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ABSTRACT Multi-horizon time series forecasting is a very challenging task in many fields of research.
In the field of machine learning, artificial neural networks have been used to carry out these tasks. However,
there are still problems that are of general interest to researchers such as: Loss of data in data acquisition
and long-term forecast. In this paper, we propose a hybrid Meta-Transfer Learning technique based on
transfer-learning, meta-learning and signal detection by means of the discrete wavelet transform to solve
the aforementioned problems in multi-horizon time series forecasting. Input-to-state stability analysis and
the strong and weak convergence analysis for the proposedmethod are included. To validate the effectiveness
of the method, the long-term prediction of earthquakes magnitude (M>4.5) in Italy is taken as a case of study,
using information from Italy and Mexico. Simulations of classic methods for forecasting time series based
on neural models are performed. The forecasting performance obtained is the minimum square error (MSE)
is 0.091, while for the meta-transfer learning, the MSE is 0.032.

INDEX TERMS Deep learning, meta-transfer learning, wavelet decomposition, stable learning, time series
forecasting.

I. INTRODUCTION
Time series forecasting is one of the most important tasks
in the field of information engineering. Two main types
of forecasting can be distinguished [1]: short-term pre-
diction and long-term prediction, also called multi-step or
multi-horizon prediction. Many popular methods are being
used to solve this problem, such as Box and Jenkins’
approach [2]. In [3], a review of the most common meth-
ods to resolve this issue are presented. There are linear and
non-linear regression models that allow the modeling of a
time series, for instance, the linear methods as ARX, ARMA,
NARMA models [4], and neural networks for nonlinear
modeling [5].

Unlike short-term time-series forecasts, long-term fore-
casts often present a challenge to research efforts as they
have well-known problems, such as increased forecast error
when forecasts are made over a period of time, since spatio-
temporal conditions are normally unknown. In addition, there
is uncertainty due to lack of information as a result of failures
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in data acquisition or failures in measurement instruments.
Prediction based on linear models under these conditions
tends to have poor performance.

Neural networks have been successfully applied in the
problem of time series prediction [5]–[7]. The Multilayer
Perceptron (MLP) is the most widely used type of neural
network. The Backpropagation (BP) algorithm is adopted to
minimize modeling error and update the weights accordingly.
However, the MLP with BP, has two main problems: slow
convergence and local minima [8].To avoid these problems,
several approaches of machine learning have made consid-
erable efforts to improve the results, such as Deep-Learning
[9] and Meta-Learning (ML). The strong and weak conver-
gence of ML and BP with momentum term are given in [10]
and [11].

The methods of Meta-Learning and Transfer-Learning
(TL) are relatively new ideas from psychology studies to
explain how the learning process works by solving new prob-
lems based on knowledge and experience [12]. Moreover, the
ML algorithm has been proposed to solve the problem of
multi-step forecasting [13]. In general, the combination TL
or ML has poor exploration in the advancement architectures

30284 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-9540-7924
https://orcid.org/0000-0002-0917-2277


M. Maya, W. Yu: MTL Using Wavelet Decomposition for Multi-Horizon Time Series Forecasting

of neural networks; both concepts are used in a qualitative
approach [14]–[16].

Strictly speaking, meta-learning is only capable of improv-
ing the learning process in the same domain or task. When
the information is insufficient to complete the task, or there
are many problems in the implementation of the solutions,
the transfer-learning method can be used when the tasks and
distributions used in the training and testing stages are dif-
ferent. Therefore, the neural model has been given the ability
to learn from other problems or tasks. A full description of
this topic is provided in [17]. It should be considered that
for the transfer-learning method it is necessary to answer
the question: What knowledge should be transferred? This
represents a challenge for researchers, since determining the
similarities or patterns between databases is not an easy task
to perform.

The application of deterministic or stochastic methods is
not enough for multi-horizon prediction. It is necessary to
understand time series in a domain other than time. Better
results can be obtained usingWavelet Transform (WT) analy-
sis. An advantage of wavelet analysis is the ability to perform
local space-time analysis of time series [18], [19]. The WT
allows us to reveal aspects of signal that other analysis tech-
niques overlook, such as trends, breakpoints, discontinuities,
etc.

This multiple resolution can also be obtained using WT,
called discrete wavelet transform (DWT) [20]. TheDWTuses
filter banks, while the discrete WT uses discrete versions of
the scale and expansion axes. The DWT is a transformation
that decomposes a given signal into a number of sets, this
technique has been successfully implemented in [21], [22].

The complexity in the prediction of time series increases
when dealing with chaotic systems, since the trends and
behaviors do not follow the characteristics of seasonality and
periodicity.

Since friction is a nonlinear phenomenon [23], earthquakes
can be considered a chaotic deterministic system [24] with
limited predictability. Therefore, the interpretation of earth-
quakes can be regarded as a stochastic process or as a
deterministic chaotic process [25]. In general, there are two
approaches for earthquake forecasting:

1) Earthquakes are considered a stochastic process, where
the main shock intervals between events are stationary
and typically follow a Poissonian distribution [26].
The earthquakes can be based on some renewal time
model that mimics the theory of elastic rebound [27].
Although now nobody can predict exactly next earth-
quake, some parameters of next big earthquake, such
as time interval and magnitudes, can be estimated in
the sense of probability based on past seismicity.

2) Earthquakes are considered as the result of a deter-
ministic process, such as the result of a stick slip
friction slip [28]. The deterministic predictability of
earthquakes remains a debated topic in seismology.

