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ABSTRACT In this study, it is indicated that the world can get rid of the dengue virus by using vaccines
and Wolbachia. In many findings, it is observed that Wolbachia therapy is efficacious in those regions that
display the minimal to moderate the transmission level. On the contrary, vaccination is highly successful
when used in serologically persons and places with large transmission levels. The resilience of stochastic
methodology based on the numerical computing schemes will be used to exploit the artificial neural networks
(ANNs)modelling legacy, as well as themetaheuristic intelligence using the hybrid of global and local search
schemes thru genetic algorithms (GAs) and active-set method (ASA). The combination of both strategies is
used to manage the numerical therapies of the mathematical form of the dengue model. The optimal control
results through GA-ASA can be retrieved by offering an error-based fitness function generated for dengue
model represented via nonlinear systems of equations. The acquired findings are compared to the Adams
numerical results to ensure that the suggested stochastic system is accurate. For determining convergence,
the training contours are based on various contact rate values. Furthermore, the statistical achievements of
the suggested stochastic scheme to solve the novel developed dengue model, which demonstrate the stability
and dependability of the dynamical system scheme.

INDEX TERMS Dengue model, vaccination, Wolbachia treatment, genetic algorithm, active set algorithm.

I. INTRODUCTION
Dengue fever, sometimes known as ‘‘tropical flu’’, is a viral
spreading infection by Aedes mosquitoes. There are four
dominant prevalent isoforms (DEN-1, DEN-2, DEN-3, and
DEN-4) of this virus globally [1]. The existence of the
Aedes species in various Cameroonian locations is reported
in [2], whereas others show that this mosquito only attacks
daytime [3]. Females’ mosquito, mostly Aedes aegypti to a
smaller degree carry dengue virus. Each serotype can cause
yellow fever, Chikungunya, dengue shock syndrome, and
Ebola infections. Dengue fever affects about three billion
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people around the world, making it a major global pub-
lic health issue. In high-endemicity urban and suburban
regions, this virus is responsible for extremely high mobility
and mortality [4]. Dengue fever has increased by 30 times
globally during 1960 and 2010, owing to rising population
growth, global climate change, rapid urbanization, ineffective
mosquito control, extensive air transport, and a lack of access
to health facilities. Dengue endemic areas have a population
of 2.5 billion people, with around 400 million illnesses each
year and a fatality rate of 5–20 percent in some places.
Dengue fever is a disease that affects over 100 countries
worldwide [5]. Different types of dengue vaccines are under
observations comprising Inactivated vaccine, live-attenuated
vaccine, DNA vaccine, and viral vectored vaccine, etc. [6].

31116 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-9953-822X
https://orcid.org/0000-0001-9325-5560
https://orcid.org/0000-0003-0026-5423


P. Junsawang et al.: Numerical Simulations of Vaccination and Wolbachia on Dengue Transmission Dynamics

They work principally by boosting immunogenicity to the E
protein and non-structural protein 1 (NS1) of the dengue virus
(DENV) [7]. Researching the immunogenicity to DENV
can aid in the development of an efficient dengue vaccina-
tion strategy [8]. However, the prevalence of four immuno-
logically different dengue virus serotypes, all potentially
of generating cross-reactive and disease-enhancing antibody
responses against with the three remaining sterotypes, has
made the production of a dengue vaccine a difficult pro-
cess [9]. Scientifically, theoretical calculation of mosquito
density reduction is vital, and mosquito density decreases by
half on the borders in the region of operations. Ross [10] pro-
posed the concept of mosquito density reduction through the
construction of mathematical models several decades earlier.

In recent years, the application of mathematical mod-
els to the study of infectious disease epidemic spread has
benefited the field of public health in general. For dengue
virus propagation, mathematical epidemiological investiga-
tions of interaction models involving host–vector and human
populations have been developed [11]–[14]. Many dengue
mathematical models have been constructed to evaluate the
efficiency of Vaccine and Wolbachia intervention in lower-
ing dengue transmission. They discovered that Vaccine and
Wolbachia could lower the frequency of dengue cases by
up to 80%, especially in areas where propagation is low to
moderate [15]–[17]. To observe the heterogeneity and dis-
persing effects of dengue, mathematical models based on the
life cycle and diffusion of mosquitos, as well as geographic
heterogeneity of mosquitos, have been constructed. Further-
more, diffusion approaches are used when space is treated as
a continual component [18]–[20].

Even though various mathematical models have been
developed to examine dengue groove in the presence of
vaccination and Wolbachia, rare have considered the com-
bination of the two techniques. It is critical to analyze
the results of both approaches independently and collec-
tively. The objective of this research is to explore a math-
ematical model of vaccination and Wolbachia used for
dengue transmission and dispersal and its analysis in the
form of simulation solutions to assist in understanding
dynamic behavior using a stochastic technique. Exploring
the prospect of fixing linear/nonlinear systems using the
high predictive capabilities of feedforward artificial neural
networks (ANNs) optimized with the combined capabili-
ties of local/global search methods is a significant potential
of meta-heuristic computing paradigm based on stochas-
tic approach [21]–[23]. Soft computing techniques reported
in different diseases such as Convolution neural networks
for analysis of plant diseases [24], [25], for COVID-19
disease [26]–[29], artificial neural networks for tuberculo-
sis [30], for forecasting disease [31], for skin diseases [32],
chest disease [33], for diagnosis of kidney stone dis-
eases [34], respiratory disease [35], for HIV infection [36],
to analyze influenza disease model [37] and for stomach
model [38]. In the field of fluid mechanic, ANNs success-
fully tightened the claws as these techniques have been

proved best for nonlinear complicated flow system [39]–[43].
Forecasting and finance require soft computing for rapid
marketing [44], [45].

It is investigated that the vaccination and Wolbachia have
been used to prevent the dengue spread. Wolbachia possesses
properties that differ from the insecticide-based technique,
which could have an impact on disease transmission dynam-
ics. We shall demonstrate the effectiveness of these tactics
separately or jointly after simulating the model. The goal of
the research is to find the numerical solutions via artificial
neural network understanding of the strategy’s effectiveness,
hence a single serotype dengue model will suffice.

Key procedure is as under

• The effectiveness is validated using statistical evalu-
ations of the dengue nonlinear system based on dif-
ferential equations on numerous ANN-GA-ASA trials
in terms of mean absolute deviation, semi-interquartile
range and ’Theil’s inequality coefficient.’

