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ABSTRACT With the development of computer technology and expanding environmental issues, machine
learning has received more andmore attention in the field of weather forecasting. Global Navigation Satellite
System-Radio Occultation(GNSS-RO) technology is a kind of remote sensing technology. This investigation
proposes an alternative to numerical weather forecasting model. The new method is based on machine
learning utilizing GNSS-RO data to forecast the wind field in the Beijing-Tianjin-Hebei region of China.
The dataset including temperature, humidity, pressure, wind speed and direction was obtained by numerical
calculation in terms of historical monitoring data in Beijing-Tianjin-Hebei region. Then the models of wind
fields forecasting based on machine learning were established with different neural network including Long
Short-Term Memory (LSTM), Convolutional Neural Network (CNN) and Deep Neural Networks (DNN).
The prediction performance of different models was analyzed. The results demonstrate that LSTM and CNN
have better performance on predicting the wind field than Deep Neural Networks. The wind speed error is
about 1.4m/s, and the wind direction error is about 30◦. Moreover, the time required for neural network to
predict a new sample is about 1 second, which is only 0.2% of the prediction time compared with numerical
model. Finally, the machine learning model can be used to predict the wind field effectively, with GNSS-RO
data as the input in application. This paper pro-vides a new method in sight to use machine learning to
forecast the regional wind field utilizing GNSS-RO data.

INDEX TERMS Wind fields forecasting, machine learning, GNSS-RO, long short-term memory (LSTM),
convolutional neural networks (CNN).

I. INTRODUCTION
In recent years, with the development of the industrialization,
the environmental problems caused by industrial production,
especially the air pollution problems, have a serious threat
to our lives [1]. The wind field has a direct impact on
air pollution [2]. In order to predict and pre-warning air
pollution, it is of great significance to propose an effective
method to predict the regional wind field.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li .

With the development of the observation technology, the
accuracy and resolution of meteorological data used for
wind field prediction have been greatly improved [3]. Global
Navigation Satellite System-Radio Occultation(GNSS-RO)
is a remote sensing technology, which has the advantages
of high precision, high vertical resolution, self-correction,
global coverage, all-weather, real-time, long-term stability
and low cost [4]. An occultation event is that one GNSS
satellite receives the signal transmitted by an-other LEO
satellite in a time period. Each occultation event corresponds
to a profile. In the aspects of providing temperature, humidity,
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pressure profile monitoring means, GNSS-RO technology
plays an irreplaceable role due to the global uniform
distribution and high vertical resolution [5]. It has great
scientific significance for weather forecasting and provides
an extensive application prospect. Mueller et al. [6] assessed
the potential impact of GNSS-RO on forecasting tropical
cyclone track, maximum 10-m wind speed and integrated
kinetic energy. The track model prediction error was similar
to those of the National Hurricane Center, and the maximum
10-m wind speed and integrated kinetic energy error showed
similar results. Allabakash and Lim [7] used the planetary
boundary layer height obtained from GNSS-RO dataset to
examine its impact on the temperature, relative humidity,
surface pressure and wind speed of the Korean peninsula
and surrounding waters. Liou et al. [8] found the height
dependence of GNSS-RO data and the gravity waves and
estimated the horizontal wind speed perturbations. The
results are in good agreement with radiosonde data. Based
on the simulated observations, Ying and Zhang [9] explored
the potentials in improving the prediction of weather systems
and the accuracy of wind speed, temperature and humidity
over 200km.

The observation data of temperature, humidity and pres-
sure can be collected from GNSS-RO, so as to simulate
and predict the wind field and reflect the distribution of
the wind field [10]. These observation data can be used as
boundary and initial conditions to forecast meteorological
parameters with atmospheric physics model [11]. A widely
used numerical weather prediction model is WRF (weather
research and forecasting) model, which can reflect the
real atmospheric data or ideal atmospheric environment by
simulation [12]. It is widely used in the research of fore-
casting wind speed, temperature, humidity and pressure [13].
Pokhrel et al. [14] used WRF to simulate the changes of
wind speed, rainfall and other meteorological data caused
by Hurricane Maria. This study filled the gap of the hydro-
meteorological processes due to the limited observational
data. Díaz Fernández et al. [15] used WRF model to sim-
ulate five atmospheric variables, including wind direction,
wind speed, atmospheric stability, liquid water content and
temperature, to forecast and warn mountain waves, wave
clouds and icing events. Three prediction methods were
validated against satellite images. Yang et al. [16] configured
Microwave Radiation Imager (MWRI) radiance data in WRF
model’s data assimilation system to improve the analysis
of typhoon central sea level pressure and wind speed and
compared with European Centre for Medium-RangeWeather
Forecasts (ECMWF) analysis data.