Theoretical and numerical studies based on determinis-
tic equations indicate that stick slippage can be chaotic

time series [29]. However, natural climatic earthquakes are
explained by a chaotic deterministic time series. The chaotic
behavior in regular earthquakes remains a challenge due to
the short period of observation time [30].

Long-term forecast events are based on periodically arriv-
ing earthquakes, in general, a long-term event is too difficult
to predict due to the limited information available. A com-
plete earthquake prediction procedure should have three types
of information: magnitude, location, and time of occurrence.
Many methods are used to predict earthquakes, such as rule-
based approach [31], shallow neural network [32], and deep
learning [33].Manymethods use neural networkmodels [34],
which have great difficulties due to the rarity of the data, the
quality of the historical earthquake data, the lack of pattern
and the variability of the performance in different geolog-
ical locations. The most important challenges are: forecast
precision is limited to large magnitude, big forecast error in
long-term prediction, the effect of environmental factors, and
uncertainty in the factors.

In this work, a new method called Meta-Transfer
Learning (MTL) with searching algorithm based on
wavelet decomposition to solve the classical problems on
multi-horizon forecasting of time series. The method of MTL
is a hybrid of ML and TL methods. The Transfer-Learning
modified is applied to solve the problem where there are not
enough historical data in training domain and in combination
with the wavelet decomposition it is possible to have a tool
that allows determining what information to use within a set
of secondary tasks, this knowledge will improve the accuracy
in the prediction of a main task. The Meta-Learning modified
helps us to solve the problems of local minima and slow
convergence of neural networks.

Comparisons with other classical neural network mod-
els are proposed. The comparative analyzes show that:
1) Novel method has better modeling performances than
the other algorithms in earthquake forecasting in order to
minimize the MSE criterion; 2) The proposed method has a
rapid convergence and is capable of achieving the assigned
task.

In order to create an effective learning method for neural
models, especially for long-term forecasting, we make the
following contributions:

1) Meta-transfer learning and neural networks are applied
for time series forecasting in the cases of multi-horizon
and lacking data.

2) A modification is made for transfer learning with mul-
tiple resolution wavelet decomposition, such that the
most important information are used to transfer.

3) A modification to meta-transfer learning is made to
provide an output to a cycling problem within the algo-
rithm.

4) Some important properties such as stability and
the convergence (weak and strong) of the proposed
meta-transfer learning are analyzed.

5) The proposed method is successfully applied to earth-
quake forecasting.
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II. MULTI-HORIZON TIME SERIES FORECASTING USING
NEURAL NETWORKS
The behavior of a time series y(1), . . . , y(N ) can be described
as a dynamic system as:

y(k + 1)=F[y(k), y(k−1), y(k−2), . . . , y(k−n∗)] (1)

where F(·) ∈ C∞ is an unknown nonlinear function, n∗ is
the number of past events needed to make the forecast. The
multi-horizon forecasting of the time series y(1), . . . , y(N ) is:

ŷ(k + 1+ dσ ) = F[y(k − dα)] (2)

where ŷ is the prediction value, dσ is the prediction horizon,
dα is the recursive delay. Such that, dσ = {0, 1, 2, . . . , nσ },
dα = {1, 2, . . . , nα}, nσ is the maximum horizon, nα is
the number of past events. The multi-horizon forecasting
becomes:

[ŷ(k + nσ ), . . . , ŷ(k + 1)] = F[X (k))] (3)

or:

ŷ(k + 1+ dσ ) = F[X (k)] (4)

where:

X (k) = [y(k), . . . , y(k − nα)] (5)

Because F (·) is unknown, the following neural model is
used to approximate it:

ŷ(k + 1+ dσ ) = NN [X (k)] (6)

If NN (·) has a single-layer neural network the model is:

ŷ(k + 1+ dσ ) = 0 [WkX (k)] (7)

where Wk ∈ Rn is the weight matrix, 0(·) is the activation
function.

If NN (·) has a two-layer neural network,

ŷ(k + 1+ dσ ) = Vk0 [WkX (k)] (8)

where Wk ∈ Rm×n is the weight matrix of the hidden layer,
Vk ∈ Ro×m is the weight matrix of the output layer.
If NN (·) is deep-neural network the model is:

ŷ(k + 1+ dσ ) = Vk0 {W101 [· · ·WlX (k)]} (9)

where l is the number of hidden layers.
The scheme of the time series modeling using neural net-

works is shown in Figure 1. In this paper, we will use these
three types of neural networks (7)-(9) for multi-horizon time
series forecasting. The objective of the time series forecasting
is to minimize the following modeling error:

e (k) = ŷ (k)− y (k) (10)

For multi-horizon time series forecasting, the modeling error
is:

e(k + 1+ dσ ) = ŷ(k + 1+ dσ )− y(k + 1+ dσ ) (11)

FIGURE 1. Scheme of the time series modeling using neural networks for
the simulation model and prediction model. The difference of using real
data decides the difficulty of time series forecasting.

The training object of the neural network models is to
update the weights Wk and Vk , such that the modeling error
is minimized:

NN (·) = arg min
Wk ,Vk

e2 (k) (12)

The following gradient method for (8) can minimize: (12)

Wk+1 = Wk − η
∂J
∂W

, Vk+1 = Vk − η
∂J
∂V

(13)

where η is the positive learning rate η < 1, ∂J
∂V =

0 [WkX (k)] e (k) and ∂J
∂W = 0′Vke (k) . This is the back-

propagation algorithm. To increase convergence speed, the
momentum term is added to (13):

Wk+1 = Wk − η
∂J
∂W
+ α1Wk

Vk+1 = Vk − η
∂J
∂V
+ α1Vk (14)

where 1Wk = Wk −Wk−1, α is a constant 0 < α < 1.