• Aside from the accurate results for the Dengue nonlin-
ear differential model with initial conditions, additional
valuable features include ease of understanding, faster
operation, stability, broad applicability, and robustness.

The paper is arranged into 4 sections. Section 2 comprises
the formulation of dengue model and its parameters along
values. Section 3 shows the ANN-GA-ASA methodology for
solving the dengue, as well as the mathematical form of the
statistical operators. Section 4 contains the summary of the
findings.

II. FORMULATION OF MATHEMATICAL MODEL
A predictable mathematical model is constructed for the
dengue treatment that covers Wolbachia and vaccinated pre-
sented by Nedii et al. [17]. In this model the attacking
agent (mosquito) and effected agent human are distributed
into two separate compartments. Attacking agent population
are distributed into Aquatic A, Susceptible S, Exposed E and
Infectious I , whereas human population are distributed into
Susceptible SH , Vaccinated VH , Exposed EH , Infectious IH
and Recovered RH .

The purpose of this paper is to get a broad understanding
of the potential efficacy of vaccines andWolbachia. The basic
assumptions used to build the model are as follows:

• Mosquitoes have no recovery class because they are
contagious for the remainder of their lives.

• It is sufficient to utilize a single serotype dengue model.

When susceptible individuals are attacked by contaminated
non-Wolbachia and Wolbachia-carrying mosquitoes at a rate
of λn and λW , respectively, they become infected. The human
species are injected at a rate of VH . Vaccinated people, on the
other hand, are exposed to dengue when the vaccine loses its
efficiency at a rates (1 − ε) and they are struck by diseased
non-Wolbachia and Wolbachia-carrying mosquitoes at rates
λn and λW , respectively. We consider diminishing immunity,
which occurs at a rate of ϕh, as well as randomized bulk
vaccination. The mathematical constrain for disease model
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TABLE 1. Brief description with symbols and their numerical values per
day as unite [17].

is given as:

S ′H (t) = βNH − (λn + p+ λw + µH )SH (t)+ ϕVH (t),

V ′H (t) = pSH − (1− ε)VH (t) (λn + λw)− VH (t) (ϕ + µh) ,

E ′H (t) = (λn + λw) SH (t)+ (1− ε)VH (t) (λn + λw)

−EH (t) (γH + µH ) ,

I ′H (t) = γHEH (t)− αIH (t)− µHSH (t),

R′H (t) = αIH (t)− µHRH (t),

A′N (t) =
1

2 (FN + FW )
ρNF2

N

(
1−

(AN (t)+ AW (t))
K

)
−AN (t) (τN + µNA) ,

S ′N (t) =
AN (t)τN

2
+ (1− ω)

AN (t)τN
2

−
TNbN IH (t)SN (t)

NH
−µNSN (t),

E ′N (t) =
TNbN IH (t)SN (t)

NH
− γNEN (t)− µNEN (t),

I ′N (t) = γNEN (t)− µN IN (t),

A′W (t) =
ρWFW
2K

(K − (AN (t)+ AW (t)))

−AW (t) (µWA − τW ) ,

S ′W (t) =
ωAW (t)τW

2
−
SW (t)
NH

(µW + bWTN IH (t)) ,

E ′W (t) =
bWTN IH (t)SW (t)

NH
− γWEW (t)− µWEW (t),

I ′W (t) = γWEW (t)− µW IW (t), (1)

where

λn =
TNbN IN
NH

, λW =
bWTHW IW

NH
.

We calculate the basic reproduction number, which is the
average number of new viruses created by one infected adult
in a completely vulnerable group, using the notion of the next
generation matrix. In the absence of modifications, the basic
reproduction number is,

RA =

√
T 2
Nb

2
NγNγHSN

µNNH (α + µH ) (γH + µH ) (γN + µN )

III. METHODOLOGY
For addressing the nonlinear mathematical dengue model, the
developed structure of ANNs utilizing GA-ASA optimum is
provided in two steps, as follows:
• The fitness function design is described for the ANNs
parameters.

• The hybrid combination of GA-ASA provides vital set-
tings for optimizing fitness function.

A. STRUCTURE OF ANNS
This section contains the mathematical formulas for solving
each class of the nonlinear Causative Agent Prevention Virus
(denguemodel). The functions of the nonlinear denguemodel
are respectively represented as SH , VH ,EH , IH , RH , AN , SN ,
EN , IN ,AW , SW ,EW , and IW given as (2), shown at the bottom
of the next page.
W signifies the unidentified weights in the above system,

given as:

W = [WSH , WVH ,WEH ,W IH ,WRH , WSN ,WEN ,

WAN ,W IN , WAW ,WSW ,WEW ,W IW ], for

WSH = [kSH ,ωSH , cSH ], WVH = [kVH ,ωVH , cVH ],

WEH = [kEH ,ωEH , cEH ], W IH = [kIH ,ωIH , cIH ],

WRH = [kRH ,ωRH , cRH ], WAN = [kAN ,ωAN , cAN ],
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WSN = [kSN , ωSN , aSN ],

WEN = [kEN , ωEN , cEN ],

W IN = [kIN , ωIN , cIN ], WAW = [kAW , ωAW , cAW ],

WSW = [kSW ,ωSW , cSW ], WEW = [kEW , ωEW , cEW ]

and

W IW = [kIW , ωIW , cIW ].