Compared with the traditional methods, machine learning
model does not need to build control equations to describe
the atmospheric motion, which can greatly reduce the time
required for prediction [17]–[19]. Machine learning model
can analyze meteorological data to achieve the purpose
of prediction and is more and more used in the of wind
field prediction [20]–[23]. Wang et al. [24] proposed and
compared 8 methods of wind speed prediction based on

machine learning. They improved the comb-dirmo model to
predict the wind field and achieved good results. Neshat et al.
[25] adopted a new hybrid deep learning-based method to
train and test the winds over the Baltic Sea and proved
that the model is superior to other six machine learning
models and seven hybrid models. The new model was
combined with bi-directional long short-term memory neural
network, effective hierarchical evolutionary decomposition
technology and improved generalized normal distribution
optimization algorithm. Dong et al. [26] proposed a new
hybrid machine learning method. In the study, It solved the
poor interpretability and robustness which were caused by
the non-convexity of loss function. The local convolution
neural network was adopted to keep the convexity of the
loss function, effectively solved the convergence problem of
non-convexity, and improved the accuracy and stability of
wind speed prediction. Inspired by the residual U-net archi-
tecture of convolutional neural network, Shivam et al. [27]
proposed a Res-DCCNN model for wind speed prediction
and verified the robustness and accuracy of the model
on real wind speed datasets with different probability
distributions.

In this paper, a machine learning-based method for wind
fields forecasting utilizing GNSS-RO data is proposed.
The GNSS-RO technology and deep learning algorithm are
combined to forecast the wind field in Beijing-Tianjin-Hebei
region. The prediction of wind field in Beijing-Tianjin-Hebei
region is divided into the following four steps: Firstly,WRF is
used to predict the wind field in Beijing-Tianjin-Hebei region
in previous years with the historical data from the European
Centre for Medium-Range Weather Forecasts; Secondly,
the datasets including temperature, humidity, pressure, wind
speed and direction are obtained from the simulation results,
which are treated as the characteristic data for the input of
machine learning. The deep learning models are established,
trained and tested with the dataset; Thirdly, the accuracy
and calculation time are compared between different neural
networks, such as Long Short-Term Memory (LSTM),
Convolutional Neural Networks (CNN) and Deep Neural
Networks (DNN); Finally, the wind field is predicted by
the deep learning model with the dataset which includes
temperature, humidity and pressure obtained fromGNSS-RO
data.

II. METHODOLOGY
A. GNSS RADIO OCCULTATION
Global Navigation Satellite System (GNSS)/Low Earth
Orbit Satellite (LEO) Radio Occultation Technology has
become a new method to detect the earth environment
parameters [28]–[33]. The main navigation satellite systems
in theworld include theGlobal Positioning System (GPS), the
Galileo system cooperated by the EU and China, the Global
Navigation Satellite System of Russia, and China’s BeiDou
Navigation Satellite System. With the improvement of global
navigation, the radio occultation technology has been further
developed.
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FIGURE 1. Diagram of radio occultation process. 
UCAR.

GNSS radio occultation technology began in the 1990s [5].
In 1995, the successful launch of American LEO satellite
verified the feasibility of using navigation satellite and
LEO satellite to detect the earth’s atmosphere [5]. GNSS
radio occultation can obtain the information of electron
density of ionospheric and atmospheric refractive index,
and then retrieve the atmospheric temperature, pressure
and humidity from the refractive index [34]–[39]. The
electromagnetic wave signal from GNSS satellite passes
through the atmosphere and is received by GNSS receiver
installed on LEO satellite. Due to the inhomogeneity of the
atmosphere, the atmosphere will produce refraction effect on
the electromagnetic wave emitted by GNSS, which makes the
electromagnetic wave bend. The receiver on LEO satellite can
get accurate phase delay and signal-to-noise ratio. By using
Doppler observation equation and ephemeris of LEO satellite
and navigation satellite, the additional phase delay and
amplitude data of signal are de-rived, and the variation of
bending angle with altitude is obtained; On this foundation,
by using Abel transform, the atmospheric refractive index
can be obtained by bending angle, and then the atmospheric
parameters such as temperature, humidity and pressure can
be deduced. Figure 1 is a schematic diagram of the radio
occultation process.