III. NEURAL NETWORK WITH WAVELET
DECOMPOSITION
Meta-learning is used to avoid local minima, while transfer-
learning is applied for the insufficient information in the
training data of neural network models.

Meta-transfer learning brings together the properties and
characteristics of the meta-learning and transfer-learning.
Our method can be divided into two parts:
1) The modified Transfer-Learning method is responsible

for determining what information is relevant to transfer
between neural models, through synaptic weights W ∗s .
For this, the searching algorithm is based on the Dis-
crete Wavelet Transform using the multilevel decom-
position, and with this determine the coefficients (σcA,
σcD) to compute the deviation standard between differ-
ent databases. If there is a low standard deviation then
the databases have a strong correlation and it is possible
to use that information. This stage aims to overcome the
problem of lack of information in a time series due to
failures in data acquisition.

2) The purpose of the Meta-Learning method is to avoid
local minima. This is achieved once the modified
Transfer-Learning method selects a matrix of weights
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W ∗s called sub-optimal matrix, such that each iteration
the weight matrix Wk converges to the sub-optimal
weightsW ∗s by means of the modified BP learning law
due to the addition of terms βs∗w,k X̂

s∗
W ,k associated with

Meta-Learning.

A. WAVELET TRANSFORM
For non-stationary and multi-horizon forecasting of real
world time series, meta-transfer learning cannot provide good
prediction accuracy. We will use wavelet to solve these prob-
lems.

A wavelet function 9 ∈ L2(R) is defined as

9m,n(x) = 2
m
2 9

(
2mx − n

)
, for all m, n ∈ Z (15)

For a orthogonal basis for L2(<), the function9 is also called
mother wavelet.

Considering the closed space Zi, for all i ∈ Z the Wavelet
base have the following properties:

1) Zi space sequence is nested,

· · · ⊂ Z−1 ⊂ Z0 ⊂ Z1 ⊂ · · · (16)

2)

∩m∈Z = {0}

3)

f (x) ∈ Zk

if and only if f (2x) ∈ Vk+1
4) ∪k∈ZVk = L2(R).
Using (16), it is possible to build an orthogonal basis for L2.

whereWn is an orthogonal complement from Zm whit respect
from Zm+1:

Wm ⊕ Zm = Vm+1, Wm ⊥ Zm. (17)

Thus:

L2 = ⊕m∈ZWm, Wm ⊥ Wm′ (18)

and can be rewritten as:

9n (x) = 9 (x − n), n ∈ Z. (19)

then the system {9n}n∈Z is an orthogonal basis of W0. Con-
sequently the system

{
9m,n (x)

}
n,k∈Z is an orthogonal basis

of the space Wm, therefore, it is an orthogonal basis of L2.
Any continuous function f ∈ L2 [0, 1] , can be expanded

by the series:

f =
∑

wmn9mn, (20)

where the coefficients wm,n,m, n ∈ Z, can be calculated by
the inner product:

wm,n =< f , 9mn > . (21)

As described above the subspace formed by the base:

Zj = ⊕n<jWn, (22)

can be reduced to the trivial space j −→ −∞, and the series
can be written as follows:

f =
∑
m≥j

∑
n∈Z

wmn9mn. (23)

B. WAVELET DECOMPOSITION
The wavelet decomposition is actually the application of the
discrete wavelet transform (DWT), but for different scale
factors [18]. The DWT can be represented as

Wwav
m.n = 2−

m
2

L∑
i=1

fi9[2−mi− n] (24)

where m represents the scale index, n is the translation vari-
able, 9 is the wavelet mother, L is the length of the series or
the function f .
Haar wavelet [35] is the simplest discrete wavelet trans-

forms. Haar wavelet is the most commonly used. When we
need a model which can eliminate the high-frequency noise
and avoid the distribution of the rest of the signal, the disad-
vantages of Haar wavelet are that it is discontinuous, and it
does not approximate continuous signals very well.

The Haar wavelet is produced from the Haar mother
function:

9(x) =


1 0 ≤ x <

1
2

−1
1
2
≤ x < 1

0 others

(25)

where the input has 2n numbers, it may be considered to
simply pair up input values, it operates on data by calculating
the sums and differences of adjacent elements. This function
is capable to capture the frequency and temporal contents.
A typical Haar wavelets is:

WHm,n(x) = 2m/2ψ(2mx − n), n < 2m

where m and n are integers, ψ is defined by (25). However, it
is necessary the discrete-time wavelet Haar:

WHm,n(x) = W (x − n), n ∈ Z

the system {WHn}n∈Z is an orthogonal basis of w0. Moreover,
the system {WHm,n(x)}n,k∈Z is a normal basis of the space
wm, therefore is an orthogonal basis of L2. Any continuous
function f ∈ L2 can be rewritten by the series:

f̂ =
∑

wmnWHmn

where the coefficients wm,n with m, n ∈ Z, are calculated by
the inner product,

wm,n = 〈φm,n,WHm,n〉

here, φm,n is the Haar wavelet transform, it starts with 2n

array, and performs a process with n iterations of the basic
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FIGURE 2. Multi resolution wavelet transform decomposition for time
series by means of high pass filter and low pass filter. This can help us to
use the most important data.

transform. For each index l ∈ {1, . . . , n}, the array structure
consists of in coefficients for 2n−(l−1) step functions:

φmn(i) =

{
1 if 2n−mk ≤ 2n−m(k + 1)
0 otherwise

where φmn is also called scaling function. The base Haar can
be formed into a subspace:

Vj = ⊕n<jWHn

The Haar series in to the trivial space j→−∞

f̂ (x) =
∑
m≥j

∑
n∈Z

wmnWHmn(x)

Without losing of generality, we can assume that j = 0, the
Haar series is:

f̂ (x) =
∞∑
m=0

∑
n∈Z

wmnWHmn(x)

Even though the mathematical wavelet transform concept
is applied, it consists of a set of low and high-pass filters [18].
Figure 2 shows an example on how a decomposition of scale
4 (or level 2) for a signal is done. The wavelet decomposition
is applied to each 9 domain.

