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ABSTRACT The Golden code is a full-rate full-diversity (FRFD) space-time block code. The encoder of
the Golden code takes four complex symbols and generates two pairs of Golden codewords. The encoding
of each Golden codeword can be regarded as superposition coding with ‘‘complex’’ power allocation. In this
paper, we propose an alternative encoding of the Golden code which can be regarded as superposition coding
with ‘‘real’’ power allocation. The Golden code with ‘‘complex’’ power allocation or ‘‘real’’ power allocation
is hereinafter referred to as the C-Golden code or R-Golden code, respectively. The R-Golden code also
preserves the FRFD property. The R-Golden code can be easily implemented in passband modulation using
in-phase and quadrature components compared to the C-Golden code. An equivalent received signal model
of the R-Golden code system is constructed, then used to derive a closed-form on the lower bound of the
average bit error probability. We further propose a low complexity detection scheme, the fast essentially
maximum-likelihood detection with adaptive signal detection subset (FE-ML-ASDS) for the R-Golden code.
Both simulation and theoretical results show that both the C-Golden code and the R-Golden code achieve
the same error performance. Compared to the fast essentially ML detection with signal detection subset
(FE-ML-SDS), at high signal-to-noise ratios, the proposed FE-ML-ASDS further reduces detection com-
plexity by at least 68% for the 16QAM or 64QAM R-Golden code with three receive antennas.

INDEX TERMS C-Golden code, FE-ML-ASDS, FE-ML-SDS, Golden code, Golden codeword, maximum-
likelihood detection, R-Golden code, superposition coding.

I. INTRODUCTION
For real-time applications in the next-generation of wire-
less communication systems, it is necessary to have high
data transmission rate, good wireless link reliability and low
complexity detection schemes. Multiplexing is a technique
which can be used to increase data transmission rate, while
diversity is an approach to improve link reliability. Multiple-
input multiple-output (MIMO) techniques are able to offer
either multiplexing gain and/or diversity order. But not all
MIMO schemes simultaneously provide multiplexing gain
and diversity order. There is a trade-off between multiplexing
gain and diversity order in MIMO systems [1]. The trade-off
between multiplexing gain and diversity order depends on the
encoding scheme employed in the MIMO system.

For example, the Alamouti scheme [2], space-time
labelling diversity (STLD) [3], and Golden code [4]
are all space-time block codes (STBCs), which are all
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MIMO systems with two transmit antennas. In the above
three STBC schemes, the Alamouti scheme is a full-diversity
half-rate STBC code with linear maximum-likelihood (ML)
detection, the STLD scheme is a labelling and full-diversity
half-rate STBC code with O(M2) detection complexity for
ML detection, and the Golden code is a full-rate full-diversity
(FRFD) STBC with O(M4) detection complexity for ML
detection, whereM is the modulation order and the code rate
is defined as the number of transmitted symbols per antenna
use per transmission time slot.

Amongst the above three STBCs with two transmit anten-
nas, Alamouti STBC has been used in modern wireless tech-
nologies like Wireless Fidelity (Wi-Fi) IEEE 802.11n [5] and
IEEE 802.11ah low power Wi-Fi [6]. However, the Golden
code is a competitor of the Alamouti STBC because the
Golden code achieves both spatial multiplexing gains and
full diversity order. The Golden code has already been incor-
porated in the IEEE 802.16 (WiMAX) standard [7]. In this
paper, we focus on the Golden code with low complexity
detection. Very recently, the component-interleaved Golden
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code (CI-Golden code) and the multiple complex symbol
Golden code (MCS-Golden code) were proposed in [8]
and [9]. Both the CI-Golden code and the MCS-Golden code
are also full-rate STBC codes. Compared to the Golden code,
both the CI-Golden code and the MCS-Golden code achieve
higher diversity order and further improve error performance.

The encoder of the Golden code takes four complex sym-
bols and generates four Golden codewords. Let j =

√
−1

be a complex number. There are four parameters in the four
Golden codewords: α = 1 + jθ̄ , ᾱ = 1 + jθ , θ = 1+

√
5

2
and θ̄ = 1 − θ . One of the four Golden codewords is
xs = 1

√
5
α(x1 + x2θ ). Let α1 = 1

√
5
α, α2 = 1

√
5
αθ .

The Golden codeword is rewritten as xs = α1x1 + α2x2.
Borrowing the concept of the superposition coding in the
downlink nonorthogonal multiple access (DL-NOMA) sys-
tem, the encoding of the Golden code in the form of
xs = α1x1 + α2x2 can be regarded as superposition coding
with ‘‘complex’’ power allocation. This is because |α1|2 +
|α2|

2
= 1, and both α1 and α2 are complex, not real.

Let α = 1 + jθ̄ = |α|ejϕ . Motivated by real power
allocation of superposition coding in DL-NOMA system,
we rotate α by an angle −ϕ, and then we have e−jϕα = |α|.
Similarly, we rotate 1

√
5
α(x1 + x2θ ) by an angle −ϕ then

the encoding 1
√
5
α(x1 + x2θ ) becomes e−jϕ 1

√
5
α(x1 + x2θ ) =

β1(x1 + x2θ ) = β1x1 + β2x2, where β1 = 1
√
5
|α|, β2 =

1
√
5
|α|θ . The alternative encoding β1x1+β2x2 can be regarded

as superposition codingwith ‘‘real’’ power allocation because
|β1|

2
+ |β2|

2
= 1, and both β1 and β2 are real, not com-

plex. Similarly other Golden codewords can also be rotated
until superposition coding with ‘‘real’’ power allocation is
achieved. For convenience of discussion, the Golden code
with ‘‘complex’’ power allocation and the Golden code with
‘‘real’’ power allocation are hereinafter referred as C-Golden
code and R-Golden code, respectively. Since the average
transmit signal power of β1x1 + β2x2 in the R-Golden code
is the same as 1

√
5
α(x1 + x2θ ) in the C-Golden code, the

error performance of the R-Golden code system is the same
as the C-Golden code system. In Eqs. (3) or (4) of [10], the
variances of the equivalent channel models of error perfor-
mance bound A, also explained that only the amplitudes,
not the phases affect the error performance of the proposed
system.

