively [103]. The extension to a MIMO GFDM system

FIGURE 12. Capacity [bits/tensor-symbol] vs SNR for tensor channel with
correlated entries.

FIGURE 13. Capacity [bits/tensor element] vs SNR for different order
tensor channels with correlated entries.

is considered in [24], [25] where the data vectors for different
antennas are concatenated together. Hence the data corre-
sponding to all the sub-carriers, sub-symbols and antennas
for the transmitter and the receiver are arranged in transmit
and receive vectors, and the channel is arranged as a matrix
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to represent the system model. However, a more natural way
of representing the signals and the channel in GFDM is using
tensors since such a model can retain the distinction between
the different domains namely sub-carriers, sub-symbols and
antennas at each stage. Such a model has been considered
in [37], [45].

Assume a MIMO GFDM system with NR receive and NT
transmit antennas. Let a vector of N = KM complex data
symbols be considered as a single GFDM data stream. Con-
sider a case where S such independent streams of complex
data symbols denoted by d(s) ∈ CN×1 for s = 1, . . . , S are
each transmitted using K sub-carriers and M sub-symbols.
Assume that S = NT = NR and each of the S independent
streams of data is transmitted concurrently using a different
antenna among the NT transmit antennas. For instance, if we
have S = NT = 2, then data stream 1 is mapped to
antenna 1 and data stream 2 is mapped to antenna 2. Let
the transmit data symbol corresponding to kth sub-carrier,
mth sub-symbol and sth transmit stream represented as ds,k,m,
be an element of a third order tensorDDD ∈ CS×K×M . Similarly
the received signal and noise tensors can be represented using
third order tensors D̃DD ∈ CS×K×M andNNN ∈ CS×K×M respec-
tively. Subsequently the channel that couples the input DDD
with the output D̃DD can be seen as an order-6 tensor H ∈

CS×K×M×S×K×M . The tensor channel considered here is
the equivalent channel obtained from the cascading of the
transmit filter, physical channel and the receive filter. More
details on the representation of the signal and the channel
model can be found in [37], [45]. The overall system model
is represented as

D̃DD = H ∗3 DDD+NNN (98)

and it is illustrated in Figure 14 which represents the sys-
tem model for a MIMO GFDM system with 2 transmit and
2 receive antennas. In Figure 14 a matrix is shown as a square
and a higher order tensor as a double-line square with its order
written on top right corner. A third order tensor is represented
as a cube with staggered edges. The data corresponding to
each antenna for all the K sub-carriers and M sub-symbols
is represented as a K ×M matrix, where the matrices corre-
sponding to each antenna form slices of the third order input
tensor. The covariance of the input tensor DDD can be written
as a sixth order tensor Q of size S × K ×M × S × K ×M .
We simulate such a system with two transmit and two receive
antennas, considering three different cases:
case 1: the entire transmit tensor is under sum power

constraint P, i.e. tr(Q) ≤ P. We obtain the optimal covariance
Q(opt1) in this case which performs power allocation and
precoding at the transmitter using: Q(opt1)

= VH ∗3

(
µ−1I−

D−1H

)+
∗3 VHH, where VH and DH are obtained from the

tensor EVD of (HH
∗3 H), and I is an identity tensor of size

S × K × M × S × K × M . The coefficient µ is calculated
using tensor water-filling to ensure tr(Q(opt1)) = P.
case 2: the two transmit antennas have different power

budgets, P1 = x ·P and P2 = (1−x) ·P. Hence the constraint

on the covariance can be written as
∑

k,m Q1,k,m,1,k,m ≤

P1 and
∑

k,m Q2,k,m,2,k,m ≤ P2. We obtain the input covari-
ance Q(opt2) in this case using Algorithm 1 with the channel
tensor H, power budgets P1 and P2, and Nir = K · M as
inputs.
case 3: the constraint is same as case 2, but nowwe perform

per antenna power allocation and precoding. The optimum
covariance in this case is determined by independently cal-
culating the covariance for the data transmitted on the two
antennas. We find Q

(opt3)
1,:,:,1,:,: = Q(1) and Q

(opt3)
2,:,:,2,:,: = Q(2),

where Q(1) and Q(2) are order-4 tensors of size K × M ×
K ×M representing the covariance of the matrix data trans-
mitted on antenna 1 and 2 respectively. Similarly channel
sub-tensors are defined as H(1)

= H1,:,:,1,:,: and H(2)
=

H2,:,:,2,:,:. Notice that the constraints
∑

k,m Q1,k,m,1,k,m ≤

P1 and
∑

k,m Q2,k,m,2,k,m ≤ P2 can be equivalently written
as tr(Q(1)) ≤ P1 and tr(Q(2)) ≤ P2 respectively. We find
the optimal Q(i) for i = 1, 2 using tensor water-filling as

Q(i)
= V(i)

∗2

(
µ−1i I − D(i)−1

)+
∗2 V(i)H , where V(i) and

D(i) are obtained from the tensor EVD of (H(i)H
∗2H

(i)). The
coefficient µi is calculated using the tensor water-filling to
ensure tr(Q(i)) ≤ Pi.
For the simulation, the input tensor DDD contains entries

drawn from a 4QAMconstellation. At the transmitter, a raised
cosine transmit pulse shaping filter with roll off factor 1 is
employed as used in [25], [37]. The receive filter is matched
to the transmit filter. The number of sub-symbols used is
M = 5 and the number of sub-carriers used is K = 8. The
channel between transmit and receive filter is generated as
complex Gaussian with i.i.d. zero mean and unit variance
entries. The overall channel is normalized to ensure that
the received power is the same as the transmit power P.
Hence the received SNR per bit is calculated as P/b where
b is the number of bits in each received tensor symbol,
obtained as b = (Number of elements in each tensor) ×
(bits per element). The noise added is AWGNwith zero mean
and unit variance such that the noise covariance is the identity
tensor.

The capacity of the channelH from (98) under three differ-
ent cases of input covariance with x = 0.1 for case 2 and 3 is
shown in Figure 15. As can be seen the capacity achieved for
case 1, i.e. sum power constraint is always higher than the
other two cases. For case 2, where individual antennas have
different power budgets and joint domain processing is used
to generate the optimal covariance outperforms case 3 where
separate covariances are obtained for antenna 1 and 2
independently.

We also test the BER performance when the input is gener-
ated from a 4QAM constellation for the three different cases
and the results are shown in Figure 16 where BER is plotted
against received SNR per bit in dB. At the transmitter, the
covariance of the input DDD ∈ C2×8×5 before precoding is
given by an identity tensor. The input DDD is contracted with
the square root of the optimum covariance as Q(opt)1/2

∗3 DDD.
This ensures that the covariance of the input tensor after
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FIGURE 14. Tensor system model for MIMO GFDM with 2 antennas (NT = NR = 2).

precoding, defined as E[(Q(opt)1/2
∗3 DDD) ◦ (Q(opt)1/2

∗3 DDD)∗]
is given by Q(opt)

∈ C2×8×5×2×8×5. Hence, based on (98),
we get D̃DD = H ∗3 Q

(opt)1/2
∗3DDD+NNN. To assess the BER per-

formance, we assume a multi-linear minimum mean square
error (MMSE) receiver [45]. At the receiver, D̃DD from (98) is
passed through a multi-linear MMSE filter, GMMSE to obtain
an estimate D̂DD = GMMSE∗3D̃DD of the transmitted tensorDDD. The
filter GMMSE is chosen such that E[||DDD−D̂DD||2] is minimized,
and is given by [14]:

GMMSE =WH
∗3 (W ∗3 WH

+ I)−1 (99)

where W = H ∗3 Q(opt)1/2
∈ C2×8×5×2×8×5 and I is

an identity tensor of size 2 × 8 × 5 × 2 × 8 × 5. The
estimate is passed through a QAM demodulator to recover

the transmitted symbols. Figure 16 presents results based on
Monte-Carlo simulations with averaging over 100 different
channel realizations. For evaluating bit error rate (BER),
at least 100 errors were collected at the receiver for each
channel realization. It can be seen that the best performance
is achieved in case 1, where there is no individual power
constraint on domains. A comparison between cases 2 and
3 shows that with per antenna power constraints, joint pro-
cessing across the domains (as in case 2) performs better than
the per antenna processing (as in case 3).