The wavelet transform uses a broad range of compact
orthogonal supporting analyzing wavelets. Orthogonality in
DWT causes that the information deduced at a certain scale
m, which is disjoint from the information at other scales:

σwav(m) =

[
1

N − 1

N∑
n=1

(Wwav
m.n − 〈W

wav
m.n 〉)

2

] 1
2

(26)

where N represents the number of wavelet coefficients at a
given scale m, Wm.n is the average among the coefficients.

The following equations described how to compute the
deviation standard using the wavelet coefficients to a pair of
domains:

σcA =

√√√√ 1
N − 1

N∑
i=0

(cAi −Wm1 )2

σcD =

√√√√ 1
N − 1

N∑
i=0

(cDi −Wm2 )2 (27)

where ‘‘cA’’ represents the lowest frequency of the signal,
and ‘‘cD’’ is the highest frequency of the signal, Wm1 =

mean(cA), Wm2 = mean(cD).

IV. NEURAL NETWORK WITH META-TRANSFER
LEARNING
A. TRANSFER LEARNING
According to the fundamental property of knowledge trans-
fer, which states that it is possible to use the previously
acquired knowledge in an auxiliary task 3a and thus help
in the performance of the main task 3p. Let us define two
sets 9a and 9p. The domain 9a is for learning task 3a. The
principal domain 9p is for the principal learning task 3p.

Transfer-Learning for neural model aims to improve the
time series forecasting with3p in9p using the knowledge of
9a and 3a. The auxiliary domain data 9a and 9p are:

9a=X (k+1+dσ )a= [ya(k−1), . . . , ya(k−n)]

9p=X (k+1+dσ )p= [yp(k−1), . . . , yp(k−n)] (28)

There is a fundamental problem within the Transfer-
Learning technique: how to select previous knowledge
acquired by an auxiliary task to improve the performance of
a defined task?

In this work, we propose the following method to find
the optimal information through the Wavelet Transform, this
allows to find information that helps to determine a correla-
tion between the two domains 9a and 9p. In general, there
can be n domains9n across which comparisons can be made
to find the best set that guarantees the improvement of the
results obtained by the main task.

There can be two ways to interpret the standard deviation:
strong correlation and weak correlation, depending on the
nature of the time series. We create a domain9TF to generate
a hybrid database between 9a and 9b, which is used to
the meta-learning and find the optimal weights W ∗of neural
network. In weak correlation, local minima in the main task
3p may be avoided.
We assume the time series has a definite time Ts. We use

the following function to generate 9TF :

f
(
τi3p , τi3a

)
=

{
τi3p if > γ

τi3p ⊕ τi+β3a ⊕ τi+β+13p if < γ

(29)

The model (29) has information of the time series from
the tasks 3p and 3a. 9TF mixes the data from both sets.
It depends on the nature of the phenomenon that has been
described in the time series, in addition, the selected charac-
teristic is based on the previous knowledge of the researcher
in the problem.

B. META LEARNING
The time between events is an important characteristic of time
series. We use wavelet transformation for multiple solutions
databases3p and3a, then we use Meta-Transfer Learning to
consider other characteristics.
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Algorithm 1 Transfer-Learning Modified
1: Choose a task defined by 3p
2: Propose several tasks 3p. This set could be a correlated

or not with 3p
3: Apply the model (24) to each 3p and 3ai
4: Apply the model (27) to obtain coefficients cA and cD
5: Compare the factor correlation with the model (26)
6: Select the pair 3p and 3p with more or less correlation.

This criterion is chosen by test.
7: Apply the (29) to combine the data-sets of 3p and 3p
8: Use the model (9)
9: Return the W ∗

FIGURE 3. Selection of the sub-optimal weights W ∗ from transfer
learning and the search method based on the wavelet transformation.
It shows the benefit of the combination.

We use the following method for the inter-event time:
when the inter-event time of 3p is smaller than γ , the data
information of3a it is saved, such that we can know where is
the information of3a is, adding to3p. β which is a parameter
that indicates the number of data of 3a added to 3p, see
Algorithm 1. Figure 4 shows how to use transfer-learning to
find W ∗.

After wavelet transformation and transfer learning, we use
Meta-Learning and back-propagation to train the neural net-
work models. This is our modifiedmeta-transfer learning, see
Algorithm 2.

