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ABSTRACT Classification of brain abnormalities as a pathological cue of epilepsy based on magnetic
resonance (MR) images is essential for diagnosis. There are some types of brain structural abnormalities
as a pathological cue of epilepsy. To identify it, a neurologist can involve some sequence of MR images
at a time. Existing algorithms for abnormalities classification usually involve only one or two sequences
of MR images. In this paper, we proposed ensemble convolutional neural networks with a support vector
machine (SVM) scheme to classify brain abnormalities (epilepsy) vs. non-epilepsy based on the axial multi-
sequence of MR images. The convolutional neural network (CNN) models on the proposed method are
base-learner models with different architectures and have low parameters. The performance improvement
on the proposed method is made by combining the output of the base-learner models and the combination
of predictions from these models. The combination of predictions uses majority voting, weighted majority
voting, and weighted average. Henceforth, the combined output becomes input in the meta-learning process
with SVM for the final classification. The dataset for evaluation is the axial multi-sequences of MR images
that include abnormal brain structures causing epilepsy and non-epilepsy with various subjects’ histories.
The experimental results show the proposed method can obtain an accuracy average and F1-score of 86.37%
and 90.75%, respectively, and an improvement of accuracy of 6.7%-18.19% against the CNN models on
the base-learner and 2.54%-2.65% against the combination of predictions. With these results, the proposed
architecture also provides better performance compared to the two existing CNN architectures.

INDEX TERMS Convolutional neural network, ensemble, epilepsy, magnetic resonance image, support
vector machine.

I. INTRODUCTION
Epilepsy is a chronic disease of the brain characterized
by repeated seizures and is an unconscious movement that
involves part of the body or the whole body [1]. Efforts
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to detect the disease early will help determine the cause of
epilepsy. EEG (electroencephalogram) is generally used to
check whether a patient is having an epileptic seizure, deter-
mine the type of seizure, or even a trigger factor for epilepsy.
However, this diagnosis has not been able to understand the
etiology and has the low spatial resolution to detect the brain
abnormality as the cause of epilepsy [2]. Magnetic resonance
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imaging (MRI) can detect changes in the microstructure
of the source of epilepsy because it has a relatively high
spatial resolution. Therefore, the study in [3] recommended
structural MRI as the standard of investigation in epilepsy
patients. Identification involving several sequences of MR
images will be advantageous in detecting the brain abnor-
malities as a source of epilepsy (e.g., hippocampal sclero-
sis, cortical dysgenesis, brain tumor, cerebral vascular, and
others). The HARNESS-MRI protocol shows the advantage
of each sequence of MR images in identifying the brain’s
structural abnormalities (microstructural changes)[4]. How-
ever, each sequence of MR images provides different benefits
in identifying any structural brain abnormality, as reported
in [5]. Therefore, increasing the performance of the automatic
method in processing MR images will help improve the sen-
sitivity in the epilepsy identification.

Several researchers have previously reported the detection/
classification results of epilepsy based on brain structure
abnormalities (e.g., temporal lobe epilepsy, focal cortical
dysplasia). Most of the researches they do are for the
detection or classification of only one abnormality type,
e.g., detection or classification abnormalities in temporal
lobe epilepsy shown in [2], [6]–[9], focal cortical dyspla-
sia (FCD) is reported in [10]–[12]. The results of studies
in[6] have shown the use of one sequence of MR images
to classify microstructural abnormalities in temporal lobe
epilepsy (TLE) against non-TLE. Visual assessment of two
sequences T1 and T2, has also been used for the diagnosis
of hippocampal sclerosis (HS) in patients with mesial tem-
poral lobe epilepsy (MTLE) [7]. In the case of FCD lesion
detection, studies in [10] and [11] have reported the use of
T1-weighted sequence as input for detection. Meanwhile,
the use of two sequences (T1-MPRAGE and T2-FLAIR) for
FCD detection is also discussed in [12]. These two abnor-
malities constitute themost significant percentage of epilepsy
patients, as reported by Wellmer et al. [13]. A diagnosis
of other types of brain abnormalities also uses a specific
sequence of MR images to get the best results. Therefore,
specific imaging protocols are required to identify a struc-
tural abnormality [13]. The initial diagnosis of whether a
person has structural abnormalities of the brain or not must
involve several sequences of MR images. Involving these
many sequences of MR images in manual diagnosis is a
maximal effort, but it is complicated and time-consuming.
Therefore, the need for automated detection or classification
with reliable methods, in this case, is essential. However,
the automated detection/classification of epilepsy involving
multiple sequences of MR images and types of abnormalities
as simultaneous has not been investigated. Fig. 1. shows most
of the previous studies, only using one or two sequences of
MR images for identification/detection /classification of one
brain structural abnormality type. Consequently, the studies
involving only one or two sequences of MR images and a
type of abnormality have drawbacks such as: not being able
to identify/detect/classify epilepsy caused by other types of
abnormalities at initial diagnosis and can decrease sensitivity.

Based on the weaknesses of the previous studies and
the diagnostic protocol for each type of brain abnormal-
ity in [4], [5], and [13], the initial diagnosis needs many
sequences of MR images to see the various possible abnor-
malities in each of these sequences. Therefore, we propose
the method for the two-class classification of brain struc-
tures (epilepsy, non-epilepsy) by involving several sequences
(multi-sequence) in the training process. Fig. 1 illustrates
the focus of our study using multi-sequence of MR images
with some types of brain abnormalities that cause epilepsy in
training.

FIGURE 1. Most of the previous studies and our research focus on
classifying brain structural abnormalities that cause epilepsy.