In the C-Golden code, one of the Golden codewords is
rewritten as xs = α1x1+α2x2. Let αi = αIi + jα

Q
i , i ∈ [1 : 2],

xk = xIk + jx
Q
k , k ∈ [1 : 2], and xs = α1x1+α2x2 = xIs + jx

Q
s .

Then we have:

xIs = α
I
1x

I
1 + α

I
2x

I
2 − α

Q
1 x

Q
1 − α

Q
2 x

Q
2 , (1.1)

xQs = α
I
1x

Q
1 + α

I
2x

Q
2 − α

Q
1 x

I
1 − α

Q
2 x

I
2. (1.2)

If we implement the baseband model xs = xIs + jxQs in
passband in terms of ys = xIs cos(2π fct) + xQs sin(2π fct),
where fc is the carrier frequency, we have to implement

αI1x
I
1 + α

I
2x

I
2 − α

Q
1 x

Q
1 − α

Q
2 x

Q
2 for xIs and αI1x

Q
1 + α

I
2x

Q
2 −

α
Q
1 x

I
1 − α

Q
2 x

I
2 for x

Q
s .

Similarly, in the R-Golden code one of the Golden code-
words is β1x1+β2x2. Let x̃s = β1x1+β2x2. Then we further

have x̃s = x̃Is + jx̃Qs , where x̃Is = β1xI1 + β2x
I
2 and x̃Qs =

β1x
Q
1 + β2x

Q
2 . Compared to implementing αI1x

I
1 + α

I
2x

I
2 −

α
Q
1 x

Q
1 −α

Q
2 x

Q
2 for xIs andα

I
1x

Q
1 +α

I
2x

Q
2 −α

Q
1 x

I
1−α

Q
2 x

I
2 for x

Q
s in

the C-Golden code, we only need to implement β1xI1 + β2x
I
2

for x̃Is and β1x
Q
1 + β2x

Q
2 for x̃Qs , which is easily implemented

in passband in terms of ys = x̃Is cos(2π fct) + x̃
Q
s sin(2π fct).

In this paper, this is the key motivation to propose an alterna-
tive encoding of the Golden code.
The detection complexity of the optimal ML detection for

the R-Golden code is extremely high, which is proportional
to O(M4). Thus a low complexity detection algorithm is
also important to the applications of the R-Golden code.
Based on the structure of the R-Golden code, all detection
algorithms for the C-Golden code can be applied to detect the
R-Golden code. Reduced complexity detection algorithms
for the Golden code have been recently surveyed in [10].
Two new reduced complexity detection algorithms have
also been proposed in [10]. These two detection algorithms
are the fast essentially ML with signal detection subset
(FE-ML-SDS) and the sphere decoding with signal detection
subset (SD-SDS). The detection complexity of the FE-ML-
SDS is O(2 × M1

2),M1 ≤ M , which is much smaller
than the ML detection complexity O(M4). The average
cardinality of the signal set used in SD-SDS is reduced
fromM2 toM1

2 forM -ary quadrature amplitude modulation
(MQAM). The detection complexity of the SD-SDS is also
greatly reduced compared to the conventional sphere decod-
ing. Very recently, the sphere decoding with sorted signal
detection subset (SD-SSDS) has been proposed in [9]. The
detection complexity of the SD-SSDS is even smaller than
the SD-SDS. In this paper, we only focus on the
FE-ML based low complexity detections of the R-Golden
code.
The threshold based signal detection (TSD) has been pro-

posed to detect the transmitted symbols in the superposition
coded signal for specific power allocation in the DL-NOMA
system [11]. The TSD is modified to detect the superposi-
tion coded signal with non-specific power allocation. In the
R-Golden code, x1 and x2 can be also estimated using
the modified TSD. This is an important advantage com-
pared to the C-Golden code. We will exploit this advan-
tage in the FE-ML-SDS to further reduce detection
complexity.
Given two complex symbols, the FE-ML-SDS algorithm

decomposes the ML detection of four complex symbols into
two ML detections of the remaining two complex symbols.
These two given complex symbols belong to the prede-
fined signal detection subsets. The FE-ML-SDS algorithm
implemented two decompositions using the predefined sig-
nal detection subsets. In order to further reduce detection
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complexity, in this paper, the FE-ML with adaptive sig-
nal detection subset (FE-ML-ASDS) is proposed. The
FE-ML-ASDS is achieved by aid of the TSD.

Based on the above, the main contributions of this paper
are summarized as:
• The alternative encoding of the Golden code is proposed

in this paper. The alternative encoding of the Golden code is
treated as superposition coding with ‘‘real’’ power allocation,
which is named as R-Golden code. The R-Golden code is
also an FRFD STBC. Compared to the C-Golden code, the
R-Golden code is easily implemented in passband in terms of
ys = xIs cos(2π fct)+ x

Q
s sin(2π fct).

• The FE-ML-ASDS is also proposed in this paper. Com-
pared to the FE-ML-SDS, the FE-ML-ASDS can further
reduce detection complexity for the R-Golden code.

The remainder of the paper is organized as follows:
In Section II, the system model, which includes the Golden
codeword, the R-Golden codeword and the R-Golden code
system, is presented. In Section III, we present the sig-
nal constellation of the R-Golden codewords and the
TSD for the R-Golden codewords. The lower bound
on the average bit error probability (ABEP) for the
R-Golden code system is derived in Section IV. Differ-
ent detection schemes, which includes QR decomposi-
tion based signal detection, fast essentially ML detection,
FE-ML-SDS and the proposed FE-ML-ASDS, are described
in Section V. In Section VI, the simulation results are demon-
strated. Finally, the paper1 is concluded in Section VII.