In order to improve the forecasting accuracy, the following
modified back-propagation algorithm is applied, which uses
the principal task 3p and the knowledge of W ∗,

Wk+1 = Wk − η
∂J
∂W
+ α1Wk + βw,k X̂W ,k

ηk =
η

1+
∥∥φ′XT (k)∥∥2 , 0 ≤ ηk < η ≤ 1 (30)

FIGURE 4. Scheme of implementation of the meta learning by the choice
of sub-optimal weights for time series forecasting. The time series
forecasting can be regarded as nonlinear system modeling.

where η is the positive learning rate η < 1, ∂J
∂W =

φ′
[
Wk X̂ (k)

]
e (k), 1Wk = Wk − Wk−1, α is a positive

constant α < 1, βW ,k is a constant.
X̂W ,k is decided by

X̂W ,k = max
i

[
θW ,i

]
, cos

(
θW ,i

)
=

W ∗ −Wi

‖W ∗ −Wi‖

X̂W ,k∥∥∥X̂W ,k∥∥∥
X̂V ,k = max

i

[
θV ,i

]
, cos

(
θV ,k

)
=

V ∗ − Vk
‖V ∗ − Vk‖

X̂V ,k∥∥∥X̂V ,k∥∥∥
where X̂W ,k ∈ Rm×n is the vector which forces the angle
between Wk and W ∗, θW ,k , to arrive the maximum value,
θW ,k is the angle.

The Meta-Learning term (βW ,kXW ,k ) can reduce the fore-
casting error in each step k for the neural model (2), and
produce a fast convergence between the pairs (Wk ,W ∗). The
weightsWk are projected to the sup-optimal weightsW ∗, i.e.,
the current weights Wk go towards the desired weights W ∗

with the direction X̂W ,k and the step size βW ,k .
Figure 4 and Figure 3 shows how to apply the modified

Meta-Transfer Learning for neural network training.
The following steps show the MTL methodology:

1) We train the neural model (9) with the classical gradient
decent algorithm (13) using different initial weights V0
and W0, for 9TF .

2) We select the best final weights, V ∗ and W ∗,which
can minimize the modeling error in the sense of (10).
This idea is to extract some properties from previous
knowledge.

3) We further train the neural model (9) with the ML
algorithm ( 30). The step size βW ,k reduces the distance
between Wk and W ∗,

βW ,k =
(
W ∗ −Wk

) X̂W ,k∥∥∥X̂W ,k∥∥∥ (31)
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This time-varying term ensures that the angle condition
is fulfilled in each step. Similar

βV ,k =
(
V ∗ − Vk

) X̂V ,k∥∥∥X̂V ,k∥∥∥
However, to obtain βi,k the angular condition Ac is needed.

When a deep-neural network model is applied, the size of
the vectors X̂i,k increases by dimension due to the number of
weights. We needWk and Vk converge toW ∗ and V ∗.Normal
algorithms need long times in the execution. We propose
the following modified meta-learning to avoid the aforemen-
tioned problem.

Algorithm 2 Compute of X̂ s∗V ,k

1: Select an Initial X̂V ,0 = 0
2: Select a coefficient r (number of iterations)
3: for r times do
4: Choose a random vector X̂V ,k 0 ≤ X̂V ,k (i) ≤ 1

i = 1, 2, . . . ,m
5: Calculate

∥∥∥X̂V ,k (k)∥∥∥
6: Compute cos2V ,i =

V ∗−Vk
‖V ∗−Vk‖

·
X̂V ,k (k)∥∥∥X̂V ,k (k)∥∥∥

7: end for
8: Select the max(cos2V ,i)
9: Return X̂ s∗V ,k

According to the above, the models (31) and (30) can be
rewritten as

βs∗W ,k =
(
W ∗ −Wk

) X̂ s∗W ,k∥∥∥X̂ s∗W ,k∥∥∥ (32)

And the modified meta-learning is given by,

Wk+1 = Wk − η
∂J
∂W
+ α1Wk + β

s∗
w,k X̂

s∗
W ,k

ηk =
η

1+
∥∥φ′XT (k)∥∥2 , 0 ≤ ηk < η ≤ 1 (33)

V. CONVERGENCE ANALYSIS
To show the effectiveness of our meta-transfer learning for
time series forecasting, we will give strong and week conver-
gence properties of the proposed algorithm.

We first give the following stability result of the meta-
transfer learning.

The following theorem gives convergence of the modified
meta-learning.
Theorem 1: If the meta-learning algorithms (33)-(32) are

applied, the training processes of the neural networks (7)-(9)
are stable in the sense of L∞

|e (k)| <∞ (34)

Proof 1: For the single layer neural network (7), the
meta-learning is

βs∗w,k X̂
s∗
W ,k = −W̃k

XTp Xp∥∥Xp∥∥ = −γ W̃k (35)

We define the following Lyapunov candidate function,

Lk = 2
∥∥∥W̃k

∥∥∥2 + 3
∥∥∥αW̃k−1

∥∥∥2 + 7
∥∥∥αW̃k

∥∥∥2
+

∥∥∥γαW̃k−1

∥∥∥2 + ∥∥∥γ W̃k

∥∥∥2 + τ ∥∥∥W̃k

∥∥∥2
From the meta-learning update law (33)

W̃k+1 = W̃k − ηke (k) ϕ′XT (k)− α1W̃k − γ W̃k

The difference term 1Vk = Vk+1 − Vk is

1Lk ≤ (1+ α)
∥∥ηke (k) ϕ′X (k)∥∥2

− ηk (1+ α − γ ) e2 (k)+ ηk (1+ α − γ ) ζ 2 (k)

= −ηk

[
(1+α)−(1+α−γ ) η

∥∥ϕ′XT (k)∥∥2
1+

∥∥ϕ′XT (k)∥∥2
]
e2 (k)

+ ηk (1+ α − γ ) ζ 2 (k)

≤ −πe2 (k)+ ηk (1+ α − γ ) ζ 2 (k)

where

π = (1+ α)− (1+ α − γ ) η
K

1+ K
> 0

K = sup
K

∥∥ϕ′XT (k)∥∥2. Because
Because, nmin

(
w̃2
i

)
≤ Vk ≤ nmax

(
w̃2
i

)
where nmin

(
w̃2
i

)
and nmax

(
w̃2
i

)
are functions of κ∞, as well

as πe2 (k)which and ηkζ 2 (k) are κ functions. The Lyapunov
function Lk is the function of e (k) and ζ (k), then Lk is
a smooth ISS-Lyapunov function. So, the dynamics of the
identification error is an Input-State Stable.

