
Received March 6, 2022, accepted March 12, 2022, date of publication March 16, 2022, date of current version April 1, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3159973

A Quantitative Study of Non-Linear Convective
Heat Transfer Model by Novel Hybrid Heuristic
Driven Neural Soft Computing
MUHAMMAD FAWAD KHAN 1, MUHAMMAD SULAIMAN 1,
CARLOS ANDRÉS TAVERA ROMERO 2, AND FAHAD SAMEER ALSHAMMARI3
1Department of Mathematics, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa 23200, Pakistan
2COMBA Research and Development Laboratory, Faculty of Engineering, Universidad Santiago de Cali, Cali 76001, Colombia
3Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

Corresponding author: Muhammad Sulaiman (msulaiman@awkum.edu.pk)

This work was supported by the Dirección General de Investigaciones of Universidad Santiago de Cali under Call 01-2021.

ABSTRACT Heat transfer has a vital role in material selection, machinery efficacy, and energy consumption.
The notion of heat transfer is essential in understanding many phenomena related to several engineering
fields. Particularly, Mechanical, civil and chemical engineering. The presentation of the heat transfer model
in this manuscript is a dedication to the heat transfer characteristics such as conduction, convection, and
radiation. The heat energy consumption mainly depends on these characteristics. A better conductive
and convective paradigm is required for miniaturization of heat loss or transfer. The phenomenon is
mathematically assumed with the required parameters. A new mathematical strategy is also designed and
implemented in the manuscript to evaluate the dynamics of heat transfer model. The mathematical approach
is the hybrid structure of the Sine-Cosine algorithm and Interior point algorithm. The validation of new
technique is evaluated by mean absolute deviation, root mean square errors, and error in Nash–Sutcliffe
efficiency. For better illustration, an extensive data set executed by the proposed mathematical strategy is
also drawn graphically with convergence plots.

INDEX TERMS Interior point technique, machine learning, heat transfer, differential equation, quantitative
analysis, neural network, mathematical model, hybridization.

I. INTRODUCTION
With the increase in energy consumption, the miniaturization
of heat loss and heat transfer on surfaces and in devices surge
the interest of researchers. To improve thermal performance,
the researchers work in many engineering applications like
thermal energy storage, heat transfer exchangers, Solar
collectors, thermal control in electronic devices, etc. These
researches contribute to minimizing the consumption of heat
energy. In this regard, many best insulators are developed
to lower energy consumption, which is considered a better
strategy to minimize energy consumption. Various types of
insulators are reported by [1]. For heat transfer applications,
the understanding of its characteristics and determination of
thermal properties in different shaped materials. That’s why
researchers explore heat transfer by convection, conduction,
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and radiations. Natural convection, radiation, and conduction
are associated with diverse engineering applications [2].
Many researches studied natural convection mechanism in
different thermal materials based on various conditions such
as under the influence of magnetic field convection is studied
by [3], [4], porous media saturatedi fluids studied and
reported in [5]. Qi et al reported a study on the cooling process
of high heat loss in electronic devices, such as CPUs. In this
work, they said that magnetic field intensity could improve
the heat exchanger efficiency [6], Nonlinear radiation and
cross-diffusion effects on the micropolar nanoliquid flow
past a stretching sheet with an exponential heat source [7],
nonlinear Boussinesq approximation and non-uniform heat
source/sink on nanoliquid flow with convective heat con-
dition:sensitivity analysis [8]. In this article heat transfer
is studied in Ti2 − EG with passive and active controlling
of nano-particles [9] while the significance of inclination
of magnetic field with nonlinear thermal radiation and
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exponential space based heat source is reported in [8].
In [10] Nazeer et al. report the impact of on velocity and
heat profiles. The numerical results in this study reveal
that the velocity profile vanished by non-Newtonian terms
and other parameters like magnetic field, viscosity and
electro-kinetic while the behavior of velocity versus pressure
gradient is opposite. Additionally, the temperature profile
increases against the Brinkman number, pressure gradient,
Joule heating, wall’s temperature, viscosity while reverse
behavior is observed via electro-kinetic and magnetic field
parameters, heat transportation generation/absorption and
radiative heat flux in homogeneous–heterogeneous catalytic
reactions of non-Newtonian fluid is studied by [11], radiative
flow by convective cylinder is studied in [12], comparative
study of nano-particles in viscous fluid flow is reported
in [13] and Ijaz Khan et al. reported study of reactive aspect
in flow of tangent hyperbolic material [14]. For conduction
phenomena, in [15] Unger et al. introduce a novel fin tube
exchanger for the improvement of conductive heat transfer
in the tube fins. At the same time, convection occurs along
its surface. Rathod and Modi present numerical phenomena
for the evaluation of thermo-fluid mechanism in a fin heat
exchanger consisting of sinusoidal and elliptic winglets [16].
For heat conduction, employment of Eulerian-Lagrangian
scheme for hydraulic characteristics of hybrid nanofluid flow
inside the micro-pin-fins heat sink is discus by Ambreen et al.
in [17]. As conduction and convection, radiation also has a
contribution to heat transfer. Inquiring fin parameters and
natural convection also deal with heat transfer with radiations.
Heat transfer has many application such as PCM pipe bank
thermal storage for space heating [18], Thermal performance
of self-rewetting gold nanofluids [19], heat pipe cooled
device with thermo-electric generator for nuclear power
application [20], etc.