II. SYSTEM MODEL
The key component of the R-Golden code is the encoding
of the Golden code. In this section, we firstly present the
encoding of the C-Golden code, then describe the proposed
alternative encoding of the Golden code, and finally present
the R-Golden code system.

A. THE ENCODING OF THE C-GOLDEN CODE
The encoder of the C-Golden code takes four complex
input symbols and outputs four super-symbols, which are
regarded as Golden codewords in this paper. Suppose that
information bits are grouped into four bit streams, bi =
[bi,1 bi,2 · · · bi,m], i ∈ [1 : 4], m = log2M , where M is
the modulation order. Each bit stream bi is then mapped onto

a constellation point xi of squared MQAM, xi ∈ E�M , where
E�M is the signal set of MQAM signals. The C-Golden code
transmission matrix is given by [2]:

Xc
= [Xc

1 Xc
2] =

[
xc11 xc21
xc12 xc22

]
, (2)

1Notation: Bold letters are used to denote vectors and matrices. [·]T , (·)H ,
| · | and ‖ · ‖F represent the transpose, Hermitian, Euclidean and Frobenius
norm operations, respectively. D(·) is the constellation demodulator func-
tion. (·)−1 is the inverse. E{·} is the expectation operation. j =

√
−1 is a

complex number.<{·} and ={·} are the real and imaginary parts, respectively,
of a complex number.

where xcik , i, k ∈ [1 : 2] are expressed as:

xc11 =
1
√
5
α(x1 + x2θ ), (3.1)

xc12 =
1
√
5
α(x3 + x4θ ), (3.2)

xc21 =
1
√
5
jᾱ(x3 + x4θ̄ ), (3.3)

xc22 =
1
√
5
ᾱ(x1 + x2θ̄ ). (3.4)

In (3.1) to (3.4), θ = 1+
√
5

2 , θ̄ = 1 − θ , α = 1 + jθ̄ and
ᾱ = 1 + jθ . It is assumed that E{|xi|2} = ε�, i ∈ [1 : 4].
Let xc11 ∈ E�C , where E�C is the signal set of xc11. Appendix A
in [10], shows that xc12 ∈ E�C , xc21 ∈ E�C and xc22 ∈ E�C . For
convenience, in this paper, we regard xcik , i, k ∈ [1 : 2], as the
C-Golden codewords.

B. THE ENCODING OF THE R-GOLDEN CODE
The encoder of the R-Golden code also takes four complex
input symbols and produces four R-Golden codewords. The
derivation of the four R-Golden codewords is based on the
C-Golden codewords.

In (3.1) to (3.4), we let α = |α|ejϕ1 , ᾱ = |ᾱ|ejϕ2 and jᾱ =
|ᾱ|ejϕ3 . We also let β1 = 1

√
5
|α|, β2 = 1

√
5
|ᾱ| = 1

√
5
|α|θ .

It is noted that (β1)2+ (β2)2 = 1. It is also easy to derive that
1
√
5
|ᾱ|θ̄ = β2θ̄ = −β1.

In order to implement superposition encoding with ‘‘real’’
power allocation, an alternative encoding of the Golden code
is to rotate xc11 and x

c
12 by angle −ϕ1, xc21 by angle −ϕ3 and

xc22 by angle −ϕ2. Then we have:

xs11 = e−jϕ1xc11 = β1x1 + β2x2, (4.1)

xs12 = e−jϕ1xc12 = β1x3 + β2x4, (4.2)

xs21 = e−jϕ3xc21 = β2x3 − β1x4, (4.3)

xs22 = e−jϕ2xc22 = β2x1 − β1x2, (4.4)

where we used β2θ̄ = −β1 in the derivation of (4.3) and (4.4).
Compared to the implementation of (3.1) to (3.2) in pass-

band, in terms of y = xI cos(2π fct) + xQ sin(2π fct) for
x = xI + jxQ, the implementation of (4.1) to (4.4) is much
simpler. This is the key advantage of the R-Golden code.

From (4.1) to (4.4), it is easily seen that there are two
pairs of the R-Golden codewords, (xs11, x

s
22) and (xs12, x

s
21).

Let xs11 ∈ E�S , where E�S is the signal set of xs11. We also
have xs12 ∈ E�S .
Given xi ∈ E�M , we also have −xi ∈ E�M . We further have

xs22 ∈ E�S and xs21 ∈ E�S .
Correspondingly, the R-Golden code transmission matrix

is written as:

X s
= [X s

1 X s
2] =

[
xs11 xs21
xs12 xs22

]
. (5)

In the R-Golden code system, x1 and x2 or x3 and x4 can
be very easily detected using the TSD algorithm if xsik ,
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i, k ∈ [1 : 2] is known at the receiver. This is an important
feature of the R-Golden code, which will be used to further
reduce detection complexity of the FE-ML-ASDS. However,
in the C-Golden code system, x1 and x2 or x3 and x4 may not
be easily detected even if xcik , i, k ∈ [1 : 2] is known at the
receiver.

C. THE R-GOLDEN CODE SYSTEM MODEL
Consider an R-Golden code system with Nt = 2 transmit
antennas andNr receive antennas,Nr ≥ Nt [10]. The received
signal in time slot i, i ∈ [1 : 2] is given by:

yi = H iX s
i + ni, (6)

where yi ∈ CNr×1 is the signal vector received in the ith,
i ∈ [1 : 2] time slot. H i = [hi,1 hi,2] is the channel
gain matrix corresponding to the ith time slot with CNr×1

column vectors hi,1 and hi,2. ni ∈ CNr×1 is the additive
white Gaussian noise (AWGN) vector for the ith time slot.
The entries of hi,k and ni are independent and identically

distributed (i.i.d.) complex Gaussian random variables (RVs)
distributed as CN (0,1) and CN (0, 2ε�

ρ
), respectively. ρ2 is the

average signal-to-noise ratio (SNR) at each receive antenna.
From (6), it is easily seen that each transmit antenna

transmits two input symbols in two time slots. Hence, the
R-Golden code also is a full-rate code. Further, it is also easily
seen that each transmitted input symbol experiences two
different fadings in two time slots. Therefore, the R-Golden
code also achieves full-diversity order 2Nr . So the R-Golden
code also is an FRFD STBC.