For the multi layer neural networks, we use the following
positive defined matrix Lk :

Lk =
∥∥∥W̃k

∥∥∥2 + ∥∥∥Ṽk∥∥∥2 (36)

From the update law (33):

W̃k+1 = W̃k − ηke (k) ϕ′P0TXT (k)

−α1Wk − γWk

Ṽk+1 = Pk − ηke (k) ϕ′XT (k)− α1Vk − γVkk

Similar development with a single layer neural network:

1Lk

≤ ηk

[
(1+α)−(1+α−γ ) η

∥∥ϕ′P0TXT (k)∥∥2
1+

∥∥ϕ′P0TXT (k)∥∥2
]
e2 (k)

+ ηk (1+ α − γ ) ζ 2 (k)

≤ −πe2 (k)+ ηk (1+ α − γ ) ζ 2 (k)
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Furthermore,

n
[
min

(
w̃2
i

)
+min

(
ṽ2i
)]

≤ Lk

≤ n
[
max

(
w̃2
i

)
+max

(
ṽ2i
)]

where

n
[
min

(
w̃2
i

)
+min

(
ṽ2i
)]

and

n
[
max

(
w̃2
i

)
+max

(
ṽ2i
)]

are κ∞ functions, πe2(k) is a κ∞ function,
ηk (1+ α − γ ) ζ 2 (k) is a κ function. Lk admits a smooth
ISS-Lyapunov function, moreover is the function e(k) and
ζ (k). If the ‘‘input’’ ζ (k) is bounded, then the dynamics of
the ‘‘state’’ e(k) is bounded.
The weak convergence of the proposed Meta-Transfer

learning is given by the following theorem.
Theorem 2: The Meta-Transfer Learning (32-33) are the

weak convergence,

lim
k→∞

(
W̃k

)2
<∞, lim

k→∞

(
Ṽk
)2
<∞ (37)

i.e., the increments of the weights are bounded, here

W̃k = Wk+1 −Wk , Ṽk = Vk+1 − Vk

Proof 2: For the single layer neural network (7), we use
the following Lyapunov function:

Lk = 2
∥∥∥W̃k

∥∥∥2 + 3
∥∥∥αW̃k−1

∥∥∥2 + 7
∥∥∥αW̃k

∥∥∥2
+

∥∥∥γαW̃k−1

∥∥∥2 + ∥∥∥γ W̃k

∥∥∥2 + τ ∥∥∥W̃k

∥∥∥2
For the multi layer neural networks, we use the following
positive defined matrix Lk :

Lk =
∥∥∥W̃k

∥∥∥2 + ∥∥∥Ṽk∥∥∥2 (38)

From the stability proof of Theorem 1:

1Lk ≤ −πe2 (k)+ ηk (1+ α − γ ) ζ 2 (k) (39)

where

π = (1+ α)− (1+ α − γ ) η
K

1+ K
> 0

K = sup
K

∥∥ϕ′XT (k)∥∥2. The update law is input-to-sate sta-

ble, and (37) is established. We use the following Lyapunov
function:

Lk = 2
∥∥∥W̃k

∥∥∥2 + 3
∥∥∥αW̃k−1

∥∥∥2 + 7
∥∥∥αW̃k

∥∥∥2
+

∥∥∥γαW̃k−1

∥∥∥2 + ∥∥∥γ W̃k

∥∥∥2 + τ ∥∥∥W̃k

∥∥∥2
From the stability proof of Theorem 1

1Lk ≤ −πe2 (k)+ ηk (1+ α − γ ) ζ 2 (k) (40)

where π and K are defined in (39). Since the modeling error
e(k) and Lk are bounded, the gradient term associated with
each of the layers due to the ML learning law is bounded with
time going to infinity. Therefore, the increment defined by W̃k
and Ṽk are bounded, and (37) is established.
The week convergence continues to be fulfilled as long

as there is a sufficient number of iterations. The following
theorem gives the strong convergence of the proposed meta-
transfer learning.
Theorem 3: There exist a W ∗ai ⊂ � such that W s∗

⊂ Wσ .
The meta-learning (33) leads the strong convergence with
proper initial conditions and rich input signals,

lim
k→∞

Wk = W s∗ (41)

Proof 3:We defineW s∗ as the sub-optimal weight ofWk
at the k . The projection angle θ of the two vectorsWk andW s∗

is:

cosθ =
Wk ·W s∗

‖ Wk ‖‖ W s∗ ‖
(42)

We also define l as, see Figure 5:

l = ‖ W s∗
‖ cosθ = lx + lx

=
W s∗
+Wk

‖ Wk ‖
+
W s∗
+Wk

‖ Wk ‖
=
Wk ·W s∗

‖ Wk ‖

Using the triangular inequality:

W s∗Wk

‖W s∗‖‖Wk‖
≤

W s∗

‖W s∗‖‖Wk‖
−

Wk

‖W s∗‖‖Wk‖
(43)

Using the updated law (33), the increment is:

1W =
W s∗
·Wk+1

‖ W s∗ ‖‖ Wk+1 ‖
−

W s∗
·Wk

‖ W s∗ ‖‖ Wk ‖
≥ 0

where k = 1, 2, . . . .Using the Cauchy-Bunyakovsky-
Schwarz inequality, the increment of 1W and Lemma 1, the
increment along the sequence is:

0 ≤

∥∥∥∥ W s∗Wk

‖W s∗‖‖Wk‖

∥∥∥∥2 ≤ ∞∑
i=k+1

(1W s∗
i )2

≤

k+1∑
i=k

1W 2
i ≤

k∑
i=0

1W 2
i

Because:

0 ≤ ‖W s∗
−Wk+1‖ ≤ ‖Wk+1 −Wk‖

≤ ‖Wk −W0‖ ≤ ‖W0‖ (44)

and modeling error is bounded as (34), then (41) is fulfill.
From Lemma 1 and

W ∗W s∗
k

‖W ∗‖‖W s∗
k ‖
≤

W ∗

‖W ∗‖‖W s∗
k ‖
−

W s∗
k

‖W ∗‖‖W s∗
k ‖

(45)

The difference on the right side of the above inequality is:

δ =
W ∗

‖W ∗‖‖W s∗
k ‖
−

W s∗
k

‖W ∗‖‖W s∗
k ‖

(46)
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FIGURE 5. Geometric interpretation of the angle between two vectors.
It can be explained as the Euclidean norm between both.

So

lim
k→∞

W s∗
k = W ∗

Let the vector X̂V ,k lead the weights Vk towards V ∗. Then
the vector X̂ s∗V ,k will drive the weights Vk towards V

s∗. There-
fore, if the number of iterations is sufficient according to the
Algorithm 2, then V s∗

= V ∗, otherwise the weights V s∗
∈ 1,

where 1 is a closed compact of radius δ such that δ <∞, 1
being is a neighborhood close to V ∗ and

V ∗ = V s∗
+ δ

VI. EARTHQUAKE PREDICTION USING META-TRANSFER
LEARNING
We use the proposed method to forecast the earthquakes
in Italy (M>4.5) by using the data both from Italy and
Mexico. The data of Italy are extracted by the publicly
available database in ‘‘cnt.rm.ingv.it/en/iside’’, the data of
Mexico are extracted by the publicly available database in
‘‘http://www.ssn.unam.mx’’.

The motivation of using both datasets of Italy and Mexico
for Italy is the available earthquake data of Italy are not suffi-
cient for neural network models. We add Mexico earthquake
data to the time series of Italy. Normally, it is not reasonable,
because these two time series are corresponding to different
models. However, we successfully combine three techniques:
wavelet decomposition, meta-learning, and transfer-learning,
such that these two earthquake datasets can be applied to train
one neural network model.

The time series for the M>4.5 data of the Italian seis-
mic catalog contains a quantity of 104 elements during
1970-2018. This available information may become insuf-
ficient to make a multi-horizon prediction, if Figure 9 is
analyzed, through visual inspection it can be seen that there
is no trend in the prediction, since the neural models classics
can get it right due to a test datum and in the immediately
subsequent datum fail due to a considerable error. The idea
of modified TL is to generate a data set that shares the

FIGURE 6. Multi-resolution wavelet transform for the seismic data with
magnitudes of about 4.5 of the Italian catalogue. We can see the
important data.

information of the Mexican and Italian catalogs, through
which the weights of W ∗s necessary for the ML method can
be determined. To choose the information, a search algorithm
based on the multi resolution of the DTW is proposed. The
WT allows to identify spatio-temporal features within a time
series, thus extracting relevant information from a time series
that cannot be easily obtained with the simple analysis of
discrete-time data. In [18], they use the standard deviation to
compare the levels obtained from the multi-resolution of the
DTW. since lower scales are associated with higher frequency
oscillations, the increase in σwav(m) with scale indicates that
higher frequency fluctuations are less strong than lower fre-
quency ones. Similarly, in this work they allow to determine
the correlation between databases and thus determine what
information should be transferred by the MTL method. Until
this moment of the investigation there is no way to determine
which values σcA, σcD) of the standard deviation should be
chosen to obtain a good performance in the method. For this
paper, the closer the deviance coefficients of the Mexican
and Italian datasets are, the higher their correlation will be,
and therefore there is a high similarity in characteristics or
properties between the time series.

A. WAVELET DECOMPOSITION FOR
MULTI-HORIZON TIME SERIES
In other words, the standard deviation, in this case, let us
know which set of seismic data of Mexico is similar to the
seismic information of Italy. If similar information in terms
of standard deviation is added to the data set of Italy, it will
be fed with similar events, but for correctly training a neural
network, diversity in the signal is necessary. Therefore, the
time series of Mexico that is selected is the one with a major
standard deviation from the seismic information of Italy.

The eighth level of decomposition was achieved. In
Figure 6 the decomposition of the seismic data of Italy is
shown. In Figure 7, the two sets of data with the higher
standard deviation from the information of Italy are shown.
The information of Mexico in 2016 is selected.
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FIGURE 7. Comparison of coefficients of the standard deviation of Italy
(green) and Mexico (red) seismic data. It is the motivation of transfer
learning.

We will show the standard deviation of the wavelet coef-
ficients from two data sets, the inter-event time of both data
sets, as well as the created functions from two time series.