For such problems researcher introduce many numerical
techniques or solved by existent techniques like Entropy
generation and heat transfer analysis by Finite difference
method [21]. Numerical and experimental analysis of resin-
flow, heat-transfer [22], Computational modeling and anal-
ysis on rotating stretched disk flow with heat transfer [23].
Classical techniques need many information like initial
point, gradient, feasible range, etc. But the global search
techniques need a little information about the problem; such
characteristics grab the researcher’s interest. Many research
introduces the implementation of meta-heuristics. These
meta-heuristics are applicable to heat transfer problems and
can be applied to solve a wide range of other engineering
problems. A few of them are, supervised learning method
for reconstruction in heat transfer problem [24], A physics-
informed machine learning approach for solving heat transfer
equation [25], heat transfer in a grooved pipe model by
Stochastic Algorithms [26] with this the many hybridizations
of unsupervised and supervised techniques are also reported
in the literature. Analysis of temperature profiles in longitu-
dinal fin is presented in [27], heat and entropy generation
in flow of non-Newtonian fluid is analysed by Artificial

neural networking (ANN) in [28], temperature distribution
in convective straight fins [29], Multi order Fractional
Differential Equations [30], Restoring Moment and Damping
Effects Using Neuro-evolutionary Technique [31], non-linear
MHD Jeffery–Hamel blood flow model, Optimal power flow
solution in power systems [32], [33], Falkner–Skan flow
problem is solved by SCA-SQP in [34], unipolar pumpflow is
evaluated by ANN-SCA-SQP by [35]. In a similar context of
heat transfer, this work discusses the conductive, convective,
and radiative heat transfer model in a fin. The work discusses
different scenarios of conductive, convective, and radiative
heat transfer combinations. The presented work is given as:
• The mathematical model of conductive, convective, and
radiative heat transfer is presented.

• For the solution of the presented mathematical model
Artificial Neural Network (ANN) is utilized with
the hybridization paradigm of Sine-Cosine Algo-
rithm(SCA) with Interior-point algorithm(IPA) abbrevi-
ated as ANN–SCA-IPA.

• The Dynamics of the model are evaluated by the varia-
tion of coefficient conductive, radiative and convective
in the heat transfer model (HTM).

• The HTM is transformed into an optimization problem
with a fitness function that uses the least square errors
phenomena.

• Additionally, the ANN–SCA–IPA paradigm is evaluated
by various statistical operators.

The structure of rest of paper is followed by section II
which present formulation of HTM, section III present
construction and discuses the ANN base HTM, section IV
discusses the designing of fitness function, section V consist
of hybridization paradigm, section VI define and explain
performance operators, section VII discuss empirical results
of HTM, section VIII consist of discussion on performance of
ANN–SCA–IPA algorithm and section IX conclude the work.

II. FORMULATION OF NONLINEAR HEAT TRANSFER
MODEL
Consider a fin having length b with cross section area A and
thermal dependent conductivity as shown in Figure 1. It is
considered that fin is relatively long as compare to A and
is made up of isotropic solid material. On the surface heat
is transfers through convection and radiation while at the
bottom uniform temperature is considered while the tip of
fin has negligible heat transfer. The transfer of heat on the
surface of fins satisfies Stefan-Boltzmann’s law. The thermal
conductivity k(T ) in the fin is depend on the temperature
which is defined as [36]

k = ka [1+ β (T − Ta)] , (1)

where Ta denotes ambient temperature, inner temperature of
fin is represented by T , temperature variation is denoted by
β. Whenever (T = Ta) the equation (1) reduced to k = ka
which denotes thermal conductivity. The heat transfer model
is analyzing the convective, conductive and radiative heat
transfer mechanism in a longitudinal fin and perimeter P.
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FIGURE 1. Physical structure of heat transfer model.

The efficient sink temperature for radiative heat transfer is Ts
and fin’s base temperature is Tb. The convection heat transfer
coefficient h and the surface emissivity coefficient Eg are
assumed to be constants, whereas the conduction coefficient
k varies. As the fin is longitudinal, that’s why it satisfy one
dimensional heat transfer equation and boundary conditions
are as follows: [37]–[39]:

d
dη

(
k
dT
dη

)
−
hp
A
(T − Ta)−

Egσ
A

(
T 4
− T 4

s

)
= 0

(2)
dT
dη
= 0 at η = 0, and T = Tb at η = b. (3)

To make the equation dimensionless following new parame-
ters are defined as

θ =
T
Tb
, θa =

Ta
Tb
, θs =

Ts
Tb

η =
η

b
, ν2 =

hpb2

kaA
, ε1 = βTb,

ε2 =
EgσT 3

b pb
3

kaA
, (4)

here, ε1 is heat conduction, ε2 is heat radiation and ν is heat
convection. By putting equation (1) into equation (2) and if
θa = θs = 0, then:

d
dη

[
(1+ ε1θ)

dθ
dη

]
− v2θ − ε2θ4 = 0 (5)

dθ
dη
= 0 at η = 0 and θ = 1 at η = 1 (6)

III. ARTIFICIAL NEURAL NETWORK BASED STRUCTURE
OF THE HEAT TRANSFER MODEL
This section discusses the mathematical strategy for the
approximation of heat transfer. The procedure is approxi-
mated by feed-forward neural network in terms of activation
function log-sigmoid given in below equation:

φ(x) =
1

1+ e−x
, (7)

The feed-forward is simple and unidirectional network. It’s
computationally sound and simple to utilize. Additionally,
The approximated trail solution θ̂ (η) and its derivatives first,
second, third, and nth order θ̂ ′(η), θ̂ ′′(η), θ̂ ′′′(η) and θ̂n(η),
respectively, for heat transfer procedure in equation (5) are
presented in equation (8)

θ̂ (η) =
k∑
i=1

aiφ(wi(η)+ ζi),

θ̂ ′(η) =
k∑
i=1

aiφ′(wi(η)+ ζi),

θ̂ ′′(η) =
k∑
i=1

aiφ′′(wi(η)+ ζi)

.

.

.

θ̂n(η) =
k∑
i=1

aiφn(wi(η)+ ζi), (8)

in the model (8), number of neurons are denoted by k which
must be multiple of three because the setW = [a, w, ζ ]
consist of three components of neurons a, w, ζ . Where
a = [a1, a2, . . . , ak ],w = [w1,w2, . . . ,wk ] and
ζ = [ζ1, ζ2, . . . , ζk ].

As heat transfer equation (5) is second order ordinary
differential equation (ODE), so the putting equations (9)-(11)
in equation (5)

θ̂(η) =
k∑
i=1

ai(
1

1+ e−(wiη+bi)
), (9)

θ̂ ′(η) =
k∑
i=1

aiwi(
e−(wiη+bi)

(1+ e−(wiη+bi))2
), (10)

θ̂ ′′ =

k∑
i=1

aiw2
i

(
2e−2(wiη+bi)(
1+e−(wiη+bi)

)3− e−(wiη+bi)(
1+ e−(wiη+bi)

)2
)
,

(11)

will give ANN based governing equation of heat transfer. The
ANN strategy and parameters such as input, hidden layer,
and output are given in Figure 2.