III. SIGNAL CONSTELLATION OF THE R-GOLDEN
CODEWORDS
Superposition coded signal constellation has been analyzed
in [11]. In this section, we use the approach in [11] to analyze
the signal constellation of the R-Golden codewords.

In the R-Golden code system, there are two pairs of
four R-Golden codewords (xs11, x

s
22) and (x

s
12, x

s
21). However,

in this section, we only analyze the signal constellation for
one pair of R-Golden codeword (xs11, x

s
22). The approach can

be used to analyze the signal constellation for another pair of
R-Golden codeword.

Let xi = xIi + jxQi , i ∈ [1 : 2]. Then xs11 and xs22 in (4.1)
and (4.4) are rewritten as:

xs11 = xI11 + jx
Q
11, (7.1)

xs22 = xI22 + jx
Q
22, (7.2)

where xIii = <{x
s
ii} and x

Q
ii = ={x

s
ii}, i ∈ [1 : 2].

Let p ∈ [I ,Q]. We further have xp11 = β1x
p
1 + β2x

p
2 and

xp22 = β1x
p
1 − β2x

p
2 . Both xp11 and xp22 show that the alter-

native encoding of the Golden code or superposition encod-
ing can be decoupled into in-phase superposition encoding
and quadrature superposition encoding. This is an impor-
tant behaviour of the R-Golden code system. This important
behaviour of R-Golden code can be applied into the FE-ML

with ASDS to further reduce detection complexity. However,
the C-Golden code does not have this important behaviour.

Let p ∈ [I ,Q] then xpi ∈ E�
p
K , E�

p
K is the signal set of the

amplitude shift keying (ASK) modulation with modulation
order K . Since we only take into account squaredMQAM in
this paper, we have K =

√
M . The in-phase or quadrature

components of xp11 and x
p
22 in (7.1) and (7.2) can be rewritten

as:

xp11 = β1x
p
1 + β2x

p
2 , (8.1)

xp22 = β1x
p
1 − β2x

p
2 , (8.2)

where xpii ∈ E�
p
S , i ∈ [1 : 2], E�p

S is the signal set of xpii with
modulation order K 2.

Let zkii be the signal value of xpi , where ki is the signal index
of xpi , ki ∈ [1 : K ]. We also let zkss1 and z

ks
s2 be the signal values

of xp11 and x
p
22, where ks is the signal index of x

p
11 and x

p
22 and

ks ∈ [1 : K 2].
As discussed in [11], the superposition coding of (8.1) and

(8.2) can be alternatively expressed as encoding functions
f1 and f2. Given x

p
i = zkii , i ∈ [1 : 2] then xp11 = zkss1 and

xp22 = zkss2 are expressed as:

zkss1 = f1
(
zk11 , z

k2
2

)
, (9.1)

zkss2 = f2
(
zk11 , z

k2
2

)
, (9.2)

where ks = (k1−1)×K+k2. It is also noted that z
ks
s1 , z

ks
s2 ∈
E�
p
S .

In the R-Golden code system, the encoding functions in
(9.1) and (9.2) generate K 2 pairs of outputs (zkss1 , z

ks
s2 ) for x

p
i =

zkii , i ∈ [1 : 2]. Thus the signal detection at the receiver can
be regarded as two inverse functions f −11 and f −12 . Suppose
that the xp11 and x

p
22 are estimated as x̂p11 = ẑkss1 and x̂

p
22 = ẑkss2

at the receiver then the estimation of xpi , i ∈ [1 : 2] can be
expressed as two inverse functions f −11 and f −12 , which are
given by: [

x̂1p1 = zk11 , x̂
1p
2 = zk22

]
= f −11

(
ẑkss1

)
, (10.1)[

x̂2p1 = zk11 , x̂
2p
2 = zk22

]
= f −12

(
ẑkss2

)
. (10.2)

In (10.1) and (10.2), both x̂1p1 and x̂1p2 are estimated based
on the received signal in time slot 1, while x̂2p1 and x̂2p2 are
estimated based on the received signal in time slot 2. Suppose
that the channel state information (CSI) is known at the
receiver. Then x̂1pi = x̂2pi , i ∈ [1 : 2] if noise is absent.
However, x̂1pi may be different from x̂2pi if there exists

noise during transmission. The probability for x̂1pi = x̂2pi
increases as the SNR increases. At high SNR, the probability
for x̂1pi = x̂2pi is large. We will use x̂1pi = x̂2pi to aid the
FE-ML-ASDS to further reduce detection complexity.

Now we use an example to explain encoding func-
tions (9.1) and (9.2) and detection functions (10.1) and
(10.2). Suppose that the modulation in the R-Golden code
system is 16QAM. Then we have xpi ∈ E�

p
4, where

E�
p
4 = [−3,−1, 1, 3], i ∈ [1 : 2]. We further have
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TABLE 1. Alternative encoding outputs of golden code.

FIGURE 1. The signal constellation of xp
11 and xp

22.

z1i = −3, z
2
i = −1, z

3
i = 1 and z4i = 3. Let xp1 = zk11 , x

p
2 =

zk22 , x
p
11 = zkss1 and xp22 = zkss2 in (8.1) and (8.2), where

ks = (k1 − 1) × 4 + k2. Then we have the alternative
encoding zkss1 = β1z

k1
1 + β2z

k2
2 and zkss2 = β1z

k1
1 − β2z

k2
2 . The

alternative encoding outputs are tabulated in TABLE 1.
The above signal constellation of xp11 and xp22 is shown

in FIGURE 1.
The TSD is proposed to detect the superposition coded

signal with specific power allocation [11]. It is required the

superposition coded signal z
k2s
si > z

k1s
si for k2s > k1s given

z
k2i
i > z

k1i
i for k2i > k1i . This is an important constraint to

detect xp1 and x
p
2 using the TSD. From FIGURE 1 it is easy to

know that the constellation in FIGURE 1 does not meet the
constraint for the TSD algorithm. For example, FIGURE 1(a)
shows z5s1 < z2s1 and FIGURE 1(b) shows z8s2 < z2s2 .