The multi-sequence of MR images impacts high data vari-
ability that it greatly affects the classifier’s performance in
identifying/classifying brain structural abnormalities. We use
a convolutional neural network (CNN) as a classification
method that has proven powerful for image data [14] and
a CNN model ensemble technique to improve classifica-
tion performance. The CNN model in this study is built
by considering the low model parameters and the limited
learning data, and maintaining the resulting performance.
These CNN models serve as base-learner models in the
ensemble technique. We use the ensemble technique to
improve classification accuracy and reduce the variability of
the results [15], [16]. The meta-learner stage using machine
learning is beneficial in improving classification perfor-
mance. Support vector machine (SVM) is one machine learn-
ing that has proven reliable in classifying brain abnormalities
that cause epilepsy [2], [6]. Therefore, we propose an ensem-
ble scheme for these CNN models using SVM at the meta-
learner stage based on an axial multi-sequence of MR images
(emsCNN-SVM) to improve classification performance. For
that, we have conducted several experiments to evaluate the
proposed emsCNN-SVM. The main contributions of this
research are as follow:
• We propose axial multi-sequence of MR images
approach to classify brain structural abnormalities caus-
ing epilepsy against non-epilepsy brain structures. Axial
multi-sequence of MR images involved in the learn-
ing process contains some types of brain structural
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abnormalities for epilepsy patients and some types of
brain structures for non-epilepsy patients.

• We build the CNN model based on the multi-sequence
of MR images as a base-learner model by considering
the low parameter model and overfitting on the limited
dataset to classify brain structural abnormalities that
cause epilepsy vs. non-epilepsy brain structures.

• We propose a scheme CNN models ensemble on the
base-learner with SVM on the meta-learner. It involves
the output of the base-learner model and the predictions
combination of these models, thus, it improves the per-
formance and reduces variability in the classification
of brain structural abnormalities that cause epilepsy vs.
non-epilepsy brain structures.

The remainder of this paper is structured as follows:
Section II discusses a survey of relevant previous research
work on the classification of brain structural abnormalities
that cause epilepsy. Section III describes the dataset of the
experiment and the proposed method. The experimental sce-
narios and results are in Section IV. Section V discusses the
experimental results. Finally, Section VI states the conclu-
sions and suggestions for future research.

II. RELATED WORK
In this study, we classify brain structural abnormalities as
cues that cause epilepsy vs. non-epilepsy subjects based on
an axial sequence of MR images. Therefore, this section
explores the relevant current research work in the literature
from two prospective studies: first, the classification of brain
structural abnormalities using machine learning, and second,
the classification using CNN.

Classification of brain structural abnormalities that cause
epilepsy using machine learning is reported in [6], [10]–[12],
and [17]. Del Gaizo et al. [6] used diffusion MRI sequence
to classify temporal lobe epilepsy (TLE) vs. non-TLE. They
determined scalar diffusion from diffusion kurtosis imaging
(DKI). Then, they used the weighted average of support
vector machines models to classify TLE vs. non-TLE based
on the scalar diffusion input. Their method yielded an accu-
racy of 68% (fractional anisotropy), 51% (mean diffusiv-
ity), dan 82% (mean kurtosis). The use of SVM was also
reported by Wang et al. [17] to detect mesial temporal scle-
rosis (MTS) based on T1-weighted sequence. The detection
begins with the segmentation of tissue (grey matter, white
matter, and cerebrospinal fluid (CSF)), and hippocampus,
followed by feature extraction of volume, shape, and ratio
of CSF. The experimental results showed that their pro-
posed technique provides promising performance for MTS.
Studies on the detection of abnormalities in TLE are also
reported in [7]–[9], only not using machine learning in its
detection. Another abnormality classification, FCD, was per-
formed by Qu et al. [10] using a multiple classifier fusion
and optimization (MCFO) feature-based voxel-based mor-
phometry (VBM) on T1-weighted MRI sequence. Their
proposed MCFO involved several classifiers and minimized

false positives using F-scores. The testing results with this
method showed a decrease in false positives. The same
study was conducted by Jin et al. [11] using T1-weighted
sequence produced by three different magnetic resonance
imaging scanners. They determined the morphological and
intensity features as inputs for the non-linear neural network
classifier. Their experiments at a threshold of 0.9 obtained an
optimal sensitivity of 73.7% and a specificity of 90% in FCD
detection. Mo et al. [12] also performed FCD lesion detec-
tion by combining quantitative multimodal surface features
with an artificial neural network (ANN) to assess its clinical
value. The testing results showed that the method’s accuracy,
sensitivity, and specificity were 70.5%, 70%, and 69.9%,
respectively, which outperformed the unimodal classifier.

For the classification of brain structural abnormali-
ties (epilepsy) by applying deep learning, some of them
are reported in [2], [18], and [19]. Huang et al. [2] iden-
tified epilepsy using the DKI image. They segmented the
hippocampus and used transfer learning VGG16 to get DKI
image features. This feature was an input support vector
machine (SVM) to classify epilepsy (hippocampus) vs. nor-
mal control. Their proposed method obtained the best clas-
sification accuracy of 90.8%. Torres-Velazquez et al. [18]
used multimodal MRI to classify TLE. They introduced the
Multi-Channel Deep Neural Network (mDNN) for TLE clas-
sification. Their experiments showed the potential of the
mDNN approach to combine multiple data sets for TLE
classification. Another abnormality classification (juvenile
myoclonic epilepsy/JME) was conducted by Si et al. [19]
using CNN-based transfer learning. They used diffusionMRI
sequence to detect subtle changes in white matter. Using
three CNN models, the experimental results showed that
inception_resnet_v2 based transfer learning is better than
Inception_v3 and Inception_v4 in classifying JME, with a
classification accuracy of 75.2%.