IV. DESIGNING FITNESS FUNCTION
For quantitative evaluation of approximated solution fitness
function is designed based on two mean-square errors, it’s as
follows::

min E = E1 + E2, (12)

here E1 denote the cost function, can be expressed as follows:

E1 =
1
N

N∑
m=1

(
d
dη

[(
1+ ε1θ̂m

) dθ̂m
dη

]
− v2θ̂m − ε2θ̂4m

)2

,

N =
1
h
, ĝm = ĝ (ηm) , ηm = mh, (13)
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FIGURE 2. Working steps of artificial neural network.

where N denotes points the input points in the grid, the
number of inputs depend on step size h in given interval,
θ̂ (η), θ̂ ′(η), and θ̂ ′′ are given in equation (8). In similar
manner, E2 is the error in boundary conditions define
as:

E2 =
1
2

(dθ̂
dη

(0)− 0

)2

+

(
θ̂ (1)− 1

)2 . (14)

The fitness value depends on the provision of neurons,
W = [a, w, ζ ], the set of best neurons will tends the
fitness value to zero. Which illustrate the minimum error in
the approximated solution.

V. HYBRID TECHNIQUE FOR OPTIMIZATION PROCEDURE
A hybrid technique is adapted for the minimization of the
fitness function define in equation (12). For this optimization
procedure, two search strategies are used: global and local.
For global performance, the Sine-Cosine algorithm (SCA) is
used. The SCA was presented by Mirjalili [40]. Many further
advancement are reported in literature such as crystal wave
guides [41], for training of multi-layer perceptrons [42], unit
commitment problem [43], and fuzzy probabilistic c-ordered
means [44]. The SCA is inspired by trigonometric ratios
Sine and Cosine. The mathematical strategy of SCA is as
follows:

Y t+1i = Y ti + r1 × sin (r2)×
∣∣r3Pti − Y ti ∣∣ ,

Y t+1i = Y ti + r1 × cos (r2)×
∣∣∣r3Ptl − Y tij ∣∣∣ , (15)

where Yi represents the current location of the solution in
the ith dimension at the tth iteration, r1/r2/r3 are random
quantities, Pi refers to the position of the target destination,
and || represents absolute value. With parametric values, the
equation (15) can be written as:

Y t+1l =

{
Y ti + r1 × sin (r2)×

∣∣r3Ptl − Y ti ∣∣ , r4 < 0.5,
Y tl + r1 × cos (r2)×

∣∣r3Ptl − Y tLi ∣∣ , r4 ≥ 0.5.

(16)

here r4 is a random choice in the range [0,1]. There are four
parameters in equation (16): r1, r2, r3, and r4. The direction
of movement is indicated by the r1, which could be within
or outside of the feasible region. The r2 parameter depicts
the length from the region, as well as the direction toward or
away from the target. The parameter r3 represents target value
weights, whereas r4 operates equally the Sine and Cosine
components of equation (16).
For the enhancement of local optimum performance of

SCA, it is hybridized with Interior point algorithm (IPA).
The IPA is an efficient technique for solving linear and
non-linear optimization problems. The IPA is much better
than trust regions and Sequential quadratic programming to
solve the iterative problems [45]. The exploitation procedure
of IPA refines the quality of solutions. The SCA is one of
the population-based techniques which generates multiple
solutions. As a starting point for IPA, the best solution is
used. Later on in this work, the technique is abbreviated
as ANN-SCA-IPA. The hybridization procedure is given in
algorithm 1.

VI. PERFORMANCE MATRICES
Performance matrices are used to evaluate the effectiveness
of the ANN—SCA—IPA approach. For relatable solutions
the reliability and consistency of the proposed technique
is necessary. For this purpose the performance measures
Mean-absolute deviation (MAD), root-mean square error
(RMSE), Nash–Sutcliffe efficiency (NSE) and error in
Nash–Sutcliffe efficiency (ENSE). The definition of these
performance matrices are as given:

MAD =
1
n

n∑
i=1

∣∣∣θ (ηi)− θ̂ (ηi)∣∣∣ , (17)

RMSE =

√√√√1
n

n∑
i=1

(
θ (ηi)− θ̂ (ηi)

)2
, (18)

NSE = 1−


∑n

i=1

(
θ (ηi)− θ̂ (ηi)

)2
∑n

i=1

(
θ (ηi)−

1
n

∑n
i=1 (θ (ηi))

)2
 ,
(19)

ENSE = |1− NSE|. (20)

The set of input points in a grid is denoted by n, the
proposed solution is θ̂ (η), and the reference solution is
θ (η). The value of performance metrics MAD, ENSE,
and RMSE should be approach zero for a dependable
and effective system, whereas the NSE value tends to
one.

The mathematical definition of the global version of the
performance matrices stated above is define as:

GMAD =
1
R

R∑
r=1

(
1
n

n∑
i=1

(∣∣∣θ (ηi)− θ̂ (ηi)∣∣∣)) , (21)
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Algorithm 1 Pseudocode of ANN-SCA-IPA Algorithm

Start:Sine-Cosine Algorithm(SCA)
Inputs:
Unknown Variable of ANN W = [a,w, ζ ]
Population size P = [W1,W2, . . . ,Wm]t =

[(a1,w1, ζ1) , (a2,w2, ζ2) , . . . , (am,wm, ζm)]T , for m
number of
W stands for weights in P, and
t denote transpose of vector W Output: Weights, with
minimum objective value, of SCA, i-e., Wb
Begin
→ Initialization
Random generated real valued vector W in a given span
Set of m weights vectors formulate the preliminary
population P .
/ / Termination-Criteria (TC)
Algorithm-TC → if reach one of the given criteria:
Fitness or Objective value → 10−16 .
Fun-Tol (Function Tolerance) → 10−20