1) The inter-event, time allows us to graphically find a
condition to add the seismic information of Mexico
in 2016 in the information of Italy. The inter-event
time has the information of the time intervals between
successive seismic events. When the inter-event time
of Italy is smaller than an inter-event called γ , the
magnitude information of Mexico is saved in an array,
which will be full of not only the

2) magnitude of the earthquakes registered but also zeros.
Then, the position is detected where the magnitude
information is saved in the last array so that this param-
eter allows us to know where to add the seismic infor-
mation of Mexico in the information of Italy. After
that, a β parameter indicates the number of seismic
data of Mexico added to the data set of Italy. Finally,
the new signal to train the neural network is ready
and is constructed according the model (20) and the
Algorithm 2.

B. META-TRANSFER LEARNING FOR USING THE DATA OF
MEXICO TO TRAIN THE MODEL OF ITALY
1) TRANSFER-LEARNING

f
(
τiItaly , τiMexico

)
=


τiItaly if > γ

τiItaly ⊕ τi+βMexico

⊕τi+β+1Italy if < γ

(47)

2) META-LEARNING
Table 1 shows the comparisons of the developed algorithm
with some well-known methods. Only 10 events are taken for
the testing stage. The experimentation takes into account the
information available for a magnitude window M > 4.5

FIGURE 8. Result of the application of the modified transfer learning and
the search algorithm based on wavelet transformation. The subsequent
mixture to form the time series is associated with 9TF .

TABLE 1. Comparison of modeling errors for the different neural models.
Here our meta-transfer learning has the best performance in the sense of
mean squared error(MSE).

The neural networks are proposed with the following
characteristics:
• The neural model MLP and Meta-Transfer Learning has
three layers: W ∈ <40×15 and V ∈ <40×5.

• The neural model Deep NN 1 has four layers: W ∈

<
60×15, R ∈ <60×60 and V ∈ <60×5.

• The neural models Deep NN 2, Meta-Learning NN and
Transfer-Learning NN has five layers:W ∈ <90×15, S ∈
<
90×60, R ∈ <60×60 and V ∈ <60×5.

The time series forM>4.5 from Italy only has 115 events in
in a period of 50 years. For the training stage, 100 events have
been used. The neural model: MLP, Deep NN 1, Deep 2 and
Transfer-Learning NN they need epochs of training, in this
case 2000 were used. On the other hand, the neural models
Meta-Learning NN and Meta-Transfer Learning they do not
need epochs in training stage. For all experiments, the learn-
ing constants η = 0.35 and α = 0.1 were used.
The experiments are repeated at least 15 times to reach

the repeatability of the results from the same conditions in
the aforementioned hyper-parameters. With this way, we can
avoid random errors in the predictions. Also we use the mean
squares error (MSE) as performance index.

C. RESULTS DISCUSSION AND FINAL REMARKS
1) As shown in Figure 9 and in Table 1, the perfor-

mance of the classical methods (MLP, Deep NN1 Deep
NN2, Transfer-Learning and Meta-Learning) is not
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FIGURE 9. Testing stage of the time series with magnitudes of about
4.5 in Italy. The comparison is between the classical neural models and
the proposed meta-transfer learning.

satisfactory, because the amount of information con-
tained in the historical database for earthquakes with
M > 4.5 from Italy is insufficient. In general, when
forecasting the magnitude of earthquakes, a deviation
between the actual data and the estimate implies a
release of more or less energy due to the nonlinear
nature of the earthquakes. Our meta-transfer learning
minimizes the MSE performance to 0.060. It is much
better than the other methods.

2) A advantage of meta-transfer learning are that it gives
neural network the ability to use knowledge from
another data set, and thus improve the accuracy of time
series forecasting. The proposed method, through the
search method based on the multi resolution wavelet
transform, poses a parity between the data set on which
the prediction of the time series is intended to be made,
and the data set are extracted. Properties and character-
istics are transformed into knowledge and experience.
Therefore, it intends to analyze the selected time series
in a space-time domain to determine a correlation that
cannot be determined in another domain. With the
above method, W ∗s is found.

3) The meta-transfer learning method allows taking
advantage of the experience acquired between neural
models, to improve the accuracy in the forecast stage
of a task. This is achieved because the synaptic weights
W of the ANN converge to the suboptimal synaptic
weights through the projection generated by the meta-
learning-based learning law on W ∗s .

4) There are two main limitations of the proposed
approach:

• This method requires a large number of similar
data for meta-training which is costly

• Each neural model is a low complexity base
learner, such as shallow neural network, to avoid
model over-fitting. So it is unable to use deeper and
more powerful architectures.

5) There are also some implementation aspects:

• The selected databases must have an intrinsic rela-
tionship, however, to determine it, it is necessary to
have adequate knowledge about the phenomenon
that is intended to be predicted and thus make
a selection of information with logic sense. Oth-
erwise there can be no connection between the
information and therefore the results can be worse
than the classical methods.

• The hyper-parameters such as the number of hid-
den layers, the learning constants and the number
of neurons per layer are the ones to be chosen, so it
is necessary to do tests to determine the appropriate
ones for the task.

• The computational cost can increase if you have
too much information about it for the secondary
database from which the best in W ∗ is obtained,
since the databases must be compared individually
together with the original database.

• To determine the amount of information to be
added according to equation (47) it is neces-
sary to experiment until an acceptable response is
obtained in the forecast of the time series.

VII. CONCLUSION
In this paper, the multi-horizon time series forecasting is
realized by a deep neural networkswithMeta-Transfer Learn-
ing and wavelet decomposition. We successfully solved the
common problem in time series forecasting with missing data
and long-term prediction. The proposed method is applied
to predict earthquake magnitude with two different data sets.
The future works will focus on studying its adaptation prop-
erties of the meta-transfer method for the automatic control,
to improve the results of identification and control systems
based on neural networks.
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