It is considering the results of previous studies that com-
bined extractingMR images features and machine learning to
classify brain structural abnormalities as epilepsy cues. Most
of these studies proposed the method to obtainMR image fea-
tures that represent or combine some features [10]–[12], [17].
The researchers usually focused on one or two sequences
of MR images to get these features. Besides, they typically
used one classifier [6], [11], [12] or several classifiers [10]
to get the best performance in the classification. These
efforts are reasonable, but the best classification performance
is not necessarily obtained by using the features that are
considered representative. This approach can be ineffective
and time-consuming, especially in studies involving multiple
sequences of MR images and some types of abnormalities.
Therefore, a reliable classifier is needed to solve this problem,
such as the CNN classifier [2], [19]. A study in [2] showed
that CNN is a robust classifier with a convolution process
that will optimally perform feature extraction based on the
classification results’ loss function. The main problem we
often encounter is that the dataset of MR images for epilepsy
cases is relatively limited, consequently many researchers
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rarely use CNN because it will have an overfitting effect.
Several techniques can be used to solve an overfitting, such
as augmenting data [20], [21], architectural design with low
parameters [16], and validation techniques in learning.

In a previous study in [22], we have reported the CNN
model with low parameters for epilepsy classification based
on EEG signals. To overcome the limitations of the dataset
in training, we divided the EEG signal into many segments
(multi-segment) and converted it into a spectrogram image.
This study used a CNN model and decided on the final clas-
sification results using majority voting based on the model
predictions in each segment. Although the method in this
study yielded good performance, it did not necessarily obtain
good performance for the epilepsy classification based on
MR images. These results occurred because the signal pattern
was different from MR images.

In this study, we included multi-sequence of MR images
for the brain abnormalities classification (epilepsy) against
non-epilepsy to increase the performance (accuracy, sensitiv-
ity) and to overcome the limitations of the dataset. Involving
multi-sequence of MR images on CNN will have high vari-
ability in results [23] so that the ensemble technique of some
CNNmodels is a solution to improve accuracy and can reduce
variability [15], [16]. Therefore, in this study, we propose
ensemble CNN that differs from the existing methods in
some aspects: (i) involving multi-sequence MR images and
some types of brain abnormalities causing epilepsy, (ii) using
some CNNmodels with low parameters as base-learner mod-
els, (iii) involving the output of the base-learner models and
combinations of predictions as input to the meta-learner.

III. MATERIALS AND METHODS
A. DATASET ACQUISITION
We investigated several T1 and T2 sequences of 37 epilepsy
patients. The patients consisted of 17 males and 20 females,
including 48.6% with an additional history of epilepsy and
seizures and 51.4% with an additional history of stroke,
tumor, traumatic, temporal lobe, left focal epilepsy, syn-
cope, cerebral edema, syncope, and hemianopia. Dataset
sequences of MR images were obtained from Universitas
Airlangga Hospital (Rumah Sakit Universitas Airlangga-
RSUA), Surabaya, Indonesia, using a 1.5 T MRI scanner
from 2018 to 2020. We have obtained the ethical clearance to
use this retrospective dataset for research from the hospital’s
ethics committee. For the non-epilepsy dataset, we used nine
healthy subjects and free of neurological disease, seven tumor
patients, six patients of stroke, and five meningioma patients.

In this study, MRI sequences were acquired from each
subject for the axial plane, including T1, T2-FLAIR, T2-FSE,
DWI, T2-FLAIR PROPELLER, T2 PROPELLER. All MRI
sequences were obtained with 2D acquisition type, slice
thickness 5 mm, matrix 512×512 except for DWI 256×256,
flip angle 90 degrees except for T2-FLAIR PROPELLER and
T2 PROPELLER 160 degrees. While the repetition time in
taking each MRI sequence was different, including T1 with
a repetition time of 500 ms, T2 FLAIR 8800 ms, T2FSE

4212 ms, DWI, T2 FLAIR PROPELLER 8000 ms, and
T2-PROPELLER 4780 ms.

From each sequence and a slice of epilepsy and non-
epilepsy subjects, it was then converted into an MR image.
Each image (frame) was selected and collected in an image
dataset for experimental purposes. The total MR images
used for the experiment were 4231, including 2515 epilepsy
MR images and 1716 non-epilepsy MR images, as shown
in Table 1.

TABLE 1. Sample of subject and frame MRI for experiment.

B. DATA PRE-PROCESSING
The input image for the CNN model must be the same size.
Therefore, resizing the image of each slice is an essential
pre-processing step. In this work, we decided to use a fixed
size of 512 × 512 pixels because most of the results in the
acquisition of MRI scanners were 2D type with a size of
512 × 512 except for the DWI sequence 256 × 256. This
effort was to avoid a negative impact on the performance of
the classification model [24]. The DWI image sequence from
256×256 size was changed to a predetermined target of 512×
512 using MicroDicom, as shown in Fig. 2. The following
pre-processing, which is also essential, is the normalization
of each image pixel. The normalization is done to maintain
process stability and convergence in the network. In this
study, we normalized each image by changing each image
pixel value from the range [0,255] to [0,1]. The normalization
valuewas obtained bymultiplying each image pixel by a scale
factor of 1/255.

C. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
A convolutional neural network is a deep learning model
often applied to visual images and is proven to have high
accuracy [14], [25]. There are five CNN architectures pro-
posed in this study, each of which has several layers, namely
input layer, convolutional layer, activation layer, pooling
layer, fully-connected layer, and output layer. We name the
five CNN architectures as msCNN1, msCNN2, msCNN3,
msCNN4 and msCNN5, as shown in Fig. 3. The CNN archi-
tectures are built to classify brain structural abnormalities
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causing epilepsy vs. non-epilepsy brain structures based on
axial multi-sequence of MR images.

In this study, we built the architectures of CNN with dif-
ferent structures for the epilepsy classification. In 2D/3D,
areas of structural abnormalities in the brain have different
sizes between subjects (patients). In addition, the involvement
of some brain abnormalities types in this study also causes
higher variability in the shape and size of brain structural
abnormalities. Therefore, we decided to build some CNN
models with different structures to strengthen the classifica-
tion of brain structural abnormalities that cause epilepsy.

FIGURE 2. Example of converting a 256× 256 image to 512× 512 with
MicroDicom.