Con-Tol (Constrained Tolerance) → 10−20 .
Main-loop of SCA
While
If any one of Termination-Criteria satisfy
do
→ Fitness-calculation
Evaluate fitness function E given in Eq. (12) for the vector of
weights W .
Repetition for m weights W of the population P.
→ Check the achievement of TC
If TC achieved, then exit the loop else repeat.
→ Parameters of SCA
Updating the population and check fitness valuse for each
End
→ Storing-Step
Store: the vector as Wb having minimum fitness value,

function evaluation and time for the current run of the SCA.
End SCA

Start IPA
→ Initialization of IPA
Initializing IPA technique with best weights vector Wb of SCA
as an initial guess vector.
Set the Termination-criteria TC:
Max-Iter (Maximum-iterations), i.e. 1000,
Fun-Tol as 10−24

Con-Tol as 10−24 and
Tolerance in optimization variables(weights), i.e., Tol-X as
10−16,
While
any of TC Value achieved do
→ Next step: Fitness Evaluation
Evaluate E values as in Eq. (12) for the vector.
→ Test for TC
If TC achieved, then terminate the loop else repeat.
→ Updating step
Set ‘fmincon’ function with method ‘Interior-point algorithm’
Update weight-vector for each step through IPA-optimization
procedure.
Repeat procedure till the achievement of desired fitness
→ Storing-step
Store: the final weight-vector having minimum fitness value,
time,
function evaluation, and generation consumed for the SCA-
IPA method.
End IPA
Evaluation:Execute themechanism of SCA-IPA for 100 inde-
pendent runs
to generate sufficient set of data for effective and reliable
performance evaluation of ANN-SCA-IPA.

GRMSE =
1
R

R∑
r=1

√√√√1
n

n∑
i=1

(
θ (ηi)− θ̂ (ηi)

)2 ,
(22)

GENSE =
1
R

R∑
r=1


∑n

i=1

(
θ (ηi)− θ̂ (ηi)

)2
∑n

i=1

(
θ (ηi)−

1
n

∑n
i=1 (θ (ηi))

)
 ,
(23)

GFIT =
1
R

R∑
r=1

Er , (24)

where, R denotes the number of multiple independent runs,
and Er denotes the fitness value of the ANN—SCA—IPA
at rth number run. All global operators have a standard
or optimum value of zero. The global version is based on
the mean fitness value. Global operators are abbreviated as:

GFIT for fitness, GMAD for MAD, GRMSE for RMSE and,
GENSE for ENSE.

VII. EMPIRICAL RESULTS AND DISCUSSION
This section discusses the outcome of dynamics of heat
transfer, given in equation (5). The heat transfer problem’s
dynamics are described on variation of thermal conductivity,
thermal convection, and radiation with different temperature
distributions. The dynamics are quantitatively executed by
ANN-SCA-IPA algorithm. Moreover, the discussion is split
into four examples.

A. EXAMPLE 1: CONDUCTIVE HEAT TRANSFER
In this example, the heat transfer is considered only through
conduction, ε1. There is no heat transfer by convection
(ν = 0) and radiation (ε2 = 0). The example has
three cases, in Case I is consider as ε1 = 0.1, for
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FIGURE 3. Blocks chart of ANN-SCA-IPA.

case II ε1 = 0.6 and for case III ε1 = 0.9. The in
put point is taken in [0, 1], so for N input points the
fitness function given in equations (12)-(14) can updated
as:

EcI =
1
N

N∑
m=1

(
d
dη

[(
1+ 0.1θ̂m

) dθ̂m
dη

]
− ν2θ̂m − ε2θ̂

4
m

)2

+
1
2

((
θ̂ (0)− 1

)2
+

(
θ̂ (1)

)2)
, (25)

EcII =
1
N

N∑
m=1

(
d
dη

[(
1+ 0.6θ̂m

) dθ̂m
dη

]
− ν2θ̂m − ε2θ̂

4
m

)2

+
1
2

((
θ̂ (0)− 1

)2
+

(
θ̂ (1)

)2)
, (26)
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FIGURE 4. (a) Example 1: Shows graph of conductive heat transfer, (b-d) is 3D bar graph of weights obtain by ANN-SCA-IPA algorithm.

EcIII =
1
N

N∑
m=1

(
d
dη

[(
1+ 0.9θ̂m

) dθ̂m
dη

]
− v2θ̂m − ε2θ̂4m

)2

+
1
2

((
θ̂ (0)− 1

)2
+

(
θ̂ (1)

)2)
, , (27)

as the minimization is done by ANN-SCA-IPA algorithm
for the solution of this example with minimum errors. The
best unknown variable called weights of ANN is plugged in
equation (9) to get the solution. For the set of appropriate

weights, 30 neurons are considered. The solution for each
case is given as:

θ̂cI (η) =
2.6026264251

1+ e−(0.0170122659η−0.7547085701)
+ . . .

+
−3.6918806682

1+ e−(−0.7415670806η+10.0049716432)
, (28)

θ̂cII (η) =
−0.35794133146

1+ e−(0.26391440801η+9.99975372453)
+ . . .
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TABLE 1. Appropriate weights for Example I.

FIGURE 5. (a) Example 2: Shows graph of heat transfer at same rate, (b-d) is 3D bar graph of weights obtain by
ANN-SCA-IPA algorithm.

+
−11.51405261762

1+ e−(0.88487561813η−2.85894631992)
, (29)

θ̂cIII (η) =
−3.16003042125

1+ e−(0.73176367092η+0.04576363131)
+ . . .

+
−5.35867094640

1+ e−(11.30948829748η−19.2041889362)
, (30)

the full form of equations (28)–(30) is given in the Appendix
for up to 14-decimal places. The approximated solutions

are graphically compared with the solution of Runge–Kutta
order 4 (RK4) shown in Figure 4a. The solution is plotted
with step size 0.1 in the interval [0, 1]. The weights are also
drawn with 3D bar graphs in figure 4(b–c). The weights are
also reported in table 1. The dots (·) show the results of
RK4, and the solid lines represent approximated solutions.
The overlapping of these solutions shows the convergence of
ANN-SCA-IPA algorithm.
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TABLE 2. Appropriate weights for Example II.

FIGURE 6. (a) Example 3: Shows graph of convective heat transfer, (b-d) is 3D bar graph of weights obtain by ANN-SCA-IPA algorithm.

TABLE 3. Appropriate weights for Example 3.