In order to apply the TSD to detect both xp1 and x
p
2 , we per-

form an ascending sort for the superposition coded signal
zkssi , ks ∈ [1 : K 2], which is given by:[

Z̃si 8i
]
= argsort

(
Zsi
)
, (11)

FIGURE 2. The sorted signal constellation of xp
11 and xp

22.

where Zsi =
[
z1si , · · · , z

K2

si

]
and Z̃si =

[
z̃8(l1)si , · · · , z̃

8(lK2 )
si

]
.

Further
[
z̃8(l1)si , · · · , z̃

8(lK2 )
si

]
=

[
z̃1si , · · · , z̃

K2

si

]
. The

argsort (·) operator arranges the K 2 elements in ascend-
ing order. 8i is a vector of the index mapper, 8i =[
1, 2, · · · ,K 2

]
=

[
8i(l1), · · · ,8i(lK2 )

]
. Consequently a

vector of the inverse index mapper is defined as 8i
−1
=[

l1, l2, · · · , lK2
]
=
[
8i(1)−1, · · · ,8i(K 2)

−1]
.

In the above example, we have:

8−11 =
[
1, 5, 2, 9, 6, 13, 3, 10, 7, 14, 4, 11, 8, 15, 12, 16

]
,

8−12 =
[
4, 3, 8, 2, 7, 1, 12, 6, 11, 5, 16, 10, 15, 9, 14, 13

]
.

The signal constellation in terms of z̃kssi , ks ∈ [1 : K 2] is
shown in FIGURE 2.

We will apply the TSD in the new sequence Z̃si to detect
the transmitted xp1 and xp2 signals in Section V.

IV. ERROR PERFORMANCE ANALYSIS OF THE
R-GOLDEN CODE
In R-Golden code system, four MQAM symbols are trans-
mitted in two time slots using two transmit antennas. The
received signal model for the R-Golden code is the same as
the C-Golden code. The error performance of the C-Golden
code has been analyzed in literature. Appendix B in [10] has
proven that the bounded conditional pairwise error probabil-
ity (PEP) for the C-Golden code at high SNR is equivalent to
assume that only one input MQAM symbol is detected with
errors, while the remaining three input MQAM symbols are
detected correctly. The simulated error performance and the
theoretical error performance derived in literature [10] vali-
dated that the above assumption works very well for Nr ≥ 3
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at high SNR for the C-Golden code. In the error performance
analysis of the R-Golden code system, we also assume that
one input MQAM symbol x1, is detected with errors, while
the remaining three inputMQAM symbols xi, i ∈ [2 : 4], are
detected correctly.

Then (6) can be simplified as:

y1 = β1h1,1x1 + n1, (12.1)

y2 = β2h2,2x1 + n2. (12.2)

Let h̃1,1 = β1h1,1 and h̃2,2 = β2h2,2. Then (12.1) and
(12.2) may be rewritten as:

y1 = h̃1,1x1 + n1, (13.1)

y2 = h̃2,2x1 + n2. (13.2)

In (13.1) and (13.2), the entries of h̃1,1 and h̃2,2 are
i.i.d. complex Gaussian RVs with distribution CN(0, (β1)2)
and CN(0, (β2)2), respectively. Alternatively, the equivalent
analysis model for error performance of the R-Golden code
in (13.1) and (13.2), can be regarded as the transmission
of x1 over two non-identical fading channels with variance
(β1)2 and (β2)2, respectively. The ABEP of the equivalent
received signal model in (13.1) and (13.2) has been derived
in Equ. (5) in [10], which is given by:

pe ≈
a

c log2M

[
1
2

2∏
k=1

(
2

2+ |βk |2bγ̄

)Nr
−

(a
2

)
×

2∏
k=1

(
1

1+ |βk |2bγ̄

)Nr
+(1− a)

c−1∑
i=1

2n∏
k=1

(
si

si + |βk |2bγ̄

)Nr
+

2c−1∑
i=c

2∏
k=1

(
si

si + |βk |2bγ̄

)Nr ]
, (14)

where c ≥ 10 is the number of partitioning intervals in this
algorithm of numerical integration. γ̄ = ρ

2ε�
, a = 1 − 1

√
M
,

b = 3
M−1 , and si = 2 sin2 ( iπ4c ).

Since only one input MQAM symbol is assumed to be
detected with errors in the above derivation, (14) actually
represents a lower bound on the ABEP of the R-Golden code
system.

V. DETECTION SCHEMES FOR THE R-GOLDEN CODE
SYSTEMS
In this section, we discuss the detection schemes for the
R-Golden code system. We firstly present the QR decom-
position based signal detection, then present the TSD,
followed by the FE-ML-SDS, and finally describe the
proposed FE-ML-ASDS.