1) INPUT LAYER
In this study, the input layer is the layer to enter the normal-
ized sequence of MR images in the pre-processing stage into
the convolution process. The input image size for each pro-
posed CNN architecture is 512 × 512. These sizes are made
equal to most of the original dimensions of each sequence of
MR images to obtain complete feature information.

2) CONVOLUTIONAL LAYER
In this layer, the convolution process will be carried out on the
input image of each MR sequence or input from the previous
layer by shifting a filter. This process produces a feature map
or image sequence pattern from a low to a high level [22].
Therefore, this convolution process will use many feature
maps to obtain the characteristics of an image [26], [27].In
this study, the convolution operation on the five proposed
CNN models can be written as follows:

Zi = f (WiX + bi) , i = 1, . . . , 5 (1)

where Zi is the output of the convolution process of the
msCNN i model, X is the input of the sequence of MR
images, f (.) is the activation function,Wi is the weight of the
convolution process of the msCNNi model, and bi is the bias
of the convolution process of the msCNNi. These weights
will undergo an update process to improve the classification
results in the training process [28]. In this study, the number
of filters used in each model is not the same. The architec-
ture of msCNN1 has five convolution layers, with the number
of filters for each layer being 64, 128, 64, 32, and 16. The
msCNN2 has four convolution layers, with the number of
filters in each layer being 32, 128, 64, and 32. The msCNN3
has five convolution layers, with the number of filters for
each layer being 32, 64, 32, 16, and 8. The msCNN4 has
five convolution layers, with each layer having 8, 16, 32, 16,

and 8 filters. While the msCNN5 also has five layers, with
each layer having 16, 64, 32, 16, and 8 filters. The size of
the filter in each convolution process is 3 × 3 with the same
padding [29].

3) ACTIVATION LAYER
In this layer, an unsaturated activation function is applied
to improve the nonlinearity of the decision function. In this
study, the activation function used is the rectified linear unit
(ReLU) [26], and for each model, it is presented in the fol-
lowing equation:

Ẑi(Zi) =

{
Zi, Zi ≥ 0
0, Zi < 0,

i = 1, . . . , 5 (2)

with Ẑi is the ReLU process outputs of the msCNNi model.

4) POOLING LAYER
The pooling process at the layer aims to reduce the spatial
size of the representation, reduce computations, and prevent
overfitting. In this study, the pooling used is max-pooling
[30], with the filter size of each proposed model being 2× 2.

5) FULLY-CONNECTED LAYER
After the convolutional layer and max-pooling layer is the
fully-connected layer. In this layer, the feedback process is
carried out by refreshing the weights and biases against the
previous layer and reducing the loss of feature information.
The feature matrix of the prior layer process is converted
into a feature vector (flatten) before the classification pro-
cess. In this study, several proposed CNN architectures have
different fully-connected layers. msCNN1 and msCNN2 have
fully connected layers with all feature vectors (flatten) con-
nected to the output layer, and 0.5 (50%) dropout is added.
Meanwhile, for msCNN3, msCNN4 and msCNN5 all have
fully-connected layer 1 with dropout 0.5 process and fully-
connected layer 2, which is fully connected with output layer.
The number of neurons in the hidden layer for the msCNN3
architecture is 32 with the ReLU activation function, while
msCNN4 andmsCNN5 have 64 neurons with the same activa-
tion function. In this study, the addition of a dropout process
for fully-connected layer is proposed to prevent overfitting.

6) OUTPUT (CLASSIFICATION) LAYER
After the fully-connected layer, the results from this layer
forward to the output (classification) layer to display the
classification results, accuracy, and loss function. The loss
function used in each proposedmodel is binary cross-entropy,
while the activation function for classification is softmax. The
softmax function of each proposed model can be written as in
the following equation:

yik
(
Z̃i
)
=

exp
(
Z̃ik
)

∑C
j=1 exp

(
Z̃ij
) , k = 1, . . . ,C; i = 1, . . . , 5

(3)
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FIGURE 3. Proposed CNN architectures with multi-sequence of MR images input: (a) msCNN1 (b) msCNN2 (c) msCNN3 (d) msCNN4 (e) msCNN5.

FIGURE 4. Proposed scheme: the ensemble of CNN models using SVM with the input of the CNN predictions, the softmax output, and the combination of
predictions.
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with yik is softmax outputs for themsCNNimodel in k th class.
Z̃i is the process outputs at the fully-connected layer for the
msCNNi models, and C is the number of classes (labels).
In this study, the number of classes in training and testing
is two (epilepsy, non-epilepsy).

In addition to the CNN architecture proposed in the scope
of the study, we used three CNN architectures presented in
the literature. The three architectures were CNN in [22],
VGG16 [31], and ResNet50 [32], which we used as a compar-
ison against the architectures proposed in this study.We trans-
ferred the architectures and trained these architectures with
the dataset used in the study. CNN in [22] has a simple
architecture and consists of three convolution layers with an
output layer of 2 (epilepsy and non-epilepsy).The VGG16
model has 19 layers arranged sequentially, consisting of 16
convolutional layers and three fully-connected layers. The
input image dimensions of the original VGG16 architecture
are 224 × 224 × 3 with a fully connected output layer
of 1000. While ResNet50 consists of 50 layers with five
stages of the convolution process. The input and output layers
dimensions of the architecture are the same as VGG16. In this
study, we made some modifications to the two architectures.
We made the image input of these architectures the same as
the original architecture. In this context, we classified two
classes (epilepsy and non-epilepsy), therefore, the size of the
output layer was adjusted to two labels in both architectures.
For the ResNet50 architecture, besides being modified in the
output layer, a GlobalAveragePooling layer was also added
before that layer.