B. EXAMPLE 2: HEAT TRANSFER WITH CONSTANT RATE
In this example, the heat transfer is consider through
conduction (ε1), convection (ν) and radiation (ε2) with a same

rate. The rate of heat transfer is discussed in three cases.
In Case I, the rate is considered 0.3, in case II 0.6, and case III
0.9. The input points are taken in [0, 1], so for N input points
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FIGURE 7. (a) Example 4: Shows graph of radiative heat transfer, (b-d) is 3D bar graph of weights obtain by
ANN-SCA-IPA algorithm.

TABLE 4. Appropriate weights for Example 4.

the fitness function given in equations (12)-(14) can updated
as:

Ec1 =
1
N

N∑
m=1

(
d
dη

[(
1+0.3θ̂m

) dθ̂m
dη

]
−0.32θ̂m − 0.3θ̂4m

)2

+
1
2

(dθ̂
dη

(0)

)2

+

(
θ̂ (1)− 1

)2 , (31)

Ec2 =
1
N

N∑
m=1

(
d
dη

[(
1+ ε1θ̂m

) dθ̂m
dη

]
− v2θ̂m − ε2θ̂4m

)2

+
1
2

(dθ̂
dη

(0)

)2

+

(
θ̂ (1)− 1

)2 , , (32)

Ec3 =
1
N

N∑
m=1

(
d
dη

[(
1+ ε1θ̂m

) dθ̂m
dη

]
− v2θ̂m − ε2θ̂4m

)2
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FIGURE 8. (a–d) show data of performance operator MAD, the data of 100 independent runs is sorted in descending
order, having a log along the y-axis.

+
1
2

(dθ̂
dη

(0)

)2

+

(
θ̂ (1)− 1

)2 , (33)

as the minimization is done by ANN-SCA-IPA algorithm for
the solution of this example with minimum errors. The best
unknown variable called weights of ANN found is plugged
in equation (9) to get the solution. For the set of appropriate
weights, 30 neurons are considered. The solution for each
case is given as:

θ̂cI (η) =
−0.72209177714

1+ e−(1.08534561843η+7.16771353183)
+ . . .

+
−4.95239845098

1+ e−(3.07259650250η−9.28938641662)
, (34)

θ̂cII (η) =
0.77562319275

1+ e−(0.80312814366η−0.11481120910)
+ . . .

+
−4.95239845098

1+ e−(3.07259650250η−9.28938641662)
, (35)

θ̂cIII (η) =
−3.1116631135

1+ e−(−0.5586205746η−3.0008026071)
+ . . .

+
−0.0615713640

1+ e−(−0.2883923902η−5.0978408944)
, (36)

the full form of Equations (34)–(36) is given in the Appendix
for up to 14-decimal places. The approximated solutions
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FIGURE 9. (a–d) show data of performance operator RMSE, the data of 100 independent runs is sorted in descending
order, having a log along the y-axis.

are graphically compared with the solution of Runge–Kutta
order 4 (RK4) shown in Figure 5a. The solution is plotted
with step size 0.1 in the interval [0, 1]. The weights are also
drawn with 3D bar graphs in figure 5(b–c). The weights are
also reported in table 2. The dots (·) show the results of
RK4, and the solid lines represent approximated solutions.
The overlapping of these solutions shows the convergence of
ANN-SCA-IPA algorithm.

C. EXAMPLE 3: CONVECTIVE HEAT TRANSFER
In this example, the heat transfer is consider through
convection, ν, only. There is no heat transfer by conduction

(ε1 = 0) and radiation (ε2 = 0). The example has three
cases, in Case I convection consider as ν = 0.3, for case II
ν = 0.6 and for case III ν = 0.9. The in put point is taken
in [0, 1], so for N input points the fitness function given in
equations (12)-(14) can updated as:

c1 =
1
N

N∑
m=1

(
d
dη

[(
1+ ε1θ̂m

) dθ̂m
dη

]
− 0.32θ̂m − ε2θ̂4m

)2

+
1
2

(dθ̂
dη

(0)

)2

+

(
θ̂ (1)− 1

)2 , (37)
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FIGURE 10. (a–d) show data of performance operator ENSE, the data of 100 independent runs is sorted in descending
order, having a log along the y-axis.

Ec2 =
1
N

N∑
m=1

(
d
dη

[(
1+ ε1θ̂m

) dθ̂m
dη

]
− 0.32θ̂m − ε2θ̂4m

)2

+
1
2

(dθ̂
dη

(0)

)2

+

(
θ̂ (1)− 1

)2 , (38)

Ec3 =
1
N

N∑
m=1

(
d
dη

[(
1+ ε1θ̂m

) dθ̂m
dη

]
− 0.92θ̂m − ε2θ̂4m

)2

+
1
2

(dθ̂
dη

(0)

)2

+

(
θ̂ (1)− 1

)2 , (39)

as the minimization is done by ANN-SCA-IPA algorithm for
the solution of this example with minimum errors. The best
unknown variable called weights of ANN found is plugged
in equation (9) to get the solution. For the set of appropriate
weights, 30 neurons are considered. The solution for each
case is given as:

θ̂cI (η) =
−0.72209177714

1+ e−(1.08534561843η+7.16771353183)
+ . . .

+
−4.95239845098

1+ e−(3.07259650250η−9.28938641662)
, (40)
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FIGURE 11. (a–d) show data of fitness, the data of 100 independent runs is sorted in descending order, having a log
along the y-axis.

θ̂cII =
−0.078268222639117

1+ e−(2.610437044720450η+10.004957232882700)
+ . . .

+
−0.151288804822108

1+ e−(−0.251753983022694η−9.291174521828190)
,

(41)

θ̂cIII =
−1.011859279395540

1+ e−(−0.556578989183962η−8.243678366300250)
+ . . .

+
0.754189716078391

1+ e−(0.462451913859229η+8.017052181073470)
,

(42)

the full form of Equations (40)–(42) is given in the Appendix
for up to 14-decimal places. The approximated solutions
are graphically compared with the solution of Runge–Kutta
order 4 (RK4) shown in Figure 6a. The solution is plotted
with step size 0.1 in the interval [0, 1]. The weights are also
drawn with 3D bar graphs in figure 6(b–c). The weights are
also reported in table 3. The dots (·) show the results of
RK4, and the solid lines represent approximated solutions.
The overlapping of these solutions shows the convergence of
ANN-SCA-IPA algorithm.
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FIGURE 12. (a–d) shows minimum value of MAD, RMSE, ENSE and fitness with the help of bar graph.