GNSS-RO technology has the advantages of high pre-
cision, high vertical resolution, self calibration, global
coverage, all-weather, real-time, long-term stability and low
cost. It can provide temperature, humidity, pressure profile
which have the characteristic of global uniform distribution
and high vertical resolution [40]. The data of temperature,
humidity and pressure is able to be used to calculate the
atmospheric wind field and reflect the distribution of the
atmospheric wind field [41]. These data can be processed
from radio occultation to forecast meteorological parameters
utilizing prediction model.

B. NEURAL NETWORK MODELS
This experiment is based on the server with the memory
size of 64G and 128 CPU core numbers. The study used

python to build neural networks in the PyCharm, an integrated
development environment. Karas is one of the python deep
learning application programming interfaces, the sequential
model of which was used to set neural network parameters.

DNN uses back propagation algorithm, which is composed
of multi-layer perceptron [42], [43]. The basic idea of DNN
is the gradient descent method, which adjusts the parameters
of neural network, gradually reduces the error mean square
deviation of the actual output value and the expected value
of neural network. Finally, it makes the error mean square
deviation reach the minimum, so as to get the output value
closest to the expected value [44]–[46]. DNN algorithm
includes two stages: signal forward propagation and error
back propagation. The training results are recorded in the
form of weights and thresholds of each neuron. The neural
network is continuously trained by repeating the two stages
of forward propagation and back propagation, so that the
predicted value of wind speed and direction is the closest
to the true value. Keras was used in DNN. The input layer
of the model is composed of Temperature, humidity and
pressure data of 245 points distributed around the predicted
location. The hidden layer is designed as three layers, with
64 neurons in each layer. Finally, the number of neurons in
the out-put layer is 1. Different models output meridional
wind, zonal wind and wind direction respectively. We have
carried relevant experiments and proved that the prediction
effect of DNN in this study is similar to that of random forest.
Therefore, we no longer take random forest as the research
method alone in this paper.

Convolution neural network (CNN) is a kind of feed-
forward neural network, which is one of the most widely
used deep learning algorithms [47]. But different from DNN,
convolution neural network consists of the following five
parts: input layers, convolution layers, pooling layers, fully
connected layers and output layers. The advantage with
respect to the prediction performance of convolution neural
network is that it can extract features of input by convolution
and pooling compared with other neural networks. Features
refer to the wind speed and direction obtained from
temperature, humidity and pressure. The convolution layer
extracts feature by dot product of the convolution kernel and
the data of the training set. The pooling layer processes the da-
ta from the convolution layer to reduce the feature dimension.
Due to the convolution layer and pooling layer, convolutional
neural network has good performance in extracting input data
features.

The input layer of convolutional neural network can pro-
cess multi-dimensional data and contain multiple channels.
The hidden layer of convolutional neural network includes
convolution layer and pooling layer, which is a unique
structural feature of convolutional neural network [48], [49].
The output of the convolution layer is represented as follows:

Z l+1i,j = F1

(∑k l

q=1
wli,qZ

l
i,r + b

l
i,j

)
, (1)

r = (j− 1) ∗ sl, (2)
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where Z li,j signifies jth input of ith period in lth layer, wli,q
signifies qth weight of ith period in lth layer, bli,j signifies
jth bias of ith period in lth layer, F1 signifies the activation
function, k l and sl signify the kernel size and the stride in
lth layer. The output of the pooling layer is represented as
follows:

Z l+1i,j = F2
(
Z li,r+1,Z

l
i,r+2,Z

l
i,r+3, . . . ,Z

l
i,r+k l

)
, (3)

r = (j− 1) ∗ sl, (4)

where Z li,j signifies jth input of ithn period in lth layer, wli,q
signifies qth weight of ith period in lth layer, bli,j signifies jth
bias of ith period in lth layer, F2 signifies the function that
find the maximum or minimum value in these variables, k l

and sl signify the kernel size and the stride in lth layer.
The temperature (data format: 5 × 7 × 7), humidity (data

format: 5 × 7 × 7), and pressure data (data format: 5 ×
7 × 7) were integrated and reshaped to a dataset (data
format: 3 × 5 × 49). Two convolutional layers were used
to extract data features, with a number of 128 convolution
kernels respectively. The size of the convolution kernel is 3×
5 and 2 × 3 respectively. And the max pooling function and
a kernel size of 2 × 2 were used in the two pooling layers.
At last, the fully connected layer is designed as three hidden
layers, with 64 neurons in each layer.

Long Short-Term Memory (LSTM) neural network
[50]–[53] is a kind of Recurrent Neural Network (RNN).
When dealing with some events related to the occurrence
time, the traditional CNN cannot solve the problems caused
by the correlation be-tween different time series data.
Therefore, LSTM has become a better choice when dealing
with time series problems. LSTM is a kind of particular
structure to selectively let information pass through. LSTM
stores the information of the past event with cells. It protects
and controls the information by three gate structures: input
gate, forgetting gate and output gate. The function of the
forgetting gate is to select the discarded in-formation from the
cells. The forgetting gate will read the output data and input
data of the previous step and output a number from 0 to 1.
The number indicates the degree of information retention, and
1 means complete retention. The output of the forgetting gate
can be represented as follows:

ft = σ
(
wf · [ht−1, xt ]+ bf

)
, (5)

where σ is the sigmoid function, ht−1 is the output data of
(t−1)th period, xt is the input data of tth period, wf is the
weight and bf is bias.

The function of the input gate is to select new data to
store in the cell. The sigmoid layer is used to select what
information needs to be updated, and the activation layer is
used to generate the content of the updated information C̃t .
With the output of forgetting gate, the old cell state Ct−1 is
updated to Ct . The equation of C̃t , and Ct are represented as
follows:

C̃t = F (wC · [ht−1, xt ]+ bC ) , (6)

Ct = ft · Ct−1 + it · C̃t , (7)

it = σ (wi · [ht−1, xt ]+ bi) , (8)

where σ is the sigmoid function, ht−1 is the output data of
(t−1)th period, xt is the input data of tth period, wC is the
weight and bC is bias, F is the activation function.
The function of the output gate is to determine the output

value. The sigmoid layer is used to select the cell state to
output, and the activation layer is used to process the cell
state Ct . The multiplication of the two parts is the output
value of the cell state after screening. The output of the cell
is represented as follows:

ot = σ (wo · [ht−1, xt ]+ bo) , (9)

ht = ot · F(Ct) , (10)

where ht is the output, ht is the output data of tth period, xt
is the input data of tth period, wo is the weight and bo is bias,
F is the activation function.

Two LSTM layers and one fully connected layer were used
in LSTM model. One LSTM layer had 64 neurons and the
other had 128 neurons. And the fully connected layer had
64 neurons.

The error gradient is used to obtain the direction and
amplitude of network parameter update in network training.
Due to the error gradient is repeatedly multiplied by the
gradient value greater than 1.0 in the update, the gradient
value increases exponentially, and a very large gradient is
accumulated over time. It is called gradient explosion. How-
ever, due to the forgetting gate, the LSTMmodel will change
the weight of the historical signal independently, so that the
long-distance gradient will not disappear completely, which
solves the problem of gradient disappearance in RNN.

The hyperparameters used in the study are manually turned
to achieve better training performance.

C. MODEL EVALUATION
According to the verification method for wind forecast issued
by China Meteorological Administration, in order to evaluate
the prediction performance of different forecasting models,
root mean square error is used as the standard to test the
prediction error of wind speed, and the average absolute error
is used as the standard to test the prediction error of wind
direction.

The average absolute value of the error between the
predicted wind direction angle and the actual wind direction
angle is used to evaluate the performance of wind direction
forecast. The equation ofMAE is represented as follows:

MAEd =
1

NFd

∑NFd

i=1
min

(∣∣Fd,i − Od,i∣∣ ,
360−

∣∣Fd,i − Od,i∣∣) , (11)

where MAEd signifies the mean absolute error of wind
direction forecast, NFd signifies the total number of times
of wind direction forecast, i signifies the number of times of
wind direction forecast, Fd,i signifies the predicted value of
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the ith wind direction,Od,i signifies the actual value of the ith
wind direction.