VII. MULTI-USER MIMO CAPACITY
In this section, we consider the application of the ten-
sor framework to multi-user MIMO channels. We present
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FIGURE 15. Capacity [bits/tensor-symbol] vs transmit power for MIMO
GFDM under sum power constraint, and per antenna power constraints
with and without joint domain processing.

FIGURE 16. BER plot for MIMO GFDM under sum power constraint, and
per antenna power constraints with and without joint domain processing.

numerical examples comparing the tensor approach with
other results found in literature. We consider K -user
Gaussian multiple access channels and interference
channels.

A. MULTIPLE ACCESS CHANNELS
Consider a multi-user MIMO network where a base sta-
tion (BS) equipped withNR antennas is receiving information
from K users with NT antennas each. If we denote the uplink
channel matrix between the kth user and the base station
by H(k)

∈ CNR×NT , then the discrete time received signal
y ∈ CNR×1 at the BS can be written as [42]:

y =
K∑
k=1

H(k)x(k) + n (100)

where x(k) ∈ CNT×1 is the signal transmitted by the kth user
and n ∈ CNR×1 is the received noise vector which is assumed
circularly symmetric complex Gaussian with identity covari-
ance matrix. In such a multiple access channel (MAC), each
user k is subject to an individual power constraint Pk . If the
transmit covariance matrix of user k is denoted as Q(k),
then the constraint is represented as tr(Q(k)) ≤ Pk for
k = 1, . . . ,K .
A multi-user channel with K users is characterized by a

K -dimensional achievable rate region CR, known as capacity
region [42], where each point in the region (R1,R2, . . . ,RK )
represents the achievable rates Rk at which user k can send
information with arbitrarily low error probability. We assume
that all the channel matrices are known to the receiver
and all the transmitters. To denote the convex hull of the
union of sets we use the symbol

⋃̄
. With power constraints

(P1,P2, . . . ,PK ), the capacity region of MIMO MAC is
given by [42]:

CR =
⋃̄

tr(Q(k))≤Pk ,∀k

{
(R1, . . . ,RK ) :

0 ≤
∑
k∈S

Rk ≤ log det
(
I+

∑
k∈S

H(k)Q(k)H(k)H
)

∀S ⊆ {1, . . . ,K }
}

(101)

where S denotes a subset of the set of users. Each
set of covariance matrices (Q(1), . . . ,Q(K )) satisfying the
power constraints corresponds to a K -dimensional polyhe-
dron [104]. The capacity region is the convex hull of the union
of all such polyhedrons. Note that for GaussianMIMOMAC,
the capacity region is defined using only the union of rate
regions and the convex hull is not needed [42]. It is shown
in [105] that for Gaussian MIMO MAC, the boundary points
of the capacity region can be characterized by maximizing a
weighted sum rate

∑
k νkRk for all non-negative νk such that∑

k νk = 1, and thus finding boundary points can be cast into
a convex optimization problem.

Essentially, (101) represents a set of bounds on individ-
ual rates R1,R2, . . . ,RK , and combination of rates such as
R1 + R2,R1 + R3,R2 + R3,R1 + R2 + R3 and so on,
including the sum rate R1 + R2 + · · · + RK . For a two
users case, this can be represented by (102), as shown at
the bottom of the next page. For a given choice of covari-
ance matrices Q(1) and Q(2) which satisfy the power con-
straints, (102) represents an upper bound on R1,R2 and
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R1 + R2. The maximum of log det(I + H(1)Q(1)H(1)H )
and log det(I + H(2)Q(2)H(2)H ) from(102) are the individ-
ual achievable capacities by user 1 and user 2 respec-
tively assuming the other user is silent. The maximum of
log det(I+H(1)Q(1)H(1)H

+H(2)Q(2)H(2)H ) is the sum capac-
ity achievable when both users are transmitting. Note that
the choice of covariance matrices Q(1) and Q(2) satisfying
the power constraints which achieves the sum capacity may
not achieve the individual capacities. Similarly the choice
of Q(1) and Q(2) which achieves the individual capacities
may not achieve the sum capacity. In general, different
transmit choices lead to different pairs of covariance matri-
ces (Q(1),Q(2)) such that the capacity region is given by
the convex hull of the union of an infinite number of rate
regions each corresponding to a different set (Q(1),Q(2)).
The optimal choice of Q(1) and Q(2) which achieves the sum
capacity is found by an iterative water-filling approach [105]
which sequentially finds covariance for each user with the
single-user classical water-filling method assuming interfer-
ence from other users as noise. A detailed step by step algo-
rithm can be found in [105].

Such an approach, however, assumes that different users
transmit independently. The iterative water-filling algorithm
treats the information available about other users’ interfering
channels as noise. In the presence of complete channel state
information, a better transmit strategy which would provide
higher achievable rates would be to allow users to coordinate
for transmission. Hence a joint signal transmit strategy can
expand the capacity region. Using the tensor framework,
we can find the capacity region assuming user coordination.
First, let us represent (100) using the tensor system model.
We define the multi-user MIMO tensor channel as a third
order tensor H ∈ CNR×NT×K where H:,:,k = H(k). The input
signal can be defined as amatrixX ∈ CNT×K , where each x(k)

of (100) forms a column of the matrix X. Hence the system
model in (100) can be represented as:

y = H ∗2 X+ n (103)

The input covariance is represented as an order-4 tensor
Q ∈ CNT×K×NT×K . Assuming the noise to be circu-
larly symmetric complex Gaussian with identity covariance
matrix, denoted by I, the output covariance can be written as
(H ∗2 Q ∗2 HH

+ I). Subsequently, the sum capacity of such
a system with user coordination can be calculated from the
following optimization problem:

max
Q

log
[
det

(
H ∗2 Q ∗2 H

H
+ I
)]

(104)

s.t.
NT∑
n=1

Qn,k,n,k ≤ Pk ∀k, (105)

Q � 0. (106)

where
∑NT

n=1 Qn,k,n,k ≤ Pk represents the individual power
constraints for different users. The optimal Q that achieves
capacity can be approximated using Algorithm 1. Note
the difference in this tensor formulation and the iterative
water-filling approach used in vector formulation is that the
latter assumes different users transmit independently despite
having perfect channel state information. With independent
transmissions, the iterative water-filling maximizes the func-
tion log det(I +

∑K
k=1H

(k)Q(k)H(k)H ) subject to tr(Q(k)) ≤
Pk and Q(k)