TABLE 5. Quantitative evaluation by global performance operators.

D. EXAMPLE 4: RADIATIVE HEAT TRANSFER
In this example, the heat transfer is consider through
radiation, ε2, only. There is no heat transfer by convection
(ν = 0) and conduction (ε1 = 0). The example has three
cases, in Case I radiation consider as ε2 = 0.3, for case II
ε2 = 0.6 and for case III ε2 = 0.9. The input point is taken

in [0, 1], so for N input points the fitness function given in
equations (12)-(14) can updated as:

Ec1 =
1
N

N∑
m=1

(
d
dη

[(
1+ o.3θ̂m

) dθ̂m
dη

]
− ν2θ̂m − ε2θ̂

4
m

)2
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FIGURE 13. (b–e) shows fitness evaluation of all the examples with the help of Boxplots.

+
1
2

(dθ̂
dη

(0)

)2

+

(
θ̂ (1)− 1

)2 , (43)

Ec2 =
1
N

N∑
m=1

(
d
dη

[(
1+ 0.6θ̂m

) dθ̂m
dη

]
− ν2θ̂m − ε2θ̂

4
m

)2

+ ,
1
2

(dθ̂
dη

(0)

)2

+

(
θ̂ (1)− 1

)2 , (44)

Ec3 =
1
N

N∑
m=1

(
d
dη

[(
1+ 0.9θ̂m

) dθ̂m
dη

]
− ν2θ̂m − ε2θ̂

4
m

)2

+
1
2

(dθ̂
dη

(0)

)2

+

(
θ̂ (1)− 1

)2 , (45)

as the minimization is done by ANN-SCA-IPA algorithm for
the solution of this example with minimum errors. The best
unknown variable called weights of ANN found is plugged
in equation (9) to get the solution. For the set of appropriate
weights, 30 neurons are considered. The solution for each
case is given as:

θ̂cI =
0.740626025894499

1+ e−(1.881160691354930η+10.000963464832500)
+ . . .

+
2.672372291277010

1+ e−(−0.126257598731503η−8.083346766188970)
,

(46)

θ̂cII =
−0.413050771467862

1+ e−(−0.097399610214508η+1.576311218280620)
+ . . .

+
7.768326648634920

1+ e−(3.932241622308430η−10.558713541440500)
,

(47)

θ̂cIII =
0.515927409162672

1+ e−(0.591516053509152η−0.343623553964357)
+ . . .

+
4.627043351605150

1+ e−(4.892305232807030η−10.799738153365600)
,

(48)

the full form of Equations (46)–(48) is given in the Appendix
for up to 14-decimal places. The approximated solutions
are graphically compared with the solution of Runge–Kutta
order 4 (RK4) shown in Figure 7a. The solution is plotted
with step size 0.1 in interval [0, 1]. The weights are also
drawn with 3D bar graphs in figure 7(b–c). The weights are
also reported in table 4. The dots (·) show the results of
RK4, and the solid lines represent approximated solutions.
The overlapping of these solutions shows the convergence of
ANN-SCA-IPA algorithm.
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VIII. EVALUATION OF ANN-SCA-IPA ALGORITHM
To verify the consistency, reliability, and convergence of
the proposed ANN–SCA–IPA algorithm. The statistical
operators are utilized as defined and discussed in section VI.
The values of the statistic operators MAD, RMSE, and
ENSE is drawn with a line graph having semi–log on y-axis.
Additionally, in a similar manner, the fitness of each case is
also drawn. The algorithm is executed 100 times to collect
large data set because few runs cannot verify the capability
of a technique. The data is arranged in descending order to
observe the small variation as well in the data. Figure 8 shows
data for MAD of each example. From figure 8a it can observe
that the values of MAD in example 1 are varies between
10−5−10−8, figure 8b showsMAD data for example 2 which
lies between 10−1 − 10−4, figure 8c shows data of example
3 which lies in between 10−2 − 10−5 and similarly from
figure 8d data of example 4 can be observed.
In figure 9, the RMSE data of all the four examples are

drawn. It can observe that the values in the data lie in 10−2−
10−8 for all examples. Similarly, in figure 10 data of ENSE
is drawn. The figures show that out of 100 runs only on few
runs, the performance of ANN-SCA-IPA algorithm is worst,
which shows the reliability and consistency of the proposed
technique.

Moreover, in figure 11, if the fitness data is observed it
can seem that all runs have much better and considerable
fitness, which concludes that according to fitness function,
equation (12), the solutions have minimum errors. The fitness
values lie between 10−4 − 10−12 for all examples.

For further evaluation, the minimum values of statistical
operators MAD, RMSE, ENSE and Fitness are drawn by
bar graph. It can clearly show the minimum values of the
mentioned operators. In figure 12a,b example 1 and example
2 are drawn with horizontal bars while in figure 12c,d
example 3 and 4 are drawn with vertical graphs, respectively.
Each operator is drawn with a separate bar. For quartile
evaluation of fitness, the fitness data is drawn with Boxplots.
The explanation of Boxplot is given in sub-figure 13a, sub-
figure 13b, sub-figure 13c and sub-figure 13d shows fitness
interquartile range of fitness for example 1, 2, 3 and 4,
respectively.

Additionally, the ANN-SCA-IPA algorithm is also
assessed by global versions of performance operators as
defined in sectionVI. The assessment data of global operators
GMAD, GRMSE, GENSE, and GFIT is reported in table 5.
The values of global operators depend on the average value
of their respective operators. The table shows that the global
performance operates validate the solutions of the proposed
technique.

IX. CONCLUSION
In this work, the heat transfer problem is considered. Heat
transfer dynamics is executed by variations of different
ways of heat transfer such as conduction, convection, and
radiation and loss of heat with the same rate of conduction,
convection, and radiation. The transfer of heat is assumed in

longitudinal Fin. The temperature at the bottom is assumed
constant while on the tip of the fin, the heat transfer is
negligible. Moreover on the surface of fin heat flows through
convection and radiation. For quantitative analysis of heat
transfer, a novel hybrid technique is proposed. The technique
is a hybridization of population-based approach Sine-Cosine
algorithm and local search technique Interior Point algorithm
with the utilization of artificial neural network, namely
ANN-SCA-IPA algorithm. The SCA generates multiple
solutions according to its population size and assigns it to IPA
as the initial point.