kSH = [kSH ,1, kSH ,2, . . . , kSH ,m],

kVH = [kVH ,1, kVH ,2, . . . , kVH ,m],

kEH = [kEH ,1, kEH ,2, . . . , kEH ,m],

kIH = [kIH ,1, kIH ,2, . . . , kIH ,m],

kRH = [kRH ,1, kRH ,2, . . . , kRH ,m],

kAN = [kAN ,1, kAN ,2, . . . , kAN ,m],

kSN = [kSN ,1, kSN ,2, . . . , kSN ,m],

kEN = [kEN ,1, kEN ,2, . . . , kEN ,m],

kIN = [kIN ,1, kIN ,2, . . . , kIN ,m],

kAW = [kAW ,1, kAW ,2, . . . , kAW ,m],

kSW = [kSW ,1, kSW ,2, . . . , kSW ,m],

kEW = [kEW ,1, kEW ,2, . . . , kEW ,m],

kIW = [kIW ,1, kIW ,2, . . . , kIW ,m],

wSH = [wSH ,1, wSH ,2, . . . ,wSH ,m],

wVH = [wVH ,1, wVH ,2, . . . ,wVH ,m],

wEH = [wEH ,1, wEH ,2, . . . ,wEH ,m],

wIH = [wIH ,1, wIH ,2, . . . ,wIH ,m],

wRH = , [wRH ,1, wRH ,2, . . . ,wRH ,m],

wAN = [wAN ,1, wAN ,2, . . . ,wAN ,m],

wEN = [wEN ,1, wEN ,2, . . . ,wEN ,m],

wSN = [wSN ,1, wSN ,2, . . . ,wSN ,m],

wIN = [wIN ,1, wIN ,2, . . . ,wIN ,m],

wAW = [wAW ,1, wAW ,2, . . . ,wAW ,m],

wSW = [wSW ,1, wSW ,2, . . . ,wSW ,m],

wIW = [wIW ,1, wIW ,2, . . . ,wIW ,m],

wEW = [wEW ,1, wEW ,2, . . . ,wEW ,m],

cSN = [cSN ,1, cSN ,2, . . . , cSN ,m],

cSH = [cSH ,1, cSH ,2, . . . , cSH ,m],

cVH = [cVH ,1, cVH ,2, . . . , cVH ,m],

cEH = [cEH ,1, cEH ,2, . . . , cEH ,m],

cIH = [cIH ,1, cIH ,2, . . . , cIH ,m],

cRH = [cRH ,1, cRH ,2, . . . , cRH ,m],

cAN = [cAN ,1, cAN ,2, . . . , cAN ,m],

cEN = [cEN ,1, cEN ,2, . . . , cEN ,m],


SH (t), VH (t), EH (t), IH (t)
RH (t), AN (t), SN (t), EN (t),
IN (t), AW (t), SW (t), EW (t),
IW (t)

 =



m∑
i= 1

kSH ,ig(wSH ,it + cSH ,i),
m∑
i= 1

kVH ,ig(wVH ,iτ + cVH ,i),

m∑
i= 1

kEH ,ig(wEH ,it + cEH ,i),
m∑
i= 1

kIH ,ig(wIH ,it + cIH ,i),

m∑
i= 1

kRH ,ig(wRH ,k t + cRH ,i),
m∑
i= 1

kAN ,ig(wAN ,it + cAN ,i),

m∑
i= 1

kSN ,ig(wSN ,it + cSN ,i),
m∑
i= 1

kEN ,ig(wEN ,it + cEN ,i),

m∑
i= 1

kIN ,ig(wIN ,k t + cIN ,i),
m∑
i= 1

kAW ,ig(wAW ,it + cAW ,i),

m∑
i= 1

kSW ,ig(wSW ,it + cSW ,i),
m∑
i= 1

kEW ,ig(wEW ,it + cEW ,i),

m∑
i= 1

kIW ,ig(wIW ,it + cIW ,i)



,


S ′H (t), V ′H (t), E ′H (t), I ′H (t)
R′H (t), A′N (t), S ′N (t), E ′N (t),
I ′N (t), A′W (t), S ′W (t), E ′W (t),
I ′W (t)

 =



m∑
i= 1

kSH ,ig
′(wSH ,it + cSH ,i),

m∑
i= 1

kVH ,ig
′(wVH ,iτ + cVH ,i),

m∑
i= 1

kEH ,ig
′(wEH ,it + cEH ,i),

m∑
i= 1

kIH ,ig
′(wIH ,it + cIH ,i),

m∑
i= 1

kRH ,ig
′(wRH ,k t + cRH ,i),

m∑
i= 1

kAN ,ig
′(wAN ,it + cAN ,i),

m∑
i= 1

kSN ,ig
′(wSN ,it + cSN ,i),

m∑
i= 1

kEN ,ig
′(wEN ,it + cEN ,i),

m∑
i= 1

kIN ,ig
′(wIN ,k t + cIN ,i),

m∑
i= 1

kAW ,ig
′(wAW ,it + cAW ,i),

m∑
i= 1

kSW ,ig
′(wSW ,it + cSW ,i),

m∑
i= 1

kEW ,ig
′(wEW ,it + cEW ,i),

m∑
i= 1

kIW ,ig
′(wIW ,it + cIW ,i)



, (2)
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cIN = [cIN ,1, cIN ,2, . . . , cIN ,m],

cAW = [cAW ,1, cAW ,2, . . . , cAW ,m],

cSW = [cSW ,1, cSW ,2, . . . , cSW ,m],

cEW = [cEW ,1, cEW ,2, . . . , cEW ,m],

cIW = [cIW ,1, cIW ,2, . . . , cIW ,m].

In the above system, the activation function log-sigmoid
g(τ ) = 1/

(
1+ E∧(−τ )

)
is applied given as (3), shown at

the bottom of the page.
The GA-ASA techniques are used to optimize an error-

based ‘fitness function,’ which is given as:

e =
14∑
n=1

en, (4)

e1 =
1
N

N∑
i=1

[
(Ŝ ′H )i − βNH + (λn + p+ λw + µH )(ŜH )i

−ϕ(V̂H )i
]2
, (5)

e2 =
1
N

×

N∑
i=1

[
(V̂ ′H )i − p(ŜH )i + (1− ε)(V̂H )i (λn + λw)

+ (V̂H )i (ϕ + µh)
]2
, (6)

e3 =
1
N

×

N∑
i=1

[
(Ê ′H )i − (λn + λw) (ŜH )i − (1− ε)(V̂H (t))i

× (λn + λw)+ (ÊH )i (γH + µH )
]2
, (7)

e4 =
1
N

N∑
i=1

[
(Î ′H )i − γH (ÊH )i + α(ÎH )i + µH (ŜH )i

]2
,

(8)


ŜH (t), V̂H (t), ÊH (t), ÎH (t)
R̂H (t), ÂN (t), ŜN (t), ÊN (t),
ÎN (t), ÂW (t), ŜW (t), ÊW (t),
ÎW (t)