� 0 for k = 1, . . . ,K [105]. Note that this
objective function is same as the upper bound on the sum
rate from (101) for S = {1, . . . ,K }. The vector based
iterative water-filling treats inter-user interference as noise
since it attempts to optimize the sum rate over all choices of
separate covariance matrix for each user as shown in [105].
On the other hand, the tensor approach solves the problem
in (104)-(106) and aims to find a joint covariance across
all the users. Thereby, the tensor approach suggests a joint
transmit scheme for all the users wherein the inter-user inter-
ference is not treated as noise since the interference term also
carries signal information. The maximum sum rate achieved
by all the K users given in (104) is the sum capacity of the
K users MIMO MAC under user coordination. Similarly the
sum capacity achieved by a subset S of the all the users
U = {1, . . . ,K } is given as the maximum of log det(I +
H(S)

∗2 Q(S)
∗2 H(S)H ) over the choice of positive semi-

definiteQ(S) which satisfies the power constraints. The tensor
H(S)

∈ CNR×NT×|S| with |S| denoting the cardinality of
S, contains matrices of size NR × NT as slices correspond-
ing to only those users which are included in S . Similarly
Q(S)

∈ CNT×|S|×NT×|S| is the covariance tensor of X(S)
∈

CNT×|S| which contains columns of only those users which
are included in S.

Hence the tensor framework allows to define a capacity
region with user coordination as:

CR =
⋃̄

∑NT
n=1 Q

(S)
n,i,n,i≤p

(S)
i ,∀i

{
(R1, . . . ,RK ) :

0 ≤
∑
k∈S

Rk ≤ log det
(
I+H(S)

∗2 Q
(S)
∗2 H

(S)H
)

∀S ⊆ {1, . . . ,K }
}

(107)

where S contains the list of users being considered. The
vector p(S) contains the power budgets of the users included

CR =
⋃̄

tr(Q(1))≤P1,
tr(Q(2))≤P2


0 ≤ R1 ≤ log det

(
I+ H(1)Q(1)H(1)H

)
0 ≤ R2 ≤ log det

(
I+ H(2)Q(2)H(2)H

)
0 ≤ R1 + R2 ≤ log det

(
I+ H(1)Q(1)H(1)H

+ H(2)Q(2)H(2)H
)
 (102)
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in S, with its components p(S)
i

denoting the power budget
of the ith user in set S for i = 1, . . . , |S|. Note that the
expression log det(I + H(S)

∗2 Q(S)
∗2 H(S)H ) in (107) is

same as the objective function in (104) when S contains all
the users, i.e. S = {1, . . . ,K }.
As an example, let us consider a three users sce-

nario in which case S can assume the following
sets:{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}. Subsequently,
we can expand (107) as in (108), as shown at the bottom of
the page. For the first bound on R1, we have S = {1}, i.e.
we consider only first user and find what is the maximum
rate that user 1 can transmit given the power constraint
on user 1 and that all other users are silent. In this case,
H(1)

∈ CNR×NT×1 is essentially the matrix H(1) between
the user 1 and base station, and Q(1)

∈ CNT×1×NT×1 is the
covariance matrix Q(1) of user 1. Hence this reduces to single
user MIMO channel where the optimal Q(1) which achieves
maximum rate can be found using classical water-filling.
Similarly, conditions two and three in (108) correspond to
the bounds on the rates achieved by user 2 and user 3 (R2 and
R3) respectively when all other users are silent. Hence, the
first three conditions are same as the one derived from the
vector case (101). Condition four corresponds to S = {1, 2},
thus gives a bound on the sum rate that user 1 and user
2 can together achieve given that user 3 is silent. In this case
H(1,2)

∈ CNR×NT×2 is a sub-tensor ofH asH(1,2)
= H:,:,1:2.

The covariance tensor Q(1,2)
∈ CNT×2×NT×2 is a sub-tensor

of Q given by Q(1,2)
= Q:,1:2,:,1:2. The power constraints are

defined as
∑

n Q
(1,2)
n,1,n,1 ≤ P1 and

∑
n Q

(1,2)
n,2,n,2 ≤ P2 where

P1,P2 are power budgets for user 1 and 2 respectively. Note
that the bound on sum rateR1+R2 achieved using this method
assumes that user 1 and 2 perform a joint transmission. Hence
the sum rate achieved using the tensor approach will be dif-
ferent than the one obtained from iterative water-filling which
assumes independent transmission. Similarly, condition five
represents the bound on sum rate R2+R3 that can be achieved
when user 2 and 3 transmit together keeping user 1 silent.
In this case H(2,3)

∈ CNR×NT×2 is a sub-tensor of H

given by H(2,3)
= H:,:,2:3. The covariance tensor Q(2,3)

∈

CNT×2×NT×2 is a sub-tensor ofQ given byQ(2,3)
= Q:,2:3,:,2:3.

The power constraints are defined as
∑

n Q
(2,3)
n,1,n,1 ≤ P2

and
∑

n Q
(2,3)
n,2,n,2 ≤ P3 where P2,P3 are power budgets for

user 2 and 3 respectively. Similarly condition six represents
the bound on sum rate R1 + R3 that can be achieved when
user 1 and 3 transmit together keeping user 2 silent. The
last condition represents the bound on sum rate when all the
three users are transmitting. Note that the covariance tensors
satisfying the power constraints of all the equations in (108)
can be seen as sub-tensors of the covariance tensor Q. For
instance, Q:,1,:,1 = Q(1) represents the covariance matrix of
user 1. But the optimal choice of covariance tensor Q that
achieves the sum capacity under user cooperation can not
be obtained from only individual covariance tensors Q(i) for
different users. For instance, the optimal Q(1) that maximizes
log det(I + H(1)Q(1)H(1)H ) may not be the sub-tensor of the
optimal Q that maximizes log det(I + H ∗2 Q ∗2 H

H ). The
capacity region under user coordination is thus given by
the convex hull of the union of all the rate regions over all
the choices of covariance tensors which satisfy the power
constraints.
With additional constraints on the covariance tensor

Q
(S)
n,i,n′,i′ = 0, for i 6= i′, (109)

we can use (107) to represent the capacity region without
user coordination as in (101). To show this, we consider the
expressionH(S)

∗2Q
(S)
∗2H

(S)H from (107) for any given S
and show that with (109) it reduces to

∑
k∈S H(k)Q(k)H(k)H

as in (101). We can write:

(H(S)
∗2 Q

(S)
∗2 H

(S)H )j,j′

=

∑
n′,i′

(
∑
n,i

H
(S)
j,n,iQ

(S)
n,i,n′,i′ )H

(S)H
n′,i′,j′ (110)

With (109), entries of Q(S) are zero for all i 6= i′. Hence we
can write (110) as

(H(S)
∗2 Q

(S)
∗2 H

(S)H )j,j′

=

|S|∑
i=1

( NT∑
n′=1

(
NT∑
n=1

H
(S)
j,n,iQ

(S)
n,i,n′,i)H

(S)H
n′,i,j′

)
(111)

Note that each user in the set of all users U = {1, . . . ,K }
is known by its index k , i.e. first user, second user, kth user
and so on. The variable i denotes the index of a user in set
S where S ⊆ U . For instance if S = {3, 4, . . . ,K }, then the
third user (k = 3) is at index i = 1 in S. Hence we replace the