The standard deviation of the prediction error is used
to evaluate the performance of wind speed forecast. The
equation of RMSE is represented as follows:

RMSEs =

√
1
NF s

∑NF s

j=1

(
Fs,j − Os,j

)2
, (12)

where RMSEs signifies the root mean square error of wind
speed forecast, NF s is the total number of times of wind
speed forecast, j signifies the number of times of wind speed
forecast, Fs,j signifies the predicted value of the jth wind
speed. Os,j signifies the actual value of the jth wind speed.

III. PROCEDURE
A. DATA COLLECTION
The Beijing-Tianjin-Hebei region is located in the center of
the Bohai Rim of Northeast China. It is the largest and most
dynamic region in northern China. TheBeijing-Tianjin-Hebei
region bears a great mission in promoting China’s economic
rise. But the weather and pollution in the Beijing-Tianjin-
Hebei region have affected its development and the quality
of life of local residents. Therefore, it is very necessary to
forecast the wind field in the Beijing-Tianjin-Hebei region,
which has an important impact on weather and air pollution.
In this paper, ECMWF Re-Analysis(ERA)-interim historical
data was used to predict the wind field in Beijing-Tianjin-
Hebei region from June 2018 to July 2019 by numerical
model. The initial data came from the European Centre for
Medium-Range Weather Forecasts. And then, the machine
learning models were established based on the dataset, which
was collected from the numerical model. In application, the
temperature, humidity and pressure data are extracted from
cosmic occultation data as the inputs of neural network, and
the wind field in Beijing-Tianjin-Hebei region is predicted by
the machine learning model which has the best performance
among the different models.

1) GNSS-RO DATA
GNSS radio occultation was developed in the 1990s and has
been used to study the earth’s atmosphere in recent years.
The data product we used is wetPrf. In this paper, cosmic
occultation data from June 2018 to July 2019 are selected.
The data is di-vided according to different time period.

The data are interpolated to a grid with a step of 100meters.
In each time period, the temperature, humidity and pressure
of each profile in the vertical direction are interpolated
according to the ETA layer. In the horizontal direction, the
temperature, humidity and pressure of each isobaric surface
are interpolated according to the grid division of the output
file of numerical model. If there are not enough occultation
events in the period of time, the accuracy of meteorological
parameters obtained by interpolation is not great enough.
Therefore, the wind field is predicted in a period when
more than 5 occultation events occur. The meteorological

parameters (temperature, humidity and pressure) at each grid
point are extracted, output and saved, so that they can be
used as the input of neural network for wind field prediction.
That is to say, GNSS-RO data can be processed into a format
that can be input into neural network and trained. GNSS-RO
data in a certain time period can be arranged and the neural
network model which has been trained and tested is used to
predict the wind field in Beijing Tianjin Hebei region in the
next few hours.

2) WIND FIELD DATA
GNSS-RO data can provide global uniform distribution and
high vertical resolution data of temperature, humidity and
pressure; therefore, GNSS-RO data is used as the input of the
model in the wind field prediction in application. However,
different from in the prediction process in application,
GNSS-RO data cannot provide enough datasets due to the
limitation of its own technical means in the training process
of ma-chine learning. Therefore, ERA-interim data with rich
data is more suitable for the training process of machine
learning.

The ERA-interim dataset from ECMWF is a reanalysis of
the abundant global atmospheric data since 1979. However,
the shortest time interval of ERA-interim reanalysis is
6 hours and the highest spatial resolution of ERA-interim
data is 0.125 ◦ × 0.125◦. It cannot meet the requirements
of specific prediction time and spatial resolution in some
practical applications; But the numerical model can set the
corresponding time and space resolution to simulate and
predict the wind field according to the specific requirements.
Therefore, this paper needs to take ERA-interim data as the
initial field and use the numerical model to simulate and
predict the wind field with a certain spatial and temporal
resolution. The meteorological data can be got from the
prediction results of the numerical model. All of these provide
datasets for machine learning training.