 =



m∑
i=1

kSH ,i

1+e
−

(
wSH ,i

t+cSH ,i
) , m∑

i=1

kVH ,i

1+e
−

(
wVH ,i

t+cVH ,i
) ,

m∑
i=1

kEH ,i

1+e
−

(
wEH ,i

t+cEH ,i
) , m∑

i=1

kIH ,i

1+e
−

(
wIH ,i

t+cIH ,i
) ,

m∑
i=1

kRH ,i

1+e
−

(
wRH ,i

t+cRH ,i
) , m∑

i=1

kAN ,i

1+e
−

(
wAN ,i

t+cAN ,i
) ,

m∑
i=1

kSN ,i

1+e
−

(
wSN ,i

t+cSN ,i
) , m∑

i=1

kEN ,i

1+e
−

(
wEN ,i

t+cEN ,i
) ,

m∑
i=1

kIN ,i

1+e
−

(
wIN ,i

t+cIN ,i
) , m∑

i=1

kAW ,i

1+e
−

(
wAW ,it+cAW ,i

) ,
m∑
i=1

kSW ,i

1+e
−

(
wSW ,it+cSW ,i

) , m∑
i=1

kEW ,i

1+e
−

(
wEW ,it+cEW ,i

) ,
m∑
i=1

kIW ,i

1+e
−

(
wIW ,it+cIW ,i

)



,


Ŝ ′H (t), V̂ ′H (t), Ê ′H (t), Î ′H (t)
R̂′H (t), Â′N (t), Ŝ ′N (t), Ê ′N (t),
Î ′N (t), Â′W (t), Ŝ ′W (t), Ê ′W (t),
Î ′W (t)

 =



m∑
i=1

wSH ,ikSH ,ie
−

(
wSH ,i

t+cSH ,i
)

(
1+e
−

(
wSH ,i

t+cSH ,i
))2 ,

m∑
i=1

wVH ,ikVH ,ie
−

(
wVH ,i

t+cVH ,i
)

(
1+e
−

(
wVH ,i

t+cVH ,i
))2 ,

m∑
i=1

wEH ,ikEH ,ie
−

(
wEH ,i

t+cEH ,i
)

(
1+e
−

(
wEH ,i

t+cEH ,i
))2 ,

m∑
i=1

wIH ,ikIH ,ie
−

(
wIH ,i

t+cIH ,i
)

(
1+e
−

(
wIH ,i

t+cIH ,i
))2 ,

m∑
i=1

wRH ,ikRH ,ie
−

(
wRH ,i

t+cRH ,i
)

(
1+e
−

(
wRH ,i

t+cRH ,i
))2 ,

m∑
i=1

wEN ,ikEN ,ie
−

(
wEN ,i

t+cEN ,i
)

(
1+e
−

(
wEN ,i

t+cEN ,i
))2 ,

m∑
i=1

wIN ,ikIN ,ie
−

(
wIN ,i

t+cIN ,i
)

(
1+e
−

(
wIN ,i

t+cIN ,i
))2 ,

m∑
i=1

wAW ,ikAW ,ie
−

(
wAW ,it+cAW ,i

)
(
1+e
−

(
wAW ,it+cAW ,i

))2 ,

m∑
i=1

wAN ,ikAN ,ie
−

(
wAN ,i

t+cAN ,i
)

(
1+e
−

(
wAN ,i

t+cAN ,i
))2 ,

m∑
i=1

wSN ,ikSN ,ie
−

(
wSN ,i

t+cSN ,i
)

(
1+e
−

(
wSN ,i

t+cSN ,i
))2 ,

m∑
i=1

wSW ,ikSW ,ie
−

(
wSW ,it+cSW ,i

)
(
1+e
−

(
wSW ,it+cSW ,i

))2 ,
m∑
i=1

wEW ,ikEW ,ie
−

(
wEW ,it+cEW ,i

)
(
1+e
−

(
wEW ,it+cEW ,i

))2 ,

m∑
i=1

wIW ,ikIW ,ie
−

(
wIW ,it+cIW ,i

)
(
1+e
−

(
wIW ,it+cIW ,i

))2



. (3)
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e5 =
1
N

N∑
i=1

[
(R̂′H )i − α(ÎH )i + µH (R̂H )i

]2
, (9)

e6 =
1
N

×

N∑
i=1

[
(Â′N )i −

1
2 (FN + FW )

ρNF2
N1−

(
(ÂN )i + (ÂW )i

)
K

+ (ÂN )i (τN + µNA)

2

,

(10)

e7 =
1
N

×

N∑
i=1

[
(Ŝ ′N )i −

(ÂN )iτN
2

− (1− ω)
(ÂN )iτN

2

+
TNbN (ÎH )i(ŜN )i

NH
+ µN (ŜN )i

]2
, (11)

e8 =
1
N

N∑
i=1

[
(Ê ′N )i −

TNbN (ÎH )i(ŜN )i
NH

+ γN (ÊN )i

+µN (ÊN )i

]2
, (12)

e9 =
1
N

N∑
i=1

[
(Î ′N )i − γN (ÊN )i − µN (ÎN )i

]2
, (13)

e10 =
1
N

N∑
i=1

[
(Â′W )i −

ρWFW
2K

(
K −

(
(ÂN )i + (ÂW )i

))
−(ÂW )i (µWA − τW )

]2
, (14)

e11 =
1
N

N∑
i=1

[
(Ŝ ′W )i −

ω(ÂW )iτW
2

−
(ŜW )i
NH

×

(
µW + bWTN (ÎH )i

)]2
, (15)

e12 =
1
N

N∑
i=1

[
(Ê ′W )−

bWTN (ÎH )i(ŜW )i
NH

− γW (ÊW )i

−µW (ÊW )i

]2
, (16)

e13 =
1
N

N∑
i=1

[
(Î ′W )i − γW (ÊW )i + µW (ÎW )i

]2
, (17)

e14 =
1
13

((Ŝ ′H )i−I1)
2
+ ((V̂ ′H )i − I2)

2
+ ((Ê ′H )i−I3)

2

+((Î ′H )i − I4)
2
+ ((R̂′H )i − I5)

2
+ ((Â′N )i − I6)

2

+((Ŝ ′N )i − I7)
2
+ ((Ê ′N )i − I8)

2
+ ((Î ′N )i − I9)

2

+((Â′W )i−I10)2+((Ŝ ′W )i − I11)2+((Ê ′W )i−I12)2

+((Î ′W )i−I13)2

 .
(18)

where

(ŜH )i = SH (ti), (V̂H )i = VH (ti),

(ÊH )i = EH (ti), (ÎH )i = IH (ti),

(R̂H )i = RH (ti), (ÂN )i = AN (ti),

(ŜN )i = SN (ti), (ÊN )i = EN (ti),

(ÎN )i = IN (ti), (ÂW )i = AW (ti),

(ŜW )i = SW (ti), (ÊW )i = EW (ti),

(ÎW )i = IW (ti).