CR =
⋃̄

tr(Q(i))≤Pi, i=1,2,3∑
nQ

(1,2)
n,1,n,1≤P1,

∑
nQ

(1,2)
n,2,n,2≤P2∑

nQ
(2,3)
n,1,n,1≤P2,

∑
nQ

(2,3)
n,2,n,2≤P3∑

nQ
(1,3)
n,1,n,1≤P1,

∑
nQ

(1,3)
n,2,n,2≤P3∑

nQn,k,n,k≤Pk , k=1,2,3



0 ≤ R1 ≤ log det
(
I+ H(1)Q(1)H(1)H

)
0 ≤ R2 ≤ log det

(
I+ H(2)Q(2)H(2)H

)
0 ≤ R3 ≤ log det

(
I+ H(3)Q(3)H(3)H

)
0 ≤ R1 + R2 ≤ log det

(
I+H(1,2)

∗2 Q
(1,2)
∗2 H

(1,2)H
)

0 ≤ R2 + R3 ≤ log det
(
I+H(2,3)

∗2 Q
(2,3)
∗2 H

(2,3)H
)

0 ≤ R1 + R3 ≤ log det
(
I+H(1,3)

∗2 Q
(1,3)
∗2 H

(1,3)H
)

0 ≤ R1 + R2 + R3 ≤ log det
(
I+H ∗2 Q ∗2 H

H
)



(108)
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index i with the user number k . The entities H(S)
:,;,i and Q

(S)
:,i,:,i

are the channel sub-tensor and covariance matrix of the user i
in set S, and equivalently of the kth user in set of all users.
Hence we get H(S)

j,n,i = H(k)
j,n for k ∈ S, and the covariance as

Qn,i,n′,i = Q(k)
n,n′ for k ∈ S. Thus we can write (111) as:

(H(S)
∗2 Q

(S)
∗2 H

(S)H )j,j′

=

∑
k∈S

( NT∑
n′=1

(
NT∑
n=1

H(k)
j,nQ

(k)
n,n′ )H

(k)H
n,j′

)
(112)

=

∑
k∈S

(H(k)Q(k)H(k)H )j,j′ (113)

Substituting (113) with the additional constraints (109) into
(107) gives us the capacity region from (101) which assumes
no user coordination.

Next we present a few numerical examples to illustrate the
concepts. We consider a multi-user MIMO MAC scenario
where K users with NT = 2 antennas each are communi-
cating with a base station having NR = 10 antennas. The
noise vector at the receiver is circularly symmetric complex
Gaussian with zero mean and identity covariance matrix.
The channel entries are realizations of circularly symmetric
complex Gaussian random variables with zero mean and unit
variance and these realizations are known at the transmit-
ters and receiver. The results presented are averaged over
100 different channel realizations. Each user has an individual
power constraint Pk . The total transmit power is P =

∑
k Pk .

We assume all the users have the same power constraint,
i.e. Pk = P/K and plot the sum capacity obtained through
the tensor approach achieved by K users against total power
in Figure 17. The sum capacity can be found by solving
the optimization problem in (104)-(106). We apply the pro-
posed solution from Algorithm 1 to approximate the optimal
input covariance tensor which achieves the sum capacity. The
covariance tensor obtained from Algorithm 1 is then used to
approximate the sum capacity given by log det(H ∗2 Q ∗2
HH
+ I). This approach assumes that all the users coordinate

for transmission. It can be seen that for a fixed number of
users, the sum capacity increases with an increase in the
total transmit power. Furthermore, for a fixed total transmit
power, the sum capacity increases when the number of users
increases. Especially at higher transmit powers, the increased
number of users lead to a significant increase in the sum
capacity.

The results of Figure 17 can be contrasted with the iter-
ative water-filling approach from literature where differ-
ent users despite having channel state information of other
users transmit independently. Figure 18 presents the sum
capacity obtained with coordinated users and independent
users against the number of users for two different values
of total power. The sum capacity under independent users
is calculated using the iterative water-filling approach from
[105, Algorithm 1]. It can be observed that as the number
of users increases, there is a significant difference in achiev-
able rate of coordinated users as compared to independent

FIGURE 17. Sum capacity vs transmit power for MU MIMO MAC.

FIGURE 18. Sum capacity vs users for MU MIMO MAC.

users. This shows that user cooperation captured in the input
covariance tensor structure can improve the sum capacity
substantially.

Further the capacity region of a 2 users MIMO MAC sce-
nario is presented in Figure 19 with transmit power budgets
P1 = P2 = 5 dB. We consider K = 2 where the base station
has NR = 8 antennas and 2 different settings for transmit
antennas NT = 4 and 8. The capacity region obtained from
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the tensor formulation for two users can be written as:

CR=
⋃̄

tr(Q(1))≤P1,
tr(Q(2))≤P2,
NT∑
n=1

Qn,k,n,k

≤Pk ,k=1,2.


R1 ≤ log det

(
I+ H(1)Q(1)H(1)H

)
R2 ≤ log det

(
I+ H(2)Q(2)H(2)H

)
R1 + R2 ≤ log det

(
I+H ∗2 Q ∗2 H

H
)


(114)

For the two users case, finding the optimum covariance that
maximizes the achievable rate of user 1 assuming user 2 is
silent reduces to a single user MIMO scenario. Hence the
bounds on individual rates R1 and R2 in (114) and (102)
are the same. Note however that the bound on the sum rate
R1 + R2 differs. With the additional constraint on covariance
from (109), the bound on the sum rate in (114) translates to:

R1 + R2 ≤ log det
(
I+H ∗2 Q ∗2 H

H
)

(115)

= log det
(
I+ H(1)Q(1)H(1)H

+ H(2)Q(2)H(2)H
)
(116)

where (115) to (116) follow from (113). Hence, with addi-
tional constraint on covariance Q as defined by (109), the
sum rate bound in (114) reduces to the sum rate bound
in (102), and thus all three bounds in (114) depend only
on Q(1),Q(2). The additional constraint corresponds to the
transmit scheme where each user acts independent of the
other user. In such cases, the capacity region is characterized
by a pair of covariance matrices (Q(1),Q(2)) which satisfies
the power constraints. In general, the capacity region of the
two users case corresponding to (114) is characterized by
a triplet (Q(1),Q(2),Q) where Q is the transmit covariance
tensor which prescribes a joint transmission scheme. The
transmit covariance matrix of individual users Q(1),Q(2) form
the sub-tensors of Q. However the optimal Q(1),Q(2) which
maximizes R1,R2 respectively may not be the sub-tensors
of the optimal Q which maximizes R1 + R2. The optimal
Q(1),Q(2) are found assuming the other user to be silent for
transmission, whereas the optimal Q is found assuming joint
transmission by both the users.

The rate regions in (114) and (102) forms a pentagon
on a two dimensional R1,R2 plane. The capacity region
is determined by the convex hull of the union of all such
pentagons obtained through different choices of covariances
which satisfy the constraints. In Figure 19, the solid line
(case 1) represents the pentagon corresponding to (102)
where (Q(1),Q(2)) are obtained via iterative water-filling from
[105, Algorithm 1] to maximize the sum rate with inde-
pendent transmissions. The dotted line (case 2) represents
the pentagon corresponding to (102) where (Q(1),Q(2)) are
obtained via conventional water-filling for single user MIMO
to maximize R1 and R2 individually. Similarly, different
(Q(1),Q(2)) will correspond to different pentagons based
on (102). The capacity region with independent users is
obtained as a convex hull of the union of all such pentagons

FIGURE 19. Capacity region of 2-users MIMO MAC.

associated with different covariances which satisfy the con-
straints in (102). Thus the convex hull of the regions of
case 1 and 2 gives an inner bound to the capacity region with
independent user transmission. The capacity region signifies
the bounds on the rate of transmission by each user.