D. ENSEMBLE CONVOLUTIONAL NEURAL NETWORKS
In this study, we used ensemble learning on the classification
results of each proposed CNNmodel to improve performance
and reduce the variability of the classification results. One
type of ensemble learning is stacking or stacked generaliza-
tion, which includes two main parts, namely base-learner and
meta-learner [15], [33]. In this study, the models of msCNN1,
msCNN2, msCNN3, msCNN4 and msCNN5 are the base-
learner models. While the support vector machine (SVM) is
the meta-learner model. In our proposed scheme, between the
base-learner andmeta-learner, there is an ensemble process of
base-learner models with a combination of predictions. The
process is carried out by combining the prediction results
of the base-learner model using majority voting, weighted
average, and weighted majority voting [33]. The proposed
scheme involving the combination of predictions is shown
in Fig. 4.

The process of our proposed scheme begins with training
on each base-learner model to get the y1, y2, y3, y4, dan
y5 using (3). For classifying brain abnormalities causing
epilepsy vs. non-epilepsy (binary classification), the output
has two probability values. Meanwhile, to predict the classi-
fication results of each model in the base-learner based on the
largest probability value and mathematically, it can be written

as follows:

gi = argmax
k

(yik) , gi ∈ {0, 1} , i = 1, . . . , 5; k = 1, 2

(4)

with gi is the predicted result of the msCNNi model. In our
proposed scheme, we combine the results of g1, g2, g3, g4,
and g5 with majority voting (MV), weighted majority voting
(WMV), and weighted average (WA).

This study uses majority voting to get predictive results
based on the majority vote. If the msCNN1, msCNN2,
msCNN3, msCNN4 and msCNN5 models are as neurologists
(experts), the final decision will be based on the results of the
majority with a vote exceeding 50%. For example, it is known
that vik is the voting result of the prediction of the ith model,
k th class, then the value of vik = 1 is taken if the evaluation
result of gi is equal to the k th class and vik = 0 if it is not the
same. Furthermore, from the voting, the total vote for each
class is Vk =

∑5
i=1 vik , k = 1, 2, and the ensemble result is

determined based on the largest total voting value, which can
be written as follows:

h = argmax
k

(Vk) , h ∈ {0, 1} , k = 1, 2 (5)

A combination of predictions with a weighted majority
voting is obtained by multiplying each prediction result of
the model with a certain weight. In this study, the weights are
obtained based on validation accuracy’s proportional value
in each base-learner model’s last epoch. If ai is the validation
accuracy of the ith model in the last epoch, then the weight
of the results of each model is βi = ai/

(∑5
i=1 ai

)
. For the

case of binary classification with five models in the base-
learner, if gi = 0 the weights used are δ1i = βi and δ2i = 0
else δ1i = 0 and δ2i = βi. Furthermore, the ensemble with a
weighted majority voting can be written as follows:

h̃ = argmax
k

(∑5

i=1
δki

)
, h̃ ∈ {0, 1} , k = 1, 2 (6)

The combination of predictions with the weighted aver-
age is obtained by averaging the value of the softmax (yik ).
Prediction result is determined based on the largest softmax
average value among the existing classes. Mathematically the
prediction result is written as follows:

ĥ = argmax
k

(∑5

i=1
yik/5

)
, ĥ ∈ {0, 1} , k = 1, 2 (7)

The outputs of the CNN models on the base-learner and
the combination of predictions will be input to the training
process in themeta-learner.We used SVM in themeta-learner
stage for training and final classification. The classifier was
chosen because it required few assumptions for input data and
flexibility in using kernel functions [34], [35]. If it is known
that X̃ is input data on SVM with X̃ = {g, y, h, h̃, ĥ} then
SVM, for binary classification, uses a linearmodel as follows:(

X̃
)
= sign(ωT X̃ + α) (8)
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where ω dan α are parameters. About the use of kernel
functions in the training process, a transformation of X̃ is
carried out with a function ϕ(X̃ ), which is called feature-space
mapping, so that the classification function becomes(

X̃
)
= sign(ωTϕ(X̃ )+ α) (9)

The minimum geometric distance point X̃ from the hyper-
plane in the training sample is indicated by

∣∣∣ωTϕ(X̃ )+ α∣∣∣ /
‖ω‖. Next, wewant all data points to be correctly classified so
that tn

(
ωTϕ

(
X̃n
)
+ α

)
> 0, for all n and t ∈ {−1, 1} is the

target. Accordingly, the distance of point X̃n to the decision
surface is given by tn

(
ωTϕ

(
X̃n
)
+ α

)
/ ‖ω‖. To maximize

the minimum geometric distance, it is equivalent to finding
the following function

argmax
ω,α

{
1
‖ω‖

min
n

(
tn
(
ωTϕ(X̃n)+ α

))}
(10)

The optimization problem requires that we maximize
1/ ‖ω‖ = ‖ω‖−1, which is equivalent to minimizing ‖ω‖2

and mathematically, it can be written as follows:

argmin
ω,α

{
1
2
‖ω‖2

}
subject to : tn

(
ωTϕ(X̃n)+ α

)
≥ 1, n = 1, . . . ,N

(11)

E. CLASSIFICATION RESULT EVALUATION
To evaluate the classification results, we adopted several
measurement indicators, accuracy (AC), precision (PR) sen-
sitivity (SE), and F1-score (F1) [36]. The measurement is
determined based on the parameter values of true positive
(TP), false positive (FP), true negative (TN ), and false nega-
tive (FN ). In this study, TP is the number of times an epilepsy
patient is labeled as epilepsy by the classification results. FP
is the number of times a non-epilepsy data person is labeled
as an epilepsy patient in the same way. TN is the number of
times a non-epielpsy data person is labeled as a non-epilepsy
patient in the same way. On the other hand, FN is the number
of times an epilepsy data patient is labeled as a non-epilepsy
person data in the same way. AC , PR, SE , and F1 values
calculated using these parameters are defined mathematically
in (12)-(15).