A. QR DECOMPOSITION BASED SIGNAL DETECTION
Based on the complex QR decomposition,H i in (6) is rewrit-
ten as:

H i = QiRi, (15)

where Qi ∈ CNr×Nr is a unitary matrix, Ri ∈ CNr×2,
Ri =

[
Ri1 Ri2

]T , where Ri2 is a zero matrix with (Nr − 2)×
2 dimension and Ri1 is an upper-triangular matrix with 2× 2
non-negative real diagonal elements, given by:

Ri1 =
[
r11i1 r12i1
0 r22i1

]
. (16)

Substituting H i = QiRi into yi, then (6) can be further
written as:

yi = QiRiX
s
i + ni, i ∈ [1 : 2]. (17)

Now, multiplying both sides of (17) by QHi , we have:

zi = RiX s
i + n̂i, i ∈ [1 : 2], (18)

where n̂i = QHi ni and zi =
[
z1i z

2
i

]T
= QHi yi. z

1
i =[

z11i z12i
]T is a vector with 2× 1 dimension and z2i is a vector

with (NR − 2)× 1 dimension.
Based on Ri =

[
Ri1 Ri2

]T , ignoring the noise term in (18),
we have:

z1i = Ri1X s
i , i ∈ [1 : 2]. (19)

Based on the R-Golden transmission matrix in (5), the
equivalent uij = xsij + nij, i, j ∈ [1 : 2] can be derived
from (19), which are given by:

u12 = z121 /r
22
1 , (20.1)

u11 =
(
z111 − r

12
1 u12

)
/r111 , (20.2)

u22 = z122 /r
22
2 , (20.3)

u21 =
(
z112 − r

12
2 u22

)
/r112 . (20.4)

Let x̃i = xi + ñi, i ∈ [1 : 4]. Based on the superposition
encoding in (4.1) to (4.4), x̃i can be further derived from u11
and u12 or u21 and u22. The derived x̃i are given by:

x̃1 = β1u11 + β2u22, (21.1)

x̃2 = β2u11 − β1u22, (21.2)

x̃3 = β1u12 + β2u21, (21.3)

x̃2 = β2u12 − β1u21. (21.4)

Finally, the estimation of xi is given by:

x̂i = D(x̃i), i ∈ [1 : 4]. (22)

The detection complexity of the QR decomposition based
signal detection is very low. However, the error performance
is worse compared o theML detection. In the next subsection,
we will present one of the low complexity detection schemes,
the TSD.

B. THE THRESHOLD BASED SIGNAL DETECTION
In the previous subsection, the transmitted MQAM symbols
xi are estimated based on two time slot received signals.
Alternatively, based on the received signal y1 or y2 in each
time slot, the transmittedMQAMsymbols xi can be estimated
by use of the TSD.
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The thresholds play a key role in the TSD algorithm. Let
tkth represent these thresholds in FIGURE 2 (a) and (b), where
k ∈ [1 : K 2

− 1]. These thresholds tkth are easily derived as:

tkth = z̃ksi +
z̃k+1si − z̃

k
si

2
, (23)

The thresholds tkth, k ∈ [1 : K 2
− 1] are also shown in

FIGURES 2 (a) and (b).
Nowwe apply the TSD in [11] to the signal constellation in

FIGURE 2 (a) and (b) to detect the transmitted signals. Since
the TSD is not directly applied in FIGURE 1, we regard the
signal detection scheme as a modified TSD.

As an example, let xp1 = −3 and xp2 = 3 based on the
encoding of the R-Golden code, we have xp11 = β1x

p
1 +

β2x
p
2 = z4s1 and x

p
22 = β2x

p
1 − β1x

p
2 = z4s2 . It takes two time

slots to transmit R-Golden codewords. xp11 is transmitted at
time slot one, while xp22 is transmitted at time slot two. At the
receiver, up11 = xp11 + n

p
11 = z4s1 + n

p
11 and u

p
22 = xp22 + n

p
22 =

z4s2 + n
p
22. Based on either up11 or u

p
22, the TSD can estimate

the transmitted xp1 and x
p
2 . Let x̂

t1
1 and x̂ t12 be the estimations of

the transmitted xp1 and x
p
2 based on u

p
11 at time slot one and x̂ t21

and x̂ t22 be the estimations of the transmitted xp1 and xp2 based
on up22 at time slot two.
Suppose t9th < up11 < t10th and t1th < up22 < t2th then the

TSD estimates the transmitted xp1 and xp2 as x̂ t11 = −3 and
x̂ t12 = 3 at time slot one and x̂ t21 = −3 and x̂

t2
2 = 1 at time slot

two. From this example, it is seen that x̂ t11 = x̂ t21 , but x̂
t1
2 6= x̂ t22 .

Similarly, applying the TSD on up12 and u
p
21 the transmitted

xp3 and xp4 can also be estimated.
In the above modified TSD, let x̂ t1i be the estimated

MQAM symbols from u11 and u12 and x̂ t2i be the estimated
MQAM symbols from u21 and u22. It is easily seen that both
x̂ t1i and x̂ t2i are based on one time slot received signal. It is also
easily seen that x̂i in (22) are based on two time slot received
signals. The error performance of the above estimated x̂i
is better than x̂ t1i or x̂ t2i . However, the error performance
of the estimated x̂i is still far from the optimal detection.
In the subsequent subsections, we will discuss another two

low complexity detection schemes, the FE-ML-SDS and the
proposed FE-ML-ASDS. The two low complexity detection
schemes can achieve the optimal error performance.

C. FAST ESSENTIALLY ML DETECTION (FE-ML)
The FE-ML was proposed in [7], which reduces the detection
complexity fromO(M4) toO(M2). For convenient discussion
of the FE-ML detection, we rewrite (6) as:

y1 = h1,1xs11 + h1,2x
s
12 + n1, (24.1)

y2 = h2,1xs21 + h2,2x
s
22 + n2. (24.2)

Substituting (4.1) to (4.4) into (24.1) and (24.2), we have:

Y = H13X13 +H24X24 + N, (25)

where Y =
[
y1 y2

]T , H13 =

[
β1h1,1 β1h1,2
β2h2,2 β2h2,1

]
, H24 =[

β2h1,1 β2h1,2
−β1h2,2 −β1h2,1

]
, X13 =

[
x1 x3

]T , X24 =
[
x2 x4

]T and

N =
[
n1 n2

]T .
Ignoring noise N in (25), the pair X13 of symbols can be

estimated, given the pair X24 of symbols:

X̃13 = (HH
13H13)−1HH

13(Y −H24X24). (26)

Alternatively, the pair X24 of symbols can be estimated,
given the pair X13 of symbols:

X̃24 = (HH
24H24)−1HH

24(Y −H13X13). (27)

The FE-ML detection is shown in Algorithm 1.