The dashed line (case 3) represents the pentagon cor-
responding to (114) where Q is approximated using
Algorithm 1 to maximize the sum rate, and Q(1),Q(2) are the
sub-tensors of the Q obtained from Algorithm 1. However
such a choice of Q(1) and Q(2) may not maximize the indi-
vidual rates of user 1 and 2. This is reflected in Figure 19 as
the dotted line shows a larger bound on individual rates as
compared to other cases in both the vertical and horizontal
segments, A and B. Case 2 can be seen as another scenario
for (114) where Q(1),Q(2) are chosen to maximize the indi-
vidual rates and the joint covariance tensor Q has structure
Q:,i,:,j = Q(i) for i = j and 0 for i 6= j with i, j = 1, 2.
Such a covariance tensor does not maximize the sum rate
but only individual rates and still satisfies all the constraints
in (114). The capacity region with user coordination is given
by the convex hull of the union of pentagons associated with
case 3 and case 2 along with every pentagon associated with
different covariances which satisfy the constraints in (114).
Thus, a convex hull of regions of case 2 and 3 gives an
inner bound to the capacity region with user cooperation. The
bound on the sum achievable rate indicated by segment C in
Figure 19 is lowest in case 2, followed by the case when trans-
mit covariances are chosen via iterative water-filling (case 1),
and is largest when covariance is obtained using the tensor
approach assuming user coordination (case 3). Moreover, this
difference increases as NT increases from 4 to 8, as observed
in the figure. Hence it is seen that the boundary of the
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capacity region expands in segment C with user cooperation
as opposed to the independent user transmissions.

B. MIMO INTERFERENCE CHANNEL (IC)
Let us now consider the general multi-user MIMO inter-
ference channel (IC) where both transmit and receive side
have user separation. Consider K transmit devices having
NT antennas each that are communicating with their respec-
tive K receive devices having NR antennas each. Such a
channel model assumes that all the transmitting devices are
communicating with their respective receivers while generat-
ing interference to all the other receivers. Finding the exact
capacity region of a general K user interference channel is
still an ongoing effort [106], [107]. For the two users sce-
nario, capacity bounds have been discussed in [108], [109]
and references within, under various assumptions regarding
interference such as Z interference channels (where one of the
two receive users does not experience interference), strong
interference, and noisy interference. The term ‘noisy inter-
ference’ refers to conditions where the sum capacity can be
achieved by treating interference as noise [110]. For a two
usersMIMO IC, [110, Theorem 2] presents a set of conditions
involving the channel and transmit covariancematrices which
are sufficient for interference to be treated as noise. Such
conditions ensure that the indirect links are much weaker
than the direct links, and power allocation is such that the
received power of the message received via the indirect link
at each user is very low compared to the received power of the
message via the direct link. Further, it is shown in [111] that
under strong interference, each receiver can jointly decode
the signal and the interference to achieve the sum capacity.
As an extension of the two users case, [112] derives the
conditions under which treating noise as interference can
achieve the sum capacity for a K users IC. Most of these
works assume no coordination among the source transmitters
or the destinations. If different transmitting users coordinate
for transmission, and receivers coordinate for reception then
interference can be treated as information bearing entity
which can be extracted using the tensor framework.

The system model for a MIMO interference network is
given by [113]:

y(k) = H(k,k)x(k) +
∑
u

u6=k

H(k,u)x(u) + n(k) (117)

for k = 1, . . . ,K and x(k) ∈ CNT×1 is the vector transmitted
by source k . Also, y(k),n(k) ∈ CNR×1 are the received signal
and noise vectors at destination k . Matrix H(k,k)

∈ CNR×NT

is the direct channel between source k and destination k and
H(k,u)

∈ CNR×NT is the cross-channel matrix between source
u and destination k . For each transmitting source, there is an
individual power constraint defined as tr(Q(k)) ≤ Pk , where
Q(k)
∈ CNT×NT is the covariance matrix of vector x(k) and

Pk denotes the power budget. Such interference networks
can be thought of as a tensor communication link. The input
can be represented as a matrix X ∈ CNT×K where each x(k)

forms a column of the matrixX. Similarly the received signal
and noise can be represented using matrices Y,N ∈ CNR×K

where each y(k) and n(k) form columns of the matrices Y and
N. The overall channel between such an input and output can
be represented as a fourth order tensor H ∈ CNR×K×NT×K

where H:,k,:,u = H(k,u). Subsequently the interference net-
work system model can be represented in tensor form as:

Y = H ∗2 X+ N. (118)

Note that (118) is different from MIMO MAC specified
by (103) in the sense that in (103) the channel is a third
order tensor and thus the output is a vector. On the other
hand in (118) the channel is a fourth order tensor to account
for user separation at the receiver side as well and thus the
output is a matrix or an order-2 tensor. The power constraints
on the input can be defined in a similar way as for (103).
Assuming the noise covariance is an identity tensor I of size
NR × K × NR × K , the tensor formulation can be used to
specify the channel capacity as

max
Q

log det
(
H ∗2 Q ∗2 H

H
+ I

)
(119)

s.t.
NT∑
n=1

Qn,k,n,k ≤ Pk ∀k, Q � 0. (120)

Note that capacity obtained from such a tensor formulation
assumes that all the sources cooperate for transmission and
all the destinations cooperate for reception.

Now we consider an example with two users interference
channel and compare the sum rate achieved using the tensor
framework which assumes user cooperation, with the upper
bound on rate suggested in [108] while treating interference
as noise.We consider the same example from [108] consisting
of a system composed of two transmitters and two receivers,
equipped with NT antennas each. The model introduces a
positive scalar a ≥ 0 to control the interference power:

y(1) = H(1,1)x(1) + a · H(1,2)x(2) + n(1), (121)

y(2) = a · H(2,1)x(1) + H(2,2)x(2) + n(2). (122)

Such a system of equations can be equivalently represented
using (118) where the channelH is a tensor of size NT × 2×
NT × 2 and the input, output and noise are matrices of size
NT×2 each.We find the capacity of suchMIMO interference
channels with user coordination using the tensor framework
where the optimal input covariance is approximated using
Algorithm 1.

For our example, in (121), (122) we take a = 1/
√
3 and the

channel entries are i.i.d. zero mean unit variance Gaussian
random variables as in [108]. The results are averaged over
100 different channel realizations. These channel realizations
are known at the transmitters and the receivers. We find
the sum rate achieved via the tensor framework assuming
user cooperation, and denote it using RT . We compare RT
with the capacity of K parallel non-interfering channels
found using standard water-filling approach and denote it
as RU . In [108], RU has been used as an upper bound on
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the achievable sum rate while treating interference as noise.
Figures 20-24 presents a comparison between RT and RU .
To calculate RU , we find the transmit covariance matrix Q(k)

for each user input x(k) based on MIMO water-filling corre-
sponding to the channel H(k,k), and set RU =

∑
k log det(I+

H(k,k)Q(k)H(k,k)H ). Also, RT is calculated using the objective
function in (119) where the optimal covariance tensor Q is
approximated using Algorithm 1.
Figure 20 compares RT and RU for a 2 users case with

different values of power constraints P1 = P2 = P. The
achievable sum rates with the two approaches are plotted
against the number of antennas NT . The sum rates for both
the cases increase as NT increases. The achievable rate with
the tensor approach, RT is higher than the upper bound on the
sum rate, RU from [108]. It can also be observed in Figure 20
that as P increases, the gap between RT and RU increases
as well. The tensor approach shows that the presence of
interference can in fact give higher achievable sum rates if the
transmit and receive operations are performed jointly by all
the transmitting and receiving users respectively. Hence the
sum rate achieved via the tensor approach, that allows coop-
eration at the transmitter and receiver sides, can be higher than
the sum rate achieved in the absence of interference.