Furthermore, to validate reliability, consistency, and
robustness of the ANN–SCA–IPA algorithm, a large data set
is collected and is evaluated by performance operators. The
data is drawn with a line graph having semi-log at y-axis. For
convergence, the solutions of ANN–SCA–IPA algorithm is
compared graphically with the numerical solutions of RK4.
And the collected data is plotted by convergence graphs such
as boxplot and bar-graphs. The proposed technique can solve
more complex physical, chemical and biological problems.

X. ABBREVIATIONS
The following abbreviations are used in this manuscript:
HTM Heat transfer model
MAD Mean square error
RMSE Root mean square error
ENSE Error in Nash–Sutcliffe efficiency
ANN Artificial neural network
SCA Sine-Cosine Algorithm
IPA Interior point algorithm
RK4 Runge-Kutta order four

APPENDIX A
Solution for Example 1 of HTM is as follows:(In subscripts
cI , cI I , and cI II represent case I, II, and III, respectively)

θ̂cI (η) =
2.602626425199950

1+ e−(0.017012265990431η−0.754708570112332)

+
1.410326813508950

1+ e−(−0.106063731378422η−4.508911917589510)

+
9.991301864537020

1+ e−(−0.488942546889799η+1.193186518993810)

+
−6.401536261568260

1+ e−(0.373978998229374η+2.263369191898170)

+
−0.199172829074871

1+ e−(−0.535537746258558η+0.139462002950955)

+
1.398017949953400

1+ e−(−1.741125501404640η+7.045511245877330)

+
1.708310396440250

1+ e−(0.156820720913337η−10.000149875877400)

+
1.235687488216280

1+ e−(0.785900783916801η−1.083496764304090)

+
1.310664872117550

1+ e−(−0.352371709696856η−0.920640239999641)

+
−3.691880668283030

1+ e−(−0.741567080633551η+10.004971643282500)
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θ̂cII (η) =
−0.3579413314694420

1+ e−(0.2639144080139470η+9.9997537245370100)

+
−2.7240659334800700

1+ e−(−1.3037652032037300η−9.7046214046877400)

+
2.8583357161423800

1+ e−(−2.1244415564050700η+5.2964120173751900)

+
−0.1993785187736860

1+ e−(0.0043777354204988η−1.7967742455013300)

+
0.7146302195143110

1+ e−(1.8544579914479400η−2.9072841683593700)

+
−6.6432457934861000

1+ e−(6.7573317302018400η−14.3186978117044000)

+
0.6590720447013260

1+ e−(−2.2438845774674100η+7.9314329026897000)

+
−4.2749481585722800

1+ e−(0.1020417018459410η−9.9994988713727500)

+
−2.0823888848632600

1+ e−(0.7986615354064490η+1.0162777683356300)

+
−11.5140526176243000

1+ e−(0.8848756181363330η−2.8589463199225000)

θ̂cIII (η) =
−3.1600304212568400

1+ e−(0.7317636709211440η+0.0457636313129858)

+
−2.8294682173501800

1+ e−(−2.3302179258066300η−10.5056405123313000)

+
1.1288689813357000

1+ e−(−0.4304904622573220η+10.0011789496488000)

+
−5.6967436258632900

1+ e−(3.8593467737275000η−7.8828201882946100)

+
1.4577562571114400

1+ e−(−1.7431117896316800η+2.5376771583630400)

+
0.2530985993803010

1+ e−(1.8229107164804600η+10.1588267925447000)

+
1.4418951483637800

1+ e−(−6.1976860796540400η−9.6184580240629800)

+
−0.1373597559947500

1+ e−(−6.5847744302265500η−13.4288087499202000)

+
−1.7441311295403400

1+ e−(0.0386853158224262η−2.6548109627102400)

+
−5.3586709464080500

1+ e−(11.3094882974833000η−19.2041889362696000)

Example 2 all cases

θ̂cI (η) =
−0.7220917771440140

1+ e−(1.0853456184342900η+7.1677135318354300)

+
0.0428079586607537

1+ e−(1.2606251848621300η+7.8684063184998200)

+
1.2396157107296600

1+ e−(0.3478667807996960η+10.0277113008724000)

+
−0.0017979640233192

1+ e−(3.8481847720312000η+0.9612988718656800)

+
2.1593741656159800

1+ e−(0.8679470621837150η−2.2537623419261700)

+
−2.1966860566177300

1+ e−(0.7790779418163660η−5.8623613935545400)

+
0.5121820763039080

1+ e−(−3.4557457481639300η−6.7471823689493900)

+
9.5394970783588000

1+ e−(2.6063399122940900η−8.2957141137283600)

+
6.3198410817587800

1+ e−(0.9783752717760270η−10.4341936974731000)

+
−4.9523984509801100

1+ e−(3.0725965025060200η−9.2893864166213300)

θ̂cII (η) =
0.7756231927533090

1+ e−(0.8031281436684710η−0.1148112091070760)

+
−0.6206709375419610

1+ e−(0.1190259422918990η−0.2013593416227720)

+
−1.4118583811919000

1+ e−(−0.8494127357314550η+2.4980489328084000)

+
3.9680743492330000

1+ e−(3.2481624188195000η−9.2236145308858400)

+
−1.6164897025228400

1+ e−(0.0561425141102149η−0.5750453345101440)

+
−0.1924529783872820

1+ e−(−0.4813062917533250η+7.4778577559415400)

+
−2.1162988765120100

1+ e−(−0.2694777164412590η+0.1631069103709620)

+
5.0500252713098200

1+ e−(2.6063399122940900η−8.2957141137283600)

+
6.3198410817587800

1+ e−(0.9783752717760270η−10.4341936974731000)

+
−4.9523984509801100

1+ e−(3.0725965025060200η−9.2893864166213300)

θ̂cIII (η) =
−3.111663113555700

1+ e−(−0.558620574697884η−3.000802607145150)