AC = (TP+ TN )/(TP+ TN + FP+ FN ) (12)

PR = TP/(TP+ FP) (13)

SE = TP/(TP+ FN ) (14)

F1 = 2(PR)(SE)/(PR+ SE) (15)

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTS
This study’s total subjects were 64 people (37 epilepsy sub-
jects and 27 non-epilepsy subjects). We divided the subjects
into 45 subjects (25 epilepsy and 20 non-epilepsy) for training

Algorithm 1:Meta Learning Phase (emsCNN-SVM)
Input: G (label data), q (the number of

fold), y, g, h, h̃, ĥ(the softmax output
of CNN model in base-learner, the
class prediction of CNN model in
base-learner, the class prediction
by majority voting, the class
prediction by weighted majority
voting, the class prediction by
weighted average), kernel

Output:MMM (trained SVM model)

1 X̃ ← {y, g, h, h̃, ĥ}
2 G← []
3 for j = 1 to q do
4 |

|
|
|
|
|
|
|
|
|

train← load the index file of
training data of jth fold from X̃ ,G

5 X̃train,Gtrain ← Set data and labels as
X̃ [train],G[train]

6 MMMj ← training data the SVM model
using X̃train,Gtrain and kernel

7 end
8 returnMMM

and the remaining (12 epilepsy and seven non-epilepsy) for
testing, as shown in Table 1. We used stratified 5-fold cross-
validation [37] to evaluate each method in the classification
of epilepsy with the number of frames for training, validation
for each fold, and testing, as shown in Table 2. In this study,
the success of the class label ‘‘epilepsy’’ classification ismore
precedence because of the urgency. Therefore, the number of
frames (epilepsy) for training or testing is more than that of
the non-epilepsy. Based on this consideration, the evaluation
of each method was determined using (12)-(15). On the other
hand, the evaluation results of eachmethod are worth compar-
ing, the training process uses the same index file. This study
uses Google Collaboratory to implement all these evaluations
in each experimental scenario.

The main stages of the proposed method in training refer
to the proposed scheme as shown in Fig. 4, while the process
steps at the meta-learner refer to Algorithms 1. Training of
the base-learner model is carried out on each CNN model
with the same input axial multi-sequence of MR images. The
input shape in each scenario for the base-learner model is
512 × 512 × 1, as shown in Table 3. The training process
for the base-learner model refers to the CNN architecture in
Fig. 3. All training in each fold used the Adam optimizer
because it is relatively consistent [38]. The default learning
rate for training in each base-learner model is 0.001, while the
batch size and epoch are 16 and {50, 100, 150}. Algorithm 1
shows the steps of training with SVM at the meta-learner
stage. We used SVM to train the dataset on each fold with
several kernel functions, including linear, RBF, and poly-
nomial (several degrees). Furthermore, we selected the best
results from these experiments. Besides the training using
the proposed model, we also conducted a training using the
existing CNN models, including CNN in [22], VGG16, and
Resnet50. Training with this model was also carried out in
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each scenario with an input shape of 224×224×3, except for
CNN in [22] with an input shape of 512×512×3. In this case,
we used the stochastic gradient descent (SGD) optimizer for
these models in the training process, while the learning rate
used was 0.0001 (VGG16 and Resnet50) and 0.001 (CNN
in [22]). We found that the optimizer and learning rate were
suitable for these models in the pre-testing.

Algorithm 2: Testing Phase (emsCNN-SVM)
Input: Xtest(testing data), q (the number of

fold), m(the number of,CNN model)
β(the weight based on the validation
accuracy in the last epoch), M (the
model parameters of msCNN1,msCNN2,
msCNN3, msCNN4, and msCNN5 as the
result of the training in the base-
learner), MMM (trained SVM model)

Output: (the final prediction)
1 X̃test ← []
2 for i = 1 to m do
3 for j = 1 to q do
4 Mij ← load the saved base-learner model

parameters
5 ypred(ijk) ← the probabilities of each

class (k) and Xtest using Mij
6 gpred(ij) ← argmax (ypred(ijk))
7 εtest(j) ← εtest(j) ∪ gpred(ij)
8 Vtest(jk) ← the total of voting of each

class (k) and Xtest based on εtest(j)
9 hpred(j) ← argmax (Vtest(jk))
10 δtest(ijk) ← the weight of voting of each

class (k) and Xtest based on βij and
gpred(ij)

11 h̃pred(j) ← argmax
(∑m

i=1 δtest(ijk)
)

12 ĥpred(j) ← argmax
((∑m

i=1 ypred(ijk))/m
))

13 end
14 end
15 X̃test ← {ypred , gpred , hpred , h̃pred , ĥpred
16 for j = 1 to q do
17 j ← the prediction of each X̃test usingMMMj
18 end

19 return

In this study, we saved eachMR image in Portable Network
Graphics (PNG) type with a resolution of 512 × 512 pixels.
Images of type PNG have four channels (RGBA). To get
the input shape of 512 × 512 × 3 (the three channels),
we converted RGBA to RGB and RGB to grayscale to get
the input shape of 512× 512× 1 (one channel). Meanwhile,
to get the input shape with different resolution sizes (e.g.
from (512 × 512 × 3) to (224 × 224 × 3)), we used the
nearest interpolation method. We used this method to resize
the resolution and applied it to each MR image and sequence
of MR images for training and testing purposes.

We tested all methods on the test sample with the same
dataset treatment in the testing phase. The test steps are
shown in Algorithm 2. The training parameters for each
fold were then used to classify all frames (images) on the
same test dataset. Classification performance was obtained

TABLE 2. Brief description of the used dataset for experiment.

TABLE 3. The number of model parameters for experiment.

by determining the average value of the classification results
of all folds. The testing was carried out to see the average
performance of the proposed method against other methods.

B. EXPERIMENTAL RESULTS
In this section, we report the experiment’s results using our
proposed method, including its constituent methods. The
experimental results reported are the performance of the
methods at the base-learner stage, the combination of pre-
dictions, and meta-learner. Therefore, all methods have been
tested in each testing scenario, as shown in Table 4-8.