This feature is further observed in Figure 21which presents
the sum rate against the number of users K for a multi-user
MIMO interference scenario from (117) with NT = 2.
Each user’s receive signal contains a desired signal and
information from K − 1 interfering links whose power is
controlled by a scalar factor a as described in the two users
case. The result presented is for a = 1/

√
3 and for two

different total power budgets P = 5, 10 dB with individual
power constraints as Pk = P/K . It can be seen that RT
is always larger than RU . Furthermore, as the number of
users grows, the difference between RT and RU also widens,
which shows the advantage of considering interference as
information bearing term rather than noise, through the tensor
framework.

To further elaborate on the role of interference, Figure 22
presents the sum rate RT of the two users scenario achieved
using the tensor framework for different interference power
and compares it with RU . The solid lines represent RT
and dashed lines represent RU . The result is plotted against
the interference coupling power gain defined as G1 =

10 log10 a
2 dB [108] for different number of antennas NT

at each device, and with power constraints Pk = P/K for
k = 1, 2 where K = 2 and P is set to 10 dB. It is seen
clearly that higher interference leads to higher sum rate RT
using the tensor approach. Also, RT increases with NT and
the gap between sum rate for different number of antennas
widens with increasing interference. However, RU is always
lower than RT and does not change with G1. Since RU is
calculated by assuming zero interference, it does not vary
with changing the interference power. At very low inter-
ference power, we see that RT and RU are almost same.
The difference between RT and RU starts to be significant
(more than 1 bit/channel-use) at an interference power G1 of

FIGURE 20. Achievable sum rate vs number of antennas for two
users MIMO IC.

FIGURE 21. Achievable sum rate vs number of users for K -users MIMO IC
with NT = 2.

approximately -2 dB when NT = 2, and around -6 dB when
NT = 8.
Next we consider a three users system specified by:

y(1) = H(1,1)x(1) + a · H(1,2)x(2) + b · H(1,3)x(3) + n(1)

(123)
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FIGURE 22. Achievable sum rate vs interference power for two
users MIMO IC.

y(2) = a · H(2,1)x(1) + H(2,2)x(2) + b · H(2,3)x(3) + n(2)

(124)

y(3) = a · H(3,1)x(1) + b · H(3,2)x(2) + H(3,3)x(3) + n(3)

(125)

Such a system model can be represented using (118)
with Y,X and N as NT × 3 matrices each and H as an
NT×3×NT×3 tensor. The number of antennas at each device
is denoted by NT . Each destination user receives signals from
a direct link and 2 interfering links whose power is controlled
by scalar factors a and b respectively. In Figure 23 we present
RT and RU against interference power with three users for
NT = 2. The power constraints for each user is same, i.e.
Pk = P/K whereK = 3, and P is set to 5 dB. In Figure 23 we
have G1 = 10 log10 a

2 dB and G2 = 10 log10 b
2 dB, where

G1,G2 represent the strength of the 2 interfering links for
each user. It can be seen that RT is low when the interference
power of both links is weak. With increasing strength of the
interfering links, we get higher sum rate RT . The curve for
RU does not vary with change in G1 and G2 and is always
lower than RT . Similar observation can be made in Figure 24
which represents RT and RU for NT = 4. On comparing
Figures 23 and 24, we see that RT and RU increase as
NT increases from 2 to 4. Notice that difference in RT for
NT = 2 and 4 is wider for large values ofG1,G2, i.e. when the
strengths of the interfering links increase. The tensor frame-
work allows to treat interfering terms as information bearing
components, resulting in higher rates with increasing G1,G2
and NT .

FIGURE 23. Achievable sum rate vs interference power for three users
MIMO IC with NT = 2.

FIGURE 24. Achievable sum rate vs interference power for three users
MIMO IC with NT = 4.

C. COMPLEXITY COMPARISON
Thematrix based methods used for estimating the sum capac-
ity for MIMOMAC and IC often treats interference as noise.
In most cases, the objective of such simplification is a reduc-
tion in the computational complexity of the problem. Hence
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TABLE 3. Computational complexity for MIMO MAC.

it is important to compare the complexity of the matrix based
methods with the tensor method presented in this paper to
highlight the relevance of both the approaches.

In section V-C, we presented the complexity analysis of
employing Algorithm 1 for any given tensor channel of size
J1× J2× . . . JM × I1× I2× · · · × IN . In this section, we will
use the results from section V-C and compare the computa-
tional complexity of finding capacity for the specific cases of
MIMO MAC and IC channels using the tensor method with
the matrix based methods.

1) COMPARISON FOR MIMO MAC
Consider the system model for K users MIMO MAC from
(100) where H(k) denotes the uplink channel matrix of size
NR × NT between the BS equipped with NR antennas and
the kth user which has NT transmit antennas. The iterative
water-filling approach of finding the sum capacity computes
a separate covariance matrix for each user while treating the
interference from all other users as noise. A standard water-
filling approach is used in finding the individual covariance
matrices. Furthermore, all the K covariance matrices are
iteratively updated until a convergence criteria is met. The
dominant step in a standard water-filling approach is the sin-
gular value decomposition of the channel matrix. The com-
putational complexity of the SVD of anm×nmatrix is given
byO(m · n ·min(m, n)) [114], [115]. Thus, the computational
complexity of computing the water-filling corresponding to
the matrix H(k)

∈ CNR×NT would be given as O(NR · N 2
T )

(assuming NR > NT ). For the MIMO MAC, since the
water-filling is computed for each of the K users iteratively,
the complexity scales linearly with the number of users K ,
and the number of required iterations per user, denoted by I .
Thus the overall complexity is given as O(K · I · NR · N 2

T ).
On the contrary, the tensor approach in Algorithm 1 is a

non-iterative method to approximate the joint covariance of
all the users, which also takes into account the interference
as information bearing entities. Consider the tensor model
for MIMO MAC from (103) where the channel is defined as
a third order tensor of size NR × NT × K . Thus based on
the discussion in section V-C, the complexity of employing
Algorithm 1 for the MIMOMAC channel is given byO((K ·
NT )2 · NR + (K · NT )3). Assuming that K · NT ≥ NR, we can
write the computational complexity as O((K · NT )3). The
complexity of the matrix and tensor approaches are listed in
Table 3 for a clear comparison.
It can be seen that the complexity of tensor approach is

cubic in the number of users as opposed to the matrix based
iterative water-filling where the complexity is linear in the
number of users. Although it is to be noted that the matrix

based approach also depends on the number of iterations.
Within each such iteration, a standard water-filling algorithm
for a matrix channel is executed. In contrast, the tensor
approach presented in this paper is non-iterative, i.e. a single
iteration is required irrespective of the number of users and
antennas.