ERA-interim is divided into different types according to
the classification standard of initial field data. The classifi-
cation standard includes model level, potential temperature,
potential vorticity, pressure level and surface dataset. In this
paper, pressure level data and surface data are selected as the
initial field for numerical simulation. The horizontal coverage
is from 50◦N to 30◦N and from 100◦E to 130◦E◦ The re-
al-time data is on 00:00, 06:00, 12:00 and 18:00 universal
time from June 2018 to July 2019. There are 37 pressure
levels from near ground to 1 hPa in vertical direction. The
surface data selected 10metre Uwind component, 10metre V
wind component, 2metre dewpoint temperature, 2metre tem-
perature, mean sea level pressure, sea surface temperature,
skin temperature, soil temperature and surface pressure. The
pressure level data selected geopotential, relative humidity,
specific humidity, temperature, U components of wind and
V component of wind. These pressure level data and surface
data are saved as the format of GRIB, which can be used
as the initial field file of numerical model to simulate and
forecast.
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FIGURE 2. Diagram of double grid nesting in WRF.

The numerical modelWRF is used to simulate and forecast
the wind field in Beijing-Tianjin-Hebei-region. Considering
the impact of actual geography on wind field forecast in
Beijing-Tianjin-Hebei region, the double grid nesting is
adopted in the study. The pressure level data and surface data
provided by ERA-interim are used as the initial fields of the
simulation, and the double grid nesting are marked as d01 and
d02 respectively.

The calculation domain of the first grid d01 covers
the whole Beijing-Tianjin-Hebei region, so as to simulate
the wind field of the whole Beijing-Tianjin-Hebei region.
The prediction results of wind field of this region are
provided.

The grid d02 selects the low and gentle terrain in Beijing-
Tianjin-Hebei region, mainly including Beijing, Tianjin and
parts of Hebei Province. Figure 2 shows the distribution of
double grid nesting. This double grid nesting can reduce
the error of pre-diction results of wind field due to terrain
difference. The grid points distance is 10km. The time step is
set to 30 seconds and the output time is set to 3 hours. It means
that the result is output every 3 hours, and the end time is set
to 12 hours. According to ETA coordinates, the grid is divided
into 38 layers in vertical height.

We applied the following physical parameterization
schemes: (1) the Dudhia (Dudhia, 1989) and the RRTM
(Mlawer et al., 1997) schemes for shortwave and long-wave
radiation, respectively; (2) the Lin scheme (Lin et al., 1983)
for microphysics; (3) the Kain-Fritsch scheme (Kain and
Fritsch, 2002) for cumulus physics; (4) the Mellor-Yamada
Janjić Scheme for the planetary boundary layer; and (5) the
Noah LSM scheme (Tewari et al., 2004) for the land surface
processes.

Figure 3 and Figure 4 show statistic of wind speed and
direction in the middle of the simulation domain, located at
115◦E, 40◦N at 650m above the local area from June 2018 to
July 2019. The latitudinal wind is east-west and the westerly
wind is positive; The longitudinal wind is north-south, and the
south wind is positive. The figures show that at this location,
the proportion of latitudinal wind below 2 m/s is the highest,
the wind speed is not more than 6 m/s most of the time, and
the proportion of westerly wind is highest in 13 months; The
proportion of longitudinal wind from 2 m/s to 6 m/s is the

FIGURE 3. Distribution statistics of (a) zonal wind speed and
(b) meridional wind speed.

highest. On the whole, the proportion of south wind and north
wind in the whole year is roughly the same. Moreover, the
time of south wind speed less than 6 m/s is longer than that
of north wind speed less than 6 m/s. Figure 4 shows that the
annual wind direction of this location is mostly southwest
wind and northwest wind, and sometimes a small amount of
southeast wind.

The simulation and statistical results are only 13 months’
statistical data of a certain position over the Beijing-Tianjin-
Hebei region and cannot represent the distribution of overall
wind field. However, as the result of forecasting the wind
field at a certain position, the result of numerical model can
fulfill the task and requirements of forecasting wind field and
provide dataset for the machine learning.

B. TRAINING PROCESS
There are many meteorological parameters in the initial
field and forecast field files of the numerical model, but
not all of them have great effects on the forecast of wind
field. On the contrary, too many factors with low correlation
will impact the training effect and speed of neural network.
In many studies, temperature, humidity and pressure are the
most important factors forecasting the wind field. In the
training process, the temperature, humidity and pressure from
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FIGURE 4. Distribution statistics of the wind direction.