In the first scenario with epoch = 50, the CNN mod-
els on the base-learner yielded the classification accuracy
average of 71.64%-77.43% with the standard deviation
range of 2.1-5.94. The CNN model ensemble on the base-
learner using the predictions combination (MV, WA, and
WMV) obtained the classification accuracy average of
80.38%-80.53% with the standard deviation of 1.88 - 2.10.
The combination of predictions in this scenario obtained
better classification accuracy than all base-learnermodels and
lowered classification accuracy variability. However, testing
with the proposed emsCNN-SVM yielded the classification
accuracy average still better than it was. SVM with kernel
polynomial and degree of 50 on meta-learner provided an
accuracy improvement of the CNNmodels on base-learner by
5.33%-11.11% and 2.23%-2.37% on the combination of pre-
dictions. Generally, the proposed emsCNN-SVM presented
deviation of the classification accuracy of each fold a rela-
tively smaller than others, as shown in Table 4. The proposed
method also yielded an average of sensitivity and F1-score
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better than others even though the classification precision was
lower than the combination of predictions.

In the scenario with epoch = 100, the base-learner model
yielded an accuracy average of 68.18%-79.67% with a stan-
dard deviation of 2.92-7.28. The combination of predic-
tions obtained an accuracy average of 83.72%-83.83% and
a standard deviation of 1.94-2.10. These results showed that
the combining predictions using MV, WA, WMV obtained
better results than base-learner models, but testing with
the proposed emsCNN-SVM yielded the best results. SVM
with the polynomial kernel (degree = 25) on the proposed
emsCNN-SVM provided an accuracy improvement of the
base-learner models by 6.70%-18.19% and 2.54%-2.65%
for the combination of predictions. Based on the stan-
dard deviation value for classification accuracy, the pro-
posed emsCNN-SVM yielded relatively lower variability
than others.

Based on the resulting classification sensitivity value, the
ensemble using our proposed emsCNN-SVM obtained
the best average of classification sensitivity. Meanwhile,
the base-learner model ensemble using the combina-
tion of predictions yielded an average of classification
sensitivity better than the base-learner model. The pro-
posed emsCNN-SVM provided an average improvement
of classification sensitivity of 9.68%-28.45% for base-
learner models and 7.24%-7.41% for all combinations
of predictions. In general, this method also yielded

lower variability in classification sensitivity than the
others.

From the precision value in the epilepsy classification
yielded in this scenario, emsCNN-SVM with the poly-
nomial kernel (degree = 25) obtained a lower precision
than the combination of prediction (MV, WA, and WVM).
MV, WA, and WVM yielded the highest average value for
classification precision with the lowest level of variability.
However, in general, the proposed emsCNN-SVM yielded
better average classification precision than the base-learner
model with lower variability than those models. This method
also obtained the highest F1-score and provided an average
improvement of classification F1-score of 5.35%-16.75% for
the base-learner models and 2.35%-2.45% for the combina-
tion of predictions.

In the experimental scenario with epoch = 150, the pro-
posed emsCNN-SVM in general still presented a better aver-
age performance in the classification than the CNN model
on the base learner and the combination of predictions. Even
though at epoch = 100, the average classification perfor-
mance of the proposed emsCNN-SVM was still better than
epoch= 150, but at epoch= 150, it produced a lower level of
variability than all scenarios. In this scenario, the CNNmodel
on the base-learner provided a better level of variability in
classification accuracy than the CNN model in other scenar-
ios with a standard deviation of 1.63-4.20. The same results
are also shown for sensitivity and F1-score.

TABLE 4. Accuracy for proposed emsCNN-SVM, base-learner models, the combination of predictions with stratified 5-fold cross-validation.

TABLE 5. Precision for proposed emsCNN-SVM, base-learner models, the combination of predictions with stratified 5-fold cross-validation.
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TABLE 6. Sensitivity for proposed emsCNN-SVM, base-learner models, the combination of predictions with stratified 5-fold cross-validation.

TABLE 7. F1-score for proposed emsCNN-SVM, base-learner models, the combination of predictions with stratified 5-fold cross-validation.

FIGURE 5. Classification performance of proposed emsCNN-SVM with kernel ‘polynomial’ and different degrees.

The testing results with CNN in [22], VGG16, and
ResNet50 for each scenario can be seen in Table 8. The results
of testing at epoch= 50, 100, 150 with split evaluation 5-fold
cross-validation showed that VGG16 obtained an average of
accuracy and precision better than ResNet50, but still lower

than CNN in [22]. Whereas our proposed emsCNN-SVM and
emsCNN-SVM∗ yielded an accuracy average better than the
others. At epoch = 50, emsCNN-SVM provided an average
improvement of classification accuracy of 7.67% for CNN
in [22], 10.61% for VGG16, and 14.48% for ResNet50.
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FIGURE 6. Accuracy and F1-score of proposed emsCNN-SVM by including three and five based-learner models with kernel ‘polynomial’ and
degree = 25.

While, at epoch = (100,150), our proposed emsCNN-SVM
presented an accuracy improvement of (12.41%, 8.82%) for
CNN in [22], (12.66%, 10.52%) for VGG16 and (16.97%,
14.66%) for ResNet50. For an average of sensitivity and
F1-score in classification, our proposed emsCNN-SVM also
obtained the best results.

V. DISCUSSION
In this section, we investigated the performance of CNN
models on base-learner, the ensemble of the base-learner
model with a combination of predictions (MV, WA, and
WMV) andmeta-learner. At the meta-learner stage, we inves-
tigated the ensemble of the CNN models on base-learner by
meta-training using SVM to classify the dichotomous axial
sequence of MR images of the brain as epilepsy vs. non-
epilepsy. On the other hand, we also investigated some exist-
ing CNN models compared to our proposed emsCNN-SVM.