However, clearly the advantage of the matrix approach
should not be dismissed as it offers a low complexity solu-
tion. Despite the iterative nature of the matrix approach, the
complexity is linear in the number of users as opposed to the
tensor approach where it is cubic. However, as the number of
users grows the advantage of tensor based approach becomes
significant in terms of the achievable sum rate possible due
to user coordination. This is evident in Figure 18 where the
sum capacity of the coordinated users shows a substantial
increase as compared with the independent users, when the
number of users grow. For instance, at a total transmit power
of 10 dB, the sum capacity for 10 users is 40 bits/channel-use
as opposed to around 32 bits/channel-use for the independent
users as seen in Figure 18. To better quantify this gap, for
the example of Figure 18 we plot the difference between the
sum rates achievable with tensor framework and the matrix
approach in Figure 25 against the number of users and dif-
ferent values of NT at P = 10 dB. We can see that the
difference increases substantially with increasing the number
of users, and also increasing the number of transmit antennas.
To summarize, Table 3 shows the advantage of the matrix
approach in terms of lower complexity, and Figure 25 shows
the advantage of the tensor approach in terms of higher rates
due to user coordination.

2) COMPARISON FOR MIMO IC
Now let us consider the case of MIMO IC for K users
from (117). To calculate RU , which is the upper bound on
the achievable sum rate while treating interference as noise,
K separate transmit covariance matrices have to be calculated
corresponding to each user. Thus, the complexity in this
case is also linear in the number of users. Each user solves
a water-filling solution corresponding to a matrix channel
H(k,k) of size NR × NT . Assuming NR = NT = N , the
complexity is given as O(K · N 3). The corresponding tensor
model for K users MIMO IC is given by (118) where the
channel is a fourth order tensor of size N × K × N × K .
The process of calculating RT , which denotes the achievable
sum rate using user coordination, requires Algorithm 1 to be
executed for the fourth order tensor channel. Thus, based on
the discussion in section V-C, its computational complexity
is given byO((K ·N )3). The complexity of the matrix and the
tensor models are listed in Table 4 for a comparison.
Ignoring the interference leads to a degenerate situation

where a higher order channel is reduced to K non-interfering
matrix channels. Thus, the computational complexity of cal-
culating RU is lower when compared with the tensor method
used to find RT , as seen in Table 4. However, as shown in
Figure 21, the difference between RT and RU can be very
large with increasing the number of users. For instance, for
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FIGURE 25. Difference in sum capacity achieved via tensor approach
(coordinated users) and matrix approach (independent users) vs number
of users for MIMO MAC.

TABLE 4. Computational complexity for MIMO IC.

10 users at 10 dB total power, RT is around 19 bits/channel-
use as opposed to RU which is only around 10 bits/channel-
use as observed in Figure 21. To better quantify the difference
between RT and RU , we consider the example from Figure 21
for P = 10 dB, and plot the difference RT −RU against num-
ber of users for different values of N in Figure 26. It can be
seen in Figure 26 that this difference increases significantly
as the number of users, or the number of antennas increases.
Thus, Figure 26 clearly shows the advantage of the tensor
framework in providing higher achievable sum rates.

3) ADVANTAGE OF THE TENSOR APPROACH
In both the MIMO MAC and MIMO IC, the achievable sum
rates are interference limited using the matrix approaches.
Hence as the number of users or antennas grows which leads
to higher interference, the performance degrades in terms of
achievable sum rates. It is clear that the tensor method should
be preferred when user coordination is allowed leading to
a joint transmission across all users, whereas the matrix
based methods can be used when users are constrained to
act independently and transmit on a per user basis. The
tensor method while admitting higher complexity, as seen
in Tables 3 and 4, leads to much higher achievable sum

FIGURE 26. Difference in achievable sum rate, RT − RU at P = 10 dB vs
number of users for K users MIMO IC.

rates also, as seen in Figures 25 and 26. Thus there is an
inherent performance/complexity trade-off where at the cost
of higher complexity, much significant gain in sum rates can
be achieved especially in the presence of strong inter-domain
interference.

The representation of such multi-domain systems using
matrix channels and vector signals often gets more complex
as the number of domains or dimensions within a domain
increases. It is important to note that the tensor method
does not necessarily yields lower complexity for such high
complexity situations. Its main feature is that it provides a
structured mathematically accurate framework to treat high
complexity systems, while having the capability to naturally
scale back to lower complexity when the problem is of
reduced complexity. For example, for a single user MIMO,
the tensor approach scales back to a conventional matrix
approach. For the MU MIMO MAC with additional con-
straint in (109), the tensor framework reduces to the con-
ventional MUMIMOMAC model. Hence the tensor method
can be seen as an umbrella set up wherein several other low
complexity approaches act as specific cases with additional
constraints imposed for simplifying the problem.

VIII. CONCLUSIONS
In this paper, we introduced a unified framework using ten-
sors to represent a multi-domain communication system. The
proposed framework can be used to model many of the cur-
rently used multi-domain approaches in communications by
leveraging the multi-linear structure of the system. Several
examples of such systems were included in this paper to
demonstrate the usefulness of the proposed tensor framework.
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The information-theoretic analysis for a fixed tensor channel
presented in this paper suggests an exponential increase in
Shannon capacity with increase in the number of domains,
if the channel is known at both transmit and receive side.
In particular, the tensor framework’s ability to mathemat-
ically represent a family of power constraints is utilized.
This allows to characterize the capacity of multi-user MIMO
systems having per user power constraints for any number of
users. A tensor representation of the channel and its informa-
tion theoretic analysis using the proposed framework leads to
a joint transmission scheme across all the domains. An exam-
ple of MIMO GFDM system was presented to illustrate that
such a joint domain processing can lead to better BER per-
formance as compared to per domain processing. It was also
shown that the capacity of tensor channels decreases as the
correlation among the channel components increases. Fur-
thermore, for the same total power as the number of domain
elements under individual power constraints increases, the
capacity decreases. In case of multi-user MAC and IC chan-
nels, it was shown that the tensor approach leads to higher
achievable sum rates with user-coordination as compared to
the sum rates achieved with independent users. The tensor
framework allows to capture the user cooperation in the form
of a joint covariance tensor across all the domains. Our results
show that such an improvement in achievable rates through
the tensor approach becomes even more significant as the
number of users grows or the power of the interfering links
increases. With independent user transmissions, the interfer-
ence is treated as noise, as opposed to the tensor approach
where interference is treated as information bearing entity.
The performance advantages resulting from using the tensor
framework come very often at the expense of a complexity
increase. However, tensors provide structured and mathemat-
ically accurate tools of handling such complexity increase.

.