D. FAST ESSENTIALLY ML DETECTION WITH SIGNAL
DETECTION SUBSET
The FE-ML detection algorithm searches the signal set E�M
to estimate xi, i ∈ [1 : 4]. The detection complexity is
proportional toO(M2) forMQAM. In order to further reduce
the detection complexity of the FE-ML, the FE-ML-SDS was
proposed in [10]. The FE-ML-SDS only searches a part of the
whole signal set E�M to estimate xi, i ∈ [1 : 4].
The part of the whole signal set E�M is referred to as SDS.
Definition 1: Given an ith symbol x = zi, an ith SDS is

defined as E�(zi, δ) =
{
zj, |zj − zi|2 ≤ δ, j ∈ [1 : M ]

}
.

The FE-ML-SDS algorithm firstly performs the coarse
estimation of xi given in (22) based on QR decomposition
based detection, finds signal detection subset E�(x̂i, δ) for
each x̂i, replaces �M with E�(x̂i, δ) in the FE-ML algorithm
(Algorithm 1) and lastly conducts the final estimation of xi.
As an example, we consider xi, i ∈ [1 : 4] being 16QAM

symbols. Let δ = 4. It is easily found that the average
cardinality of E�(x̂i, δ) is 4. The detection complexity is pro-
portional toO(2×42), which ismuch smaller thanO(2×162).
In general, the detection complexity is proportional to

O(2 × L2i ), where Li is the average cardinality of E�(x̂i, δ).
If the average cardinality of the signal detection subset is
reduced, the overall detection complexity can be further
reduced. In the next subsection, an adaptive signal detection
subset is proposed to further reduce the average cardinality of
the signal detection subset.

E. FAST ESSENTIALLY ML DETECTION WITH ADAPTIVE
SIGNAL DETECTION SUBSET
For a given MQAM modulation, the average cardinality of
the SDS in the FE-ML-SDS is constant. In order to further
reduce the detection complexity for the FE-ML-SDS, the FE-
ML-ASDS is proposed in this subsection. At high SNR the
average cardinality of the adaptive SDS in the FE-ML-ASDS
is reduced. The ASDS is achieved by the aid of x̂ t1i and x̂ t2i ,
the detected MQAM symbols in the TSD, and the detected
MQAM symbols x̂i shown in (22) in the QR decomposition
based signal detection, i ∈ [1 : 4].
Let the estimation of xi be zki in QR decomposition based

signal detection. That is x̂i = zki . Then the SDS E�(x̂i, δ)
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Algorithm 1 FE-ML Detection

Input: Received signal vectors Y =
[
y1 y2

]T , H13, H24 and
xi ∈ E�M =

[
z1 · · · zK2

]
.

Output: x̂1, x̂2, x̂3, x̂4.
Given X24 estimate X13;
G1 = (HH

13H13)−1HH
13;

for k2← 1 to K 2 do
for k4← 1 to K 2 do

k ← (k2 − 1)× K 2
+ k4;

x2← zk2 , x4← zk4 ;
X24 =

[
x2 x4

]T ;
X̃13 = G1(Y −H24X24);
x̂1 = D(X̃13(1)), x̂3 = D(X̃13(2));
X̂
13
(k, :) =

[
x̂1 x2 x̂3 x4

]T ;
d13(k) = ‖Y − (H13 ˆX13(k)+H24X24)‖2F

end for
end for
Given X13 estimate X24;
G2 = (HH

24H24)−1HH
24;

for k1← 1 to K 2 do
for k3← 1 to K 2 do

k ← (k1 − 1)× K 2
+ k3;

x1← zk1 , x3← zk3 ;
X13 =

[
x1 x3

]T ;
X̃24 = G2(Y −H13X13);
x̂2 = D(X̃24(1)), x̂4 = D(X̃24(2));
X̂
24
(k, :) =

[
x1 x̂2 x3 x̂4

]T ;
d24(k) = ‖Y − (H13X13 +H24X̂24(k))‖2F

end for
end for[
d13m k13m

]
= mink∈[1:K4](d

13(k));[
d24m k24m

]
= mink∈[1:K4](d

24(k));

x̂1 = X̂
13
(k13m , 1), x̂2 = X̂

13
(k13m , 2), x̂3 =

X̂
13
(k13m , 3), x̂4 = X̂

13
(k13m , 4);

if d13min > d24min then

x̂1 = X̂
24
(k24m , 1), x̂2 = X̂

24
(k24m , 2), x̂3 =

X̂
24
(k24m , 3), x̂4 = X̂

24
(k24m , 4);

end if

is found in Section D. Based on the Euclidean distances
between x̂i and the symbols in the SDS we sort all symbols
in the SDS E�(x̂i, δ) from the most probable transmitted to
the least probable transmitted. The metric to estimate the
possibilities of the transmitted symbols is given by:

mi(k) = |x̃i − x̌k |2, (28)

where k ∈ [1 : Li], and x̌k ∈ E�(x̂i, δ), where Li is the
cardinality of E�(x̂i, δ).
Let mi =

{
mi(k), k ∈ [1 : Li]

}
, i ∈ [1 : 4]. The most

probable index estimation of xi is obtained by evaluating:

ĩk = argsort (mi) , (29)

TABLE 2. τk for the FE-ML-ASDS.

where the argsort (·) operator arranges the Li elements from
most probable to least probable. ĩ =

[
ĩ1, · · · , ĩLi

]
.

Let τ3, τ2 and τ1 be positive integers with τ3 > τ2 > τ1.
If x̂ t1i = x̂ t2i = zki and x̂i = zki , the probability of transmitting
symbol xi = zki is very large. In this case, we use small
cardinality τ1 to construct the signal detection subset for xi.