The quantites e1, e2, e3. . . and e13 indicate the fitness func-
tions associated to differential system (1), whereas the corre-
sponding initial conditions is represented in e14.

B. OPTIMIZATION PERFORMANCES: GA-ASA
Optimal performance of nonlinear mathematical model
of dengue virus with treatment procedure is simulated
thru the artificial technique GA-ASA. The genetic algo-
rithm (GA) is a paradigm of abiogenesis introduce by
John Holland et al. [46]. He was widely credited as being
the first one to bring the concept of crossover, mutation
and selections in artificial system which are the necessary
parts of genetic algorithm arise as problem-solving agent.
Since that day, a variety of genetic algorithm versions have
now been devised and utilized in a variety of optimization
problems, ranging from discrete systems like salesperson
travelling problem to continuous systems arise in designation
of airfoils in aerospace, from coloring of graph to pattern
recognition, and from monetary markets to multi-objective
engineering optimization [47]. Many other applications of
GA are in biomedical field such as cancer datasets with
multi-dimensional [48], categorization of anomalous com-
puted tomography brain tumor images [49], transcriptomic
cancer classifier [50], prediction of liver diseases model [51],
in transportation field applicable in vehicle routing model
and monorail dynamics model [52], [53], in geophysical
side for prediction of air blast [54], cloud model [55],
and for groundwater flow model [56], and wind power
systems [57], etc.

Using the hybridize with the local search technique, quick
convergence is achieved by combining global search with
any local search approach. As an initial input, the best
GA values are assigned. To standardize the variables, the
local search active set algorithm is used. In optimization
theory, the active set is highly crucial since it decides
which constraints will have an impact on the result of
optimization. The active set, for instance, specifies the
hyperplanes that cross at the solution point while solv-
ing a linear programming issue. Here are few contribu-
tions that us ASA such that water supply model to manage
the flow [58], optimal control issue based on PDE [59],
node-based shape optimization [60], and for electrodynamic
problems [61].

The constructed ANNs-GA-ASA for the dengue model is
illustrated in Figure 2.
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TABLE 2. Optimization procedure thru ANN-GA-ASA for dengue mathematical model.

C. PERFORMANCE MEASURES
In this section, the statistical operator characteristics relying
on ‘‘Theil’s inequality coefficient (TIC)’’, ‘‘Variance account
for (VAF)’’, ‘‘Mean absolute deviation (MAD)’’, and ‘‘Semi
interquartile range (S.I.R)’’ are theoretically described in
order to solve dengue mathematical model. (19)–(21), as
shown at the bottom of pages 10 and 11, respectively.

{
S.I Range = 0.5× (q3 − q1) ,
q1 = 1st quartile & q3 = 3rdquartile,

(22)

r shows the grid point, while ŜH , V̂H , ÊH , ÎH , R̂H , ÂN ,
ŜN , ÊN , ÎN , ÂW , ŜW and ÎW are the approximate
outcomes.
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FIGURE 1. Structures of the existing approach to solve the mathematical dengue model.
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FIGURE 2. Trained weight of dengue model with best fitness.

31124 VOLUME 10, 2022



P. Junsawang et al.: Numerical Simulations of Vaccination and Wolbachia on Dengue Transmission Dynamics

IV. SIMULATIONS AND RESULTS
This section contains thorough reviews of the acquired find-
ings for the dengue treatment in the presence of Wolbachia
and non-Wolbachia (1). Equation (1) comprises the 3 cases
of dengue reduction. (i) Vaccination (ii) Wolbachia treatment
and (iii) Vaccination and Wolbachia combine. The Genetic
Algorithm and active set algorithm is adopted for 0-1 inputs
along 0.1 step size of the dengue mathematical model in

equation (1). The findings of the Adams comparison show
that the dengue modeling approach is valid. Moreover, sta-
tistical findings are provided to ensure that the planned pro-
cedure is precise and accurate.

S ′H (t) = 0.0005852− (1.3298)SH (t)+ 0.1VH (t),

I1 = 0.1,

V ′H (t) = 0.2SH (t)− 0.4144VH (t)− 0.1151VH (t),




VAFSH ,VAFVH ,VAFEH ,VAFIH ,
VAFRH ,VAFAN ,VAFSN ,VAFEN ,
VAFIN ,VAFAW ,VAFSW ,VAFEW ,
VAFIW

 =



(
1−

var
(
(SH )r−(ŜH )r

)
var((SH )r )

)
× 100,(

1−
var
(
(VH )r−(V̂H )r

)
var((VH )r )

)
× 100,(

1−
var
(
(EH )r−(ÊH )r

)
var((EH )r )

)
× 100,(

1−
var
(
(IH )r−(ÎH )r

)
var((IH )r )

)
× 100,(

1−
var
(
(RH )r−(R̂H )r

)
var((RH )r )

)
× 100,(

1−
var
(
(AN )r−(ÂN )r

)
var((AN )r )

)
× 100,(

1−
var
(
(SN )r−(ŜN )r

)
var((SN )r )

)
× 100,(

1−
var
(
(EN )r−(ÊN )r

)
var((EN )r )

)
× 100,(

1−
var
(
(IN )r−(ÎN )r

)
var((IN )r )

)
× 100,(

1−
var
(
(AW )r−(ÂW )r

)
var((AW )r )

)
× 100,(

1−
var
(
(SW )r−(ŜW )r

)
var((SW )r )

)
× 100,(

1−
var
(
(EW )r−(ÊW )r

)
var((EW )r )

)
× 100,(

1−
var
(
(IW )r−(ÎW )r

)
var((IW )r )

)
× 100



VAFSH ,VAFVH ,VAFEH ,VAFIH ,
VAFRH ,VAFAN ,VAFSN ,VAFEN ,
VAFIN ,VAFAW ,VAFSW ,VAFEW ,
VAFIW

 =


∣∣∣∣∣∣∣∣∣∣∣∣∣

100− VAFSH , 100− VAFVH ,
100− VAFEH , 100− VAFIH ,
100− VAFRH , 100− VAFAN ,
100− VAFSN , 100− VAFEN ,
100− VAFIN , 100− VAFAW ,
100− VAFSW , 100− VAFEW ,
100− VAFIW

∣∣∣∣∣∣∣∣∣∣∣∣∣


.