APPENDIX A SOLVING THE EQUATIONS DERIVED FROM
KKT CONDITIONS FOR THE OPTIMAL COVARIANCE
TENSOR
In this appendix, we present the solution to the equations
obtained through KKT conditions for finding the optimal
transmit covariance tensor Q. The results presented here
are a generalization of Theorem 1 from [73] to a tensor
setting. In this appendix, H represents the channel tensor,
M represents the Lagrange multiplier corresponding to the
semi-definite constraint on covariance and B represents the
tensor whose pseudo-diagonal entries are the Lagrange mul-
tipliers corresponding to the other constraints on transmit
covariance (such as power). For the sum power constraint,
B is an identity tensor and the Lagrange multiplier is a scalar
µ > 0. So for M � 0,B � 0, our objective is to find Q � 0,
that satisfies (126) and (127):

HH
∗M (H ∗N Q ∗N HH

+ IM )−1 ∗M H = µB−M

(126)

Q1/2
∗N M ∗N Q1/2

= 0T (127)

Contracting along the N consecutive modes in (126) on left
and right by Q1/2 results in

Q1/2
∗N HH

∗M (H∗N Q∗N HH
+IM )−1∗M H∗N Q1/2

= µQ1/2
∗N B1/2

∗N B1/2
∗N Q1/2

−Q1/2
∗N M∗N Q1/2︸ ︷︷ ︸

=0T (from (127))

(128)
A , B1/2

∗N Q1/2
⇒ Q1/2

= B−1/2 ∗N A (129)

Since Q is Hermitian, we have Q1/2
= (Q1/2)H = AH

∗N
B−1/2, which gives

Q = B−1/2 ∗N A ∗N AH
∗N B−1/2 (130)

Substituting (130) in (126) and contracting both sides along
N modes of B−1/2 results in

B−1/2 ∗N HH︸ ︷︷ ︸
KH

∗M

(
H ∗N B−1/2︸ ︷︷ ︸

K

∗NA ∗N AH

∗N B−1/2 ∗N HH︸ ︷︷ ︸
KH

+IM

)−1
∗M H ∗N B−1/2︸ ︷︷ ︸

K

= µIN −B−1/2 ∗N M ∗N B−1/2 (131)

Proposition 1.1: Let A = UA ∗N DA ∗N VHA and K ,
H ∗N B−1/2 = UK ∗M DK ∗N VHK represent the tensor SVD
of A and K, then UA = VK.

Proof: Substituting (129) and (130) into (128), we get

AH
∗N B−1/2 ∗N HH︸ ︷︷ ︸

PH

∗M (H ∗N B−1/2 ∗N A︸ ︷︷ ︸
P

∗N AH
∗N B−1/2 ∗N HH︸ ︷︷ ︸

PH

+IM )−1

∗M H ∗N B−1/2 ∗N A︸ ︷︷ ︸
P

= µAH
∗N A (132)

Substituting tensor SVD of A and P , H ∗N B−1/2 ∗N A =

UP ∗M DP ∗N VHP into (132),

VP∗N DH
P∗M UH

P∗M (UP∗M (DP∗N DH
P+IM )∗M UH

P)
−1

∗MUP∗M DP∗N VHP=µ(VA∗N DH
A∗N DA∗N VHA)

⇒ VP∗N

pseudo-diagonal︷ ︸︸ ︷
DH

P∗M (DP∗N DH
P+IM )−1∗M DP ∗NV

H
P

= (VA ∗N

pseudo-diagonal︷ ︸︸ ︷
µDH

A ∗N DA ∗NV
H
A) (133)

Since VP and VA are unitary tensors, and the middle quan-
tities on both sides of (133) are pseudo-diagonal, both the
right and left side represent the tensor EVD of two equal
tensors. From the uniqueness of tensor EVD, (133) implies
that VP = VA. Also,

PH ∗M P = AH
∗N B−1/2 ∗N HH︸ ︷︷ ︸

KH

∗M H ∗N B−1/2︸ ︷︷ ︸
K

∗NA

(134)
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VK ∗N DH
K ∗M UH

K ∗M (UK ∗M DK ∗N DA ∗N DH
A ∗N DH

K ∗M UH
K + IM )−1 ∗M UK ∗M DK ∗N VHK

= VK ∗N DH
K ∗M (DK ∗N DA ∗N DH

A ∗N DH
K + IM )−1 ∗M DK︸ ︷︷ ︸

pseudo-diagonal

∗NV
H
K (137)

= VA∗N DH
A∗N UH

A∗N VK∗N DH
K∗M DK∗N︸ ︷︷ ︸

middle term

VHK ∗N UA ∗N DA︸ ︷︷ ︸
middle term

∗NV
H
A (135)

Since VA = VP we see that (135) represents the tensor
EVD of PH ∗M P. Hence the middle term in (135) is pseudo-
diagonal. So UH

A ∗N VK must also be a pseudo-diagonal
tensor. Let S , UH

A∗NVK, then sinceUA andVK are unitary,
we get

SH ∗N S = (UH
A ∗N VK)H ∗N (UH

A ∗N VK)

= (VHK ∗N UA) ∗N (UH
A︸ ︷︷ ︸

IN

∗NVK) = IN (136)

Since S is pseudo-diagonal, (136) implies S = IN ⇒ UA =

VK, proving the proposition.
From the tensor SVD ofA andK, and Proposition 1.1, the

left-hand side of (131) can be written as (137), as shown at
the top of the page.

From the EVD,B−1/2∗NM∗NB−1/2 = U∗NDBM∗NU
H ,

the right-hand side in (131) becomes

µIN −B−1/2 ∗N M ∗N B−1/2

= U ∗N (µIN −DBM) ∗N UH . (138)

Equations (137) and (138) represent the tensor EVD of the
left and right hand side of (131), hence from uniqueness of
tensor EVD we get U = VK and:

DH
K ∗M (DK ∗N DA ∗N DH

A ∗N DH
K + IM )−1 ∗M DK

= µIN −DBM (139)

Let the pseudo-diagonal elements of DA, DK and DBM be
ai1,...,iN , ki1,...,iN and mi1,...,iN respectively. Pseudo-diagonal
elements of DH

A and DH
K will also be ai1,...,iN and ki1,...,iN

respectively as these are real values. Since both sides of
(139) are pseudo-diagonal, hence (139) can be written
component-wise as:

k2i1,...,iN
1+ a2i1,...,iN k

2
i1,...,iN

= µ− mi1,...,iN (140)

⇒ a2i1,...,iN =
1

µ− mi1,...,iN
−

1

k2i1,...,iN
(141)

Substituting (129) into (127) gives AH
∗N B−1/2 ∗N M ∗N

B−1/2 ∗N A = 0T where using tensor SVD of A and tensor
EVD of B−1/2 ∗N M ∗N B−1/2 we can write:

VA ∗N DH
A ∗N DBM ∗N DA ∗N VHA

= 0T (as U = VK = UA) (142)

This implies that DH
A ∗N DBM ∗N DA = 0T which can

be written element-wise as a2i1,...,iN · mi1,...,iN = 0. Since
B � 0 and M � 0, we know mi1,...,iN ≥ 0.
So a2i1,...,iN = 0 when mi1,...,iN > 0, otherwise it is given
by (141) with mi1,...,iN = 0. Together it can be written as

a2i1,...,iN =
( 1
µ
−

1

k2i1,...,iN

)+
(143)

where (z)+ = max{0, z}. From (143) and Proposition 1.1 we
get

A ∗N AH
= UA ∗N

(
µ−1IN − D̄−1

)+
∗N UH

A

= VK ∗N

(
µ−1IN − D̄−1

)+
∗N VHK (144)

where VK and D̄ are obtained from tensor EVD of KH
∗M

K = VK ∗N D̄ ∗N VHK. Based on the tensor SVD of K in
Proposition 1.1, we have D̄ = DH

K∗MDK. Substituting (144)
into (130), we can conclude that

Q=B−1/2 ∗N VK ∗N

(
µ−1IN − D̄−1

)+
∗N VHK ∗N B−1/2

(145)
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