If x̂ t1i = x̂ t2i = zki , but x̂i 6= zki . In this case, we use
a little large cardinality τ2 to construct the signal detection
subset for xi. The last case is x̂

t1
i 6= x̂ t2i . In this case, we use

large τ3 to construct the signal detection subset for xi. The
implementation of ASDS is given in Algorithm 2.

Algorithm 2 Implementation of Adaptive Signal Detection
Subset
Input: Estimation of transmitted xi: x̂

t1
i , x̂

t2
i and x̂i, i ∈ [1 : 4],

and three predetermined cadinalities: τl, l ∈ [1 : 3].
Output: Li, i ∈ [1 : 4]

for i← 1 to 4 do
if x̂ t1i = x̂ t2i = zki and x̂i = zki then

Li = τ1;
else if x̂ t1i = x̂ t2i = zki and x̂i 6= zki then

Li = τ2;
else

Li = τ3;
end if

end for

VI. SIMULATION RESULTS
In this section, we will present simulation results for the
R-Golden code systems in frequency-flat Rayleigh fading
with AWGN as described in Section II. It is assumed that
the CSI is fully known at the receiver. As per the discussion
in [10], the R-Golden code system is valid for Nr ≥ 2.

However, in this section, we only consider Nr > 2 to
enable comparison with the theoretical ABEP (14) derived in
Section III. Based on TABLE3 in [10], δ = 16 and δ = 20 are
set for simulations of 16QAM and 64QAMGolden code with
Nr = 3, respectively; and δ = 4 is set for simulations of both
16QAM and 64QAM Golden code with Nr = 4.
Let Li be the average cardinality of E�(x̂i, δ). τk for the

FE-ML-ASDS are tabulated in TABLE 2.
In the following two subsections, we firstly present the

simulated detection complexity and then present the simu-
lated bit error rate (BER).

A. DETECTION COMPLEXITY ANALYSIS
The detection complexity of the FE-ML-SDS has been ana-
lyzed in [10]. Similar to the discussion of detection complex-
ity in [10], the metric of the detection complexity discussed
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FIGURE 3. Detection Complexity versus normalized SNR for 16QAM and
64QAM R-Golden code with Nr = 3.

FIGURE 4. Detection Complexity versus normalized SNR for 16QAM and
64QAM R-Golden code with Nr = 4.

in this paper, is in terms of the calculating (26) or (27) for
detection of four MQAM symbols. The simulated detection
complexities of the FE-ML-SDS and the FE-ML-ASDS for
16QAM and 64QAM R-Golden code with Nr = 3 and
Nr = 4 are shown in FIGURES 3 and 4, respectively.
Let ComSDS and ComASDS be the detection complex-

ity of the FE-ML-SDS and the FE-ML-ASDS, respec-
tively. Now we define the percentage of complex-
ity reduction for the FE-ML-ASDS compared to the
FE-ML-SDS as:

β =
ComSDS − ComASDS

ComSDS
× 100. (30)

From the simulated detection complexity in
FIGURES 3 and 4 it is observed that:

1) The detection complexity of the FE-ML-SDS is almost
constant because only one δ is used to construct symbol
detection subsets.

FIGURE 5. BER versus normalized SNR for 16QAM and 64QAM R-Golden
code with Nr = 3.

FIGURE 6. BER versus normalized SNR for 16QAM and 64QAM R-Golden
code with Nr = 4.

2) The detection complexity of the proposed FE-
ML-ASDS decreases as SNR increases. From
Algorithm 2 it is seen that the lower end of the detection
complexity of the FE-ML-ASDS is (τ1)2.

3) For Nr = 3, β = 78.6 for 64QAM at 28.5 dB and
β = 68.7 for 16QAM at 22.5 dB.

4) For Nr = 4, β = 63.5 for 64QAM at 25.5 dB and
β = 67.8 for 16QAM at 19.5 dB.

B. BIT ERROR RATE ANALYSIS FOR R-GOLDEN CODE
In this paper, both the FE-ML-SDS and the FE-ML-ASDS
are applied in the 16QAM and 64QAM R-Golden code with
Nr = 3 and Nr = 4. Again, we set the simulation parameters
for the R-Golden code according to TABLE 1 in this paper.

All BER simulation results of the two detection algorithms
are shown in FIGURES 5 and 6. All theoretical results based
on (14) are also shown in FIGURES 5 and 6. For comparison,
we also simulated the 16QAM and 64QAM C-Golden codes.
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The BER simulation results of the 16QAM and 64QAM
C-Golden code are also shown in FIGURES 5 and 6.

From the results in FIGURES 5 and 6, it is observed that:
1) Both the C-Golden code and the R-Golden code

achieve the same error performance. This is because
the average transmit signal power of β1x1 + β2x2 in
the R-Golden code is the same as 1

√
5
α(x1+ x2θ ) in the

C-Golden code.
2) As the number of receive antennas increases, the simu-

lated BER draws closer to the theoretical bound.
3) For Nr = 3, the proposed FE-ML-ASDS detection

algorithm achieves the same error performance of
the FE-ML-SDS detection algorithm until a BER
of 2 × 10−5. However the detection complexity of
the FE-ML-ASDS is much lower than the FE-ML-
SDS at high SNR. This is because the proposed
FE-ML-ASDS has a large probability to correctly esti-
mate the transmitted symbols with small cardinality of
the SDS at high SNR.

VII. CONCLUSION
In this paper, we proposed an alternative encoding of the
Golden code. The alternative encoding of the Golden code
is regarded as superposition coding with ‘‘real’’ power allo-
cation. Compared to the C-Golden code, it is comparatively
easy to implement the R-Golden code in passband mod-
ulation. The lower bound on the ABEP for the R-Golden
code system was also derived. Furthermore, the FE-ML with
adaptive SDS was proposed in this paper, to further reduce
the detection complexity. Simulation and theoretical results
validated that both the C-Golden code and the R-Golden code
achieve the same error performance. For the R-Golden code
system with Nr = 3, the detection complexity of the FE-ML-
ASDS is at least 68 percent lower than the FE-ML-SDS at
high SNR.
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