(19)


MADSH ,MADVH ,MADEH ,
MADIH ,MADRH ,MADAN ,
MADSN ,MADEN ,MADIN ,
MADAW ,MADSW ,MADEW ,
MADIW

 =



n∑
r=1

∣∣∣(SH )r − (ŜH )r
∣∣∣, n∑
r=1

∣∣∣(VH )r − (V̂H )r
∣∣∣,

n∑
r=1

∣∣∣(EH )r − (ÊH )r
∣∣∣, n∑

r=1

∣∣∣(IH )r − (ÎH )r
∣∣∣,

n∑
r=1

∣∣∣(RH )r − (R̂H )r
∣∣∣, n∑
r=1

∣∣∣(AN )r − (ÂN )r
∣∣∣,

n∑
r=1

∣∣∣(SN )r − (ŜN )r
∣∣∣, n∑

r=1

∣∣∣(EN )r − (ÊN )r
∣∣∣,

n∑
r=1

∣∣∣(IN )r − (ÎN )r
∣∣∣, n∑
r=1

(AW )r − (ÂW )r ,

n∑
r=1

∣∣∣(SW )r − (ŜW )r
∣∣∣, n∑

r=1

∣∣∣(EW )r − (ÊW )r
∣∣∣,

n∑
r=1

∣∣∣(IW )r − (ÎW )r
∣∣∣



, (20)
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I2 = 0.1,

E ′H (t) = 1.1147SH (t)+ 0.4144VH (t)− 0.18204EH (t),

I3 = 0.1,

I ′H (t) = 0.182EH (t)− 0.25IH (t)− 0.0151SH (t),

I4 = 0.1,

R′H (t) = 0.25IH (t)− 0.0151RH (t),

I5 = 0.1,

A′N (t) = 0.0833
(
1−

(AN (t)+ AW (t))
2

)
− 1.3214AN (t),

I6 = 0.1,

S ′N (t) = 1.15AN (t)− 4.7052IH (t)SN (t)− 0.07SN (t),

I7 = 0.1,

E ′N (t) = 4.70521IH (t)SN (t)− 0.1EN (t)− 0.07EN (t),

I8 = 0.1,

I ′N (t) = 0.1EN (t)− 0.07IN (t),

I9 = 0.1,

A′W (t) = 0.00687 (2− (AN (t)+ AW (t)))+ 0.03AW (t),

I10 = 0.1,

S ′W (t) = 0.045AW (t)− SW (t)

× (2.0263+ 4.46886IH (t)) ,

I11 = 0.1,

E ′W (t) = 4.4686IH (t)SW (t)− 0.182EW (t)

− 0.071EW (t),

I12 = 0.1,

I ′W (t) = 0.182EW (t)− 0.077IW (t),

I13 = 0.1. (23)

Using the above system, the fitness functionmay bewritten
as (24), shown at the bottom of the next page.

The dengue mathematical system is solved utilizing the
hybrid GA-ASA for 100 iterations with 120 parameters by
optimizing the above fitness function. The proposed solutions
of the dengue mathematical system are represented by the
best weight vectors, which are as follows:

ŜH (t) =
0.7473

1+ e−(−0.8078t−0.5602)
−

−1.8513
1+ e−(−.8105t−1.5264)

−
2.4967

1+ e−(−1.33565t−2.6888)
, (25)

V̂H (t) =
0.2023

1+ e−(−0.1105t−0.8327)
−

0.0652
1+ e−(0.1713t+1.7523)

−
−0.1710

1+ e−(0.9462t+0.2607)
, (26)



TICSH ,TICVH ,
TICEH ,TICIH ,
TICRH ,TICAN ,
TICSN ,TICEN ,
TICIN ,TICAW ,
TICSW ,TICEW ,
TICIW


=



√
1
n

n∑
r=1

(
(SH )r−(ŜH )r

)2
(√

1
n

n∑
r=1

(SH )2r+

√
1
n

n∑
r=1

(ŜH )2r

) ,
√

1
n

n∑
r=1

(
(VH )r−(V̂H )r

)2
(√

1
n

n∑
r=1

(VH )2r+

√
1
n

n∑
r=1

(V̂H )2r

) ,
√

1
n

n∑
r=1

(
(EH )r−(ÊH )r

)2
(√

1
n

n∑
r=1

(EH )2r+

√
1
n

n∑
r=1

(ÊH )2r

) ,
√

1
n

n∑
r=1

(
(IH )r−(ÎH )r

)2
(√

1
n

n∑
r=1

(IH )2r+

√
1
n

n∑
r=1

(ÎH )2r

) ,
√

1
n

n∑
r=1

(
(RH )r−(R̂H )r

)2
(√

1
n

n∑
r=1

(RH )2r+

√
1
n

n∑
r=1

(R̂H )2r

) ,
√

1
n

n∑
r=1

(
(EW )r−(ÊW )r

)2
(√

1
n

n∑
r=1

(EW )2r+

√
1
n

n∑
r=1

(ÊW )2r

) ,
√

1
n

n∑
r=1

(
(IW )r−(ÎW )r

)2
(√

1
n

n∑
r=1

(IW )2r+

√
1
n

n∑
r=1

(ÎW )2r

) ,
√

1
n

n∑
r=1

(
(AN )r−(ÂN )r

)2
(√

1
n

n∑
r=1

(AN )2r+

√
1
n

n∑
r=1

(ÂN )2r

) ,
√

1
n

n∑
r=1

(
(SN )r−(ŜN )r

)2
(√

1
n

n∑
r=1

(SN )2r+

√
1
n

n∑
r=1

(ŜN )2r

) ,
√

1
n

n∑
r=1

(
(EN )r−(ÊN )r

)2
(√

1
n

n∑
r=1

(EN )2r+

√
1
n

n∑
r=1

(ÊN )2r

) ,
√

1
n

n∑
r=1

(
(IN )r−(ÎN )r

)2
(√

1
n

n∑
r=1

(IN )2r+

√
1
n

n∑
r=1

(ÎN )2r

) ,
√

1
n

n∑
r=1

(
(AW )r−(ÂW )r

)2
(√

1
n

n∑
r=1

(AW )2r+

√
1
n

n∑
r=1

(ÂW )2r

) ,
√

1
n

n∑
r=1

(
(SW )r−(ŜW )r

)2
(√

1
n

n∑
r=1

(SW )2r+

√
1
n

n∑
r=1

(ŜW )2r

)