The results of testing showed that the CNN model on
the base-learner obtained classification performance with
high variation. The CNN model on the base-learner yielded
a classification accuracy average in testing in the range
of 68.18%-79.67% with a standard deviation of 1.63-7.28.
When viewed from the many parameters in the base-learner
model, msCNN2 was more than the other models, as shown
in Table 3. However, the large number of model parameters
does not guarantee that it is proportional to the classification
performance produced, especially in the axial multi-sequence
of MR images. The classification accuracy average of each

FIGURE 7. Accuracy of proposed emsCNN-SVM with epoch = 100, kernel
‘polynomial’ degree = 25, and different input in meta-learner.

CNN model on the base-learner is still below 80%. The
training and testing data variability level are relatively high
because it involves a multi-sequence of MR images, which
affects the performance.

When likened to CNN models on the base-learner is a
neurologist who reads axial multi-sequence of MR images,
then the reading of each neurologist may give different
results. Using the combination of predictions with majority
voting, weighted majority voting, and weighted average can
increase the accuracy of epilepsy classification and reduce
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FIGURE 8. Accuracy average of the proposed emsCNN-SVM with different
kernels and epochs.

TABLE 8. Performance comparison of the proposed emsCNN-SVM with
the existing CNN.

the variability of classification results. However, the increase
stops at a certain level (saturation) and is difficult to increase
because it depends entirely on the predictions of the classifi-
cation of models on the base-learner. A meta-learner stage in
the proposed emsCNN-SVM has become one of the solutions
to improve classification accuracy and better than the combi-
nation of predictions. The improving classification accuracy
can be found because, at themeta-learner stage, it depends not
only on the results of the base-learner model but there is also
meta-learning using SVM. The learning not only involves
the prediction results of the base-learner models but also the
results of the combination of predictions to improve classi-
fication performance. The proposed emsCNN-SVM accom-
modated the output of the CNN model on the base-learner
and the combination of predictions (MV, WA, and WMV),
accordingly, it yielded better andmore stable performance for
each scenario.

We realize that the best results in our proposed scheme
involving SVM, in this case, do not apply to all kernels in

training. At epoch = 50, 100, 150 kernel functions that give
better results than others (e.g., RBF and linear) are polyno-
mials with degree (d)= 50, 25, 10, as shown in Fig. 8. In this
study, the criteria for determining the degree of the polyno-
mial function are based on the best classification accuracy
average, as shown in Fig. 5. In general, the greater the degree
of the polynomial function, the higher the sensitivity values,
but the impact on the precision decreases. The selection of
polynomial kernel degrees based on the maximum sensitivity
value will impact the low precision values. Therefore, the best
choice is selecting polynomial kernel degrees in the proposed
emsCNN-SVM based on the highest accuracy value. The
option indirectly considers the value of precision, sensitivity,
and F1-score.

The number of models in the ensemble also influences
the performance of the proposed emsCNN-SVM in classi-
fying epilepsy against non-epilepsy. By involving five CNN
models on the base-learner, it gives a better classification
performance than applying only three CNN models. Fig. 6
shows the accuracy value and F1-score for each fold involv-
ing five models giving better results than involving only
three base-learner models. The involvement of inputs in
meta-learning also affects classification performance. The
proposed emsCNN-SVM involving three kinds of input: the
base-learner model’s predictions, the combination of pre-
dictions, and the softmax output of the base-learner mod-
els provides better classification accuracy than involving
only two types of input and one kind of input, as shown
in Fig. 7.

To know the performance or stability of our proposed
method, we also compared the results with the existing mod-
els: CNN in [22], VGG16, and ResNet50. The results of
testing with the same dataset treatment appeared that our
proposedmethod improved all performances in the classifica-
tion, as shown in Table 8. We realize that there are differences
in the input image dimensions in these testing, which will
affect the performance [39]. The proposed scheme has an
input image dimension of 512× 512× 1, while VGG16 and
ResNet50 are 224× 224× 3, respectively [31],[40]. We con-
sider the comparison of these methods to be fair, even though
our proposed method has a different input shape. In this case,
we try to keep the original architecture of VGG16/Resnet50.
However, the comparison results are fairer, we added the
testing with an input resolution of 224 × 224 × 3 for each
proposed CNN model. In this study, we adjusted to the exist-
ing architecture in the model. Although the conditions in
the comparison are still far from ideal, at least our proposed
emsCNN-SVM is feasible to compare with these models,
especially in the classification of brain structural abnormali-
ties that cause epilepsy vs. non-epilepsy.

Our study has several limitations, including the relatively
small samples of sequence of MR images used in training
and testing. At the clinical level, validation must be car-
ried out on more data involving many institutions. On the
other hand, studies involving multi-sequence of MR images
and different types of brain abnormalities within a class of
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epilepsy certainly have the potential to reduce the classifier’s
performance. In addition, using only axial planes can also
obtain lower performance than involving all other planes:
sagittal and coronal.

This study only uses five CNNmodels on the base-learner.
We understand that more CNN models in the base-learner
will enrich the decisions and strengthen the results for the
combination of predictions and processes on themeta-learner.
However, more models in the base-learner will impact the
number of model parameters used. Therefore, we decided to
use five models of the base-learner for the ensemble process
with better results than the three models of the base-learner.

VI. CONCLUSION
In this study, a method has been proposed to improve per-
formance in the classification of epilepsy based on axial
multi-sequence of MR images with an ensemble of several
CNNmodels. The ensemble model is carried out by applying
the principle of stacked generalization. The output of the
CNN models of the base-learner and combination of pre-
dictions (majority voting, weighted average, and weighted
majority voting) forwarded to SVM in the meta-learner stage.
The proposed scheme can generally improve performance
in classifying brain structural abnormalities causing epilepsy
vs. non-epilepsy. The testing results show that the proposed
scheme has a high potential to assist neurologists (clinicians)
in identifying epilepsy patients based on multi-sequences of
MR images.

For clinical purposes, in the future, there is still potential
to improve the performance of epilepsy classification based
onmulti-sequence ofMR images by increasing the amount of
training or testing data and involving all planes ofMR images.
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