+
0.303057980143337

1+ e−(−1.356472894010720η+1.336212933214470)

+
−1.137469061715660

1+ e−(1.040923185541890η−8.316549305769940)

+
7.111697118010730

1+ e−(4.121806835523890η−10.782349700965400)

+
−8.545447100250290

1+ e−(−0.197123055241083η−10.234710224360200)

+
1.469070302679980

1+ e−(2.140619299304930η−4.579447334610990)

+
−1.193946580086190

1+ e−(−0.004157775408407η−3.182229399530200)

+
−4.641431878588000

1+ e−(−0.035017099297094η−6.329849638763660)

+
2.062616055371330

1+ e−(1.058041159402040η−1.381869547871840)

+
−0.061571364069443

1+ e−(−0.288392390204304η−5.097840894490520)

Example 3 all cases

θ̂cI =
−0.953645918137492

1+ e−(−0.248134998131578η+0.134914168705997)

+
−8.129060014944370

1+ e−(0.053657407976731η−4.715172763269860)
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+
−0.178446851181089

1+ e−(3.682855432683080η+7.513742006348150)

+
6.739569607024550

1+ e−(1.270995581582090η−4.170503380488740)

+
−0.006244031217162

1+ e−(0.054968064279487η+10.000000010412700)

+
0.875654213097466

1+ e−(−0.676129206808785η−0.387805562563759)

+
3.734510096548330

1+ e−(0.845766411548374η−2.967241582558870)

+
0.003204956616999

1+ e−(−0.634477217539597η+9.999931104997040)

+
1.812954569411820

1+ e−(0.461490536611498η−0.882652198134721)

+
5.721740039401010

1+ e−(2.349323748129270η−8.427192539483040)

θ̂cII =
−0.078268222639117

1+ e−(2.610437044720450η+10.004957232882700)

+
0.523288269674844

1+ e−(−1.615401365157810η+4.030350474313750)

+
19.691374656079000

1+ e−(2.307568242111670η−6.635522252039310)

+
6.072945319614970

1+ e−(0.310233954043648η+−10.048500643552800)

+
5.870871618800980

1+ e−(1.429421557095450η−3.281179911621350)

+
−2.701499778209620

1+ e−(0.001065614477865η+1.036031829189730)

+
1.548295501590430

1+ e−(−0.424539599556127η+5.549635270318570)

+
−6.412924448018040

1+ e−(−1.047395732800670η−12.549803212551200)

+
−1.444200746406220

1+ e−(−4.086520352460890η+−12.616677690485800)

+
−0.151288804822108

1+ e−(−0.251753983022694η−9.291174521828190)

θ̂cIII =
−1.011859279395540

1+ e−(−0.556578989183962η−8.243678366300250)

+
0.423323467680743

1+ e−(1.048188889545280η+6.241999464506500)

+
−1.258047052306320

1+ e−(−0.019961373402526η+0.618080945356904)

+
1.400285362835750

1+ e−(−2.295557297564900η−6.808511820087270)

+
−0.415314351708677

1+ e−(0.273505339622869η+1.980564227868040)

+
82.631319293463600

1+ e−(2.295653767156770η−7.061083612728530)

+
1.538364434376450

1+ e−(1.666621375988020η−3.046423817498670)

+
3.150686854700910

1+ e−(0.602110993817371η−7.483644680916230)

+
7.596076584513290

1+ e−(19.532510902947200η−45.962460205690600)

+
0.754189716078391

1+ e−(0.462451913859229η+8.017052181073470)

Example 4 all cases

θ̂cI =
0.740626025894499

1+ e−(1.881160691354930η+10.000963464832500)

+
1.036630953366560

1+ e−(0.002321294090145η−6.925756555777160)

+
0.638701290277219

1+ e−(−1.101545460200210η−3.822801351081940)

+
0.078728048824448

1+ e−(0.647114899295562η+7.586828795265160)

+
8.449640211933960

1+ e−(1.478212047040960η−5.898974679461190)

+
0.045644823646597

1+ e−(−0.024893046779482η+2.076944762812710)

+
0.979432739565070

1+ e−(3.609790705887980η−9.836883018211550)

+
1.487561926994920

1+ e−(0.656354827622091η−1.551061672119390)

+
−0.674664834728253

1+ e−(0.287872355290101η+0.088422704660012)

+
2.672372291277010

1+ e−(−0.126257598731503η−8.083346766188970)

θ̂cII =
−0.413050771467862

1+ e−(−0.097399610214508η+1.576311218280620)

+
−9.061687751983110

1+ e−(−0.104392935792038η−2.332855950695870)

+
−0.194159763128724

1+ e−(0.077040544327816η−0.308316106777158)

+
1.219777816267520

1+ e−(−0.668409668137094η−1.772307678754570)

+
7.954751375615440

1+ e−(1.456382886653830η−5.070008882958910)

+
0.445308977083408

1+ e−(−0.148963381818654η−1.121047930200200)

+
0.530273287315192

1+ e−(1.332651780577180η+9.009647020125680)

+
−0.077146313606151

1+ e−(0.184348009844110η−0.997507201455261)

+
2.950438271607060

1+ e−(0.193513027147217η−0.529558886935442)

+
7.768326648634920

1+ e−(3.932241622308430η−10.558713541440500)

θ̂cIII =
0.515927409162672

1+ e−(0.591516053509152η−0.343623553964357)

+
10.048753219767600

1+ e−(0.633592169104042η−3.739199129558130)

+
0.249734326593041

1+ e−(0.038889874917238η−3.438844807486750)

+
1.260313002261930

1+ e−(2.299734850222970η−4.646496135432730)

+
0.218249905802003

1+ e−(−0.923139237284723η−0.412801360557520)
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+
0.107569611727710

1+ e−(−0.095840428321070η+5.900530196062090)

+
−0.221338262972027

1+ e−(−0.434280971227803η−6.600471154450340)

+
−0.463336882159176

1+ e−(−0.134620663655608η−4.602273477252520)

+
0.006749072245445

1+ e−(0.001354288705585η−3.298067582919490)

+
4.627043351605150

1+ e−(4.892305232807030η−10.799738153365600)
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