, (21)
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TABLE 3. Statistical form for the dengue model based
(
SH

)
class.

e =
1
N
×

N∑
i=1



[
Ŝ ′H − 0.0000413NH + ( 0.165ÎNNH

− 0.2000413− 0.078ÎH
NH

)ŜH (t)− 0.1 V̂H

]2
+

[
V̂ ′H − 0.2ŜH + 0.462

(
0.165ÎN+0.078ÎH

NH

)
V̂H − 0.1000413 V̂H

]2
+[

Ê ′H −
(
0.165ÎN+0.078ÎH

NH

)
ŜH − 0.462

(
0.165ÎN+0.078ÎH

NH

)
V̂H − 0.18204ÊH

]2
+

[
Î ′H − 0.182ÊH + 0.25ÎH − 0.0000413ŜH

]2
+

[
R̂′H − 0.25ÎH + 0.0000413R̂H

]2
+

[
Â′N −

1.25
2(FN+FW )

F2
N

(
1−

(
ÂN+ÂW

)
K

)
+ 1.3214ÂN

]2
+

[
Ŝ ′N −

1.25ÂN
2 − 0.525 ÂN + 0.164682ÎH ŜN

NH
+ 0.07ŜN

]2
+

[
Ê ′N −

0.164682ÎH ŜN
NH

+ 0.1ÊN + 0.07ÊN

]2
+

[
Î ′N − 0.1ÊN + 0.07ÎNr

]2
+

[
Â′W −

0.275FW
2K (K − (AN (t)+ AW (t)))− 0.03ÂWr

]2
+

[
Ŝ ′W − 0.045ÂW −

ŜW
NH

(
0.077+ 0.1564ÎH

)]2
+

[
Ê ′W −

0.1564ÎH ŜW
NH

+ 0.182ÊW + 0.071ÊW

]2
+

[
Î ′W − 0.182ÊW + 0.077ÎWr

]2



+
1
13


(
(Ŝ ′H )0 − 0.1

)2
+

(
(V̂ ′H )0 − 0.1

)2
+

(
(Ê ′H )0 − 0.1

)2
+

(
(Î ′H )0 − 0.1

)2
+

(
(R̂′H )0 − 0.1

)2
+

(
(Â′H )0 − 0.1

)2
+

(
(Ŝ ′N )0 − 0.1

)2
+

(
(Ê ′NH )0 − 0.1

)2
+

(
(Î ′N )0 − 0.1

)2
+

(
(Â′H )0 − 0.1

)2
+

(
(Ŝ ′W )0 − 0.1

)2
+

(
(Ê ′H )0 − 0.1

)2
+

(
(Î ′H )0 − 0.1

)2
 . (24)
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FIGURE 3. The comparison of best, reference and mean solutions for the dengue system.
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FIGURE 3. (Continued.) The comparison of best, reference and mean solutions for the dengue system.
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FIGURE 3. (Continued.) The comparison of best, reference and mean solutions for the dengue system.

31130 VOLUME 10, 2022



P. Junsawang et al.: Numerical Simulations of Vaccination and Wolbachia on Dengue Transmission Dynamics

FIGURE 3. (Continued.) The comparison of best, reference and mean solutions for the dengue system.

TABLE 4. Statistical form for the dengue model based
(
VH

)
and

(
EH

)
classes.

ÊH (t) =
−1.1560

1+ e−(0.1434t+0.3753)
−

0.5852
1+ e−(2.0046t+2.4891)

−
0.3524

1+ e−(0.8160t+0.8222)
, (27)

ÎH (t) =
0.0009178

1+ e−(0.2297t−0.1076)
−

0.0975
1+ e−(1.1845t−0.5986)

−
0.2455

1+ e−(−0.6195t−1.0212)
, (28)

R̂H (t) =
0.3716

1+ e−(0.2188t+1.7740)
−

0.1099
1+ e−(−0.5871t+0.5293)

−
−0.3944

1+ e−(−0.2998+0.9808)
, (29)

ÂN (t) =
−1.0474

1+ e−(−0.1646t−0.2226)
−

0.7539
1+ e−(0.0439t+0.8545)

−
0.0524

1+ e−(1.4054t+0.8575)
, (30)
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FIGURE 4. Relative observation of absolute errors for 5 number of neurons.
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FIGURE 4. (Continued.) Relative observation of absolute errors for 5 number of neurons.

ŜN (t) =
−0.9953

1+ e−(0.0833t−1.0666)
−

0.4806
1+ e−(0.1958t+0.7104)

−
0.1787

1+ e−(−0.6518t−1.4993)
, (31)

ÊN (t) =
1.0246

1+ e−(0.5340t+2.0261)
−

−0.6639
1+ e−(−0.6442t−1.9707)

−
−1.3326

1+ e−(−0.1368+0.1736)
, (32)

ÎN (t) =
−0.5449

1+ e−(0.5943t+0.8333)
−

0.5565
1+ e−(0.4906t+0.1319)

−
0.5985

1+ e−(0.0263t−08180)
, (33)

ÂW (t) =
−0.0265

1+ e−(−0.5592t+0.6220)
−

−0.0525
1+ e−(−0.9524t−1.3714)

−
0.2641

1+ e−(0.1429t−0.0633)
, (34)

VOLUME 10, 2022 31133



P. Junsawang et al.: Numerical Simulations of Vaccination and Wolbachia on Dengue Transmission Dynamics

FIGURE 5. Convergence schemes for the TIC values to solve the dengue nonlinear model.
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FIGURE 6. Convergence schemes for the MAD values to solve the dengue nonlinear model.
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FIGURE 7. Convergence plans for the EVAF values to solve the dengue nonlinear model.
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TABLE 5. Statistical form for the dengue model based
(
IH

)
and

(
RH

)
classes.

TABLE 6. Statistical form for the dengue model based
(
AN

)
and

(
SN

)
classes.
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TABLE 7. Statistical form for the dengue model based
(
EN

)
and

(
IN

)
classes.

TABLE 8. Statistical form for the dengue model based
(
AW

)
and

(
SW

)
classes.
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TABLE 9. Statistical form for the dengue model based
(
EW

)
and

(
IW

)
classes.

ŜW (t) =
−0.0038

1+ e−(1.6262t−2.6939)
−

3.7533
1+ e−(−1.5112t−3.7917)

−
0.0323

1+ e−(−1.0341t+0.1005)
, (35)

ÊW (t) =
−0.5196

1+ e−(1.3278t+1.8181)
−

0.6266
1+ e−(0.2059t+0.2056)

−
0.4311

1+ e−(−.4109t−0.1291)
, (36)

ÎW (t) =
0.0020

1+ e−(−12.7782t−3.4483)
−

1.1030
1+ e−(−0.8979t−2.7955)

−
0.5522

1+ e−(−1.3383t−2.6500)
, (37)

Optimization of equation (1) is made through hybrid
computing technique GA-ASA by setting 100 runs along

5 neurons. The balance weight of dengue model by GA-ASA
are performed and then trained weight along 5 neurons of
dengue model is set in Figure 2(i-xiii) for all classes such
as SH , VH ,EH , IH , RH , AN , SN , EN , IN ,AW , SW ,EW , and
IW given in equation (1). Figure 3 (i-xiii) constructed the
best output of individual class as a result whereas the sec-
ond half Figure 3 (xiv-xvii) show the comparison result of
best weight between GA-ASA with Adam numerical method
to solve the dengue model. The visible differences are not
seen in all graphs yield close agreement of both strategies.
Figure 4 dispatched theAbsolute error of proposedmodel and
Adam method where Figure (4a-4m) indicates the AE for SH
in range 10−7 to 10−5, for VH ranging 10−6 to 10−4, for EH
in range 10−7 to 10−5, IH in interval 10−5 to 10−075, for RH
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FIGURE 8. Comparison histogram plots of EVAF, MAD, and TIC for dengue nonlinear model.
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TABLE 10. Global TIC, MAD and E-VAF gages for dengue model.

in range10 −6 to 10−3, for AN in range 10−6 to 10−3, for
SN in interval 10−6 to 10−2,EN ranging 10−8 to 10−4, for
IN in range 10−7 to 10−5, AW in interval 10−8 to 10−4, SW
in 10−7 – 10−5, EW in the range 10−7 to 10−5, and IW in
interval 10−7 to 10−5 proven the resemblance of GA-ASA
with numerical Adam method.

Figure 5 (a-c) -7 (a-c) signifies the concert operators built
on E-VAF, TIC and MAD to decipher the dengue mathemat-
ical model. It is noted that the finest results of SH , VH ,EH ,
and IH classes with E-VAF, MAD and TIC lie about 10−10 to
10−2, 10−6 to 10−04 and 10−10-10−8, respectively. The good
result of RH , AN , SN , and EN lie around 10−8−10−6, 10−6−
10−2 and 10−6 − 10−4, for these operators, respectively.
While, another appropriate results of IN ,AW , SW ,EW , and IW
lie around 10−9 to 10−4, 10−06 to 10−4 and 10−11 to 10−9,
respectively. Since these findings, one might conclude that
the proposed strategy is accurate. Figures 8 (a-c) show visual-
ization tools with histograms employing statistical operations
to validate the convergence measures for solving the dengue
model. Throughout average resemblance of SH , VH ,EH , and

IH classes in histogram representation is in the range of 10−10

to 10−0, for RH , AN , SN , and EN in interval 10−10 to 10−0,
and for IN ,AW , SW , EW , and IW classes in interval 10−11

to 10−5 in the case of EVAF, MAD, and TIC declared the
convergence region of dengue model via GA-ASA.
Tables 3–8 show statistical analyses for all categories of

the dengue mathematics system employing the tools Min-
imum (Min), Average (Mean), Maximum (Max), Median,
SD, SI-Range for highly precise and consistency examination
(ST-D).
The better outcomes of the suggested ANN-GA-ASA

for handling the dengue mathematical model are the Min-
imal values whereas the Max values are worth of the
suggested ANN-GA-ASA for tackling the dengue model.
Based on these proofs of attained results, it is proved that
ANN-GA-ASA is reliable and exact.
Convergence tabulation presentation for 100 iterations of

ANN-GA-ASA of [G-FIT], [G-MAD], and [G-TIC] tools
for each category of dengue model is shown in Table 10.
The average values [G-FIT], [G-MAD], and [G-TIC] lie in
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ranging 10−3−10−6, 10−7−10−10, and 10−1−10−7 whereas
SI values in interval 10−5 − 10−10 shows the significance
for each category of dengue model. The close optimum out-
puts were observed by the global evaluations indicate to the
ANN-GA-ASA’s precision, reliability, and consistency.

V. CONCLUSION
This study is related to design a new coding scheme for
tackling the nonlinear dengue mathematical model concern
with treatment process. The treatment process is studied for
three different situations such as vaccination,Wolbachia ther-
apy, and combine both therapies. Artificial neural networks
are used in conjunction with the features of the Genetic
algorithm’s global and Active-set algorithm as local search
methodologies. The dengue nonlinear model is properly
tested by manipulating the GA-ASA with neural networks
layer structure for 5 number of neurons. The suggested
model is tested through overlapping results with Adams
numerical technique in the appropriate precision level while
simulate the dengue model. Statistical tools in the form of
‘‘Mean’’, ‘‘Median’’, ‘‘Semi inter quartile range’’, ‘‘coeffi-
cient of Theil’s inequality’’, ‘‘Mean absolute deviation’’, and
‘‘Variance account for’’ reveal the exactness and worth of
adopted algorithm. ‘‘Mean’’, and ‘‘Semi inter quartile range’’
operators are used for global significance of nonlinear mathe-
matical dengue model. The MAD and TIC operators are used
to calculate the satisfactory values of the performance indices.
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