ERA-interim data are used as the input of the neural network,
and the wind speed and direction predicted by numerical
model in 3 hours, 6 hours and 12 hours are used as the
output of the neural network. Meridional wind, zonal wind
and wind direction are trained and predicted separately by
different machine learning models. The number of samples
in the data set used in this paper is only 1700. However,
it is very difficult to make tens of thousands or even millions
of samples through WRF numerical simulation. In addition,
many research has also achieved good results with few
samples [54]–[57] Therefore, we think that 1700 samples are
not too many, they can also reflect a certain law of wind field
change.

In order to avoid the poor generalization ability of neural
network model caused by data features and reduce the error,
the data needs to be preprocessed. The range of input values
is not consistent, and the data deviation is too large, which are
not conducive to neural network processing. Therefore, this
study uses normalization to solve the problem of poor training
performance and training speed caused by different range of
sample data, and it can eliminate the influence of dimension.
After normalizing the data of temperature, humidity and
pressure, the range of these variables is reduced to [0,1].
The formula of the normalized new variable A′ is shown in
equation (13):

A′ =
A−min (A)

max (A)−min (A)
, (13)

where min min (A) signifies the minimum value of vari-
able A, and max (A) signifies the maximum value of
variable A.

The temperature, humidity and pressure of the grid point
around the forecast position extracted from the initial field
file are used as the input of the neural network, and the

wind speed and direction predicted by numerical model in
3 hours, 6 hours and 12 hours are used as the output of
the neural network. The dataset is divided into training set
and test set according to the ratio of 6:4, 7:3, 8:2 and 9:1.
Meteorological data contains autocorrelations and the split is
not random. Therefore, we divide the data set into ten parts
in chronological order. Select the data of several consecutive
adjacent time periods as the training set, and the rest as the
test set. Since the training set can select more than one starting
time period, the best training performance is selected as the
training effect of this ratio. Three kinds of neural networks are
selected: Long Short-Term Memory (LSTM), Convolutional
Neural Networks (CNN) and DNN to be trained with the
dataset. In this paper, the activation function of three kinds
of neural networks is ReLU function. This is because the
ReLU function can control the activation of neurons, and the
gradient descent and back propagation efficiency of ReLU
function is higher than other activation functions in gradient
descent and back propagation, which can effectively avoid
gradient explosion and gradient disappearance. According
to the results of each training process, the weights and
thresholds of the neural network are updated, so as to reduce
the prediction error. The prediction error will remain stable.
After that, the test set is input into the neural network,
and the predicted value is compared with the actual value
to evaluate whether the model is also effective for the test
set data. Finally, the prediction results of different neural
networks are compared, and the best neural network model is
selected.

C. PREDICTION PROCESS IN APPLICATION
After trained and tested, the optimal machine learning model
can be applied to the practical prediction. The source of
the input data of the model in actual prediction process is
different from that in the training process. As GNSS-RO
data has the advantages of high precision and all-weather
in providing global uniform distribution and high vertical
resolution temperature, humidity and pressure profiles, it is
selected for prediction when the model is applied to the
practical prediction. It should be noted that ERA-interim
data is used as the background field in the inversion of
temperature, humidity and pressure data from GNSS-RO.
This method of developing a skillful model and taking the
rich data calculated by the model as the training starting
point for machine learning model is called transfer learning.
On some problems where you may not have so much data, it
is used to develop the machine learning models with enough
data [58], [19]

In practical application, temperature, humidity and pres-
sure are extracted from GNSS-RO data as inputs of neural
network, and thewind speed and direction can be predicted by
the optimal neural network model. The data set fromGNSS is
used to confirm that the model can be used to predict the wind
field from GNSS data. It is an-other testing dataset, different
from the dataset fromWRF. Figure 5 shows the process of the
prediction of wind field.
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FIGURE 5. Process of prediction.

IV. RESULTS AND DISCUSSION
A. MODEL VERIFICATION AND COMPARISON
Take the position as an example, which is the center of
the simulation domain located at 115◦E, 40◦N, 650 meters
above the ground. When the height is less than 650m, the
prediction accuracy will be affected by the interference of
ground factors. When the height is more than 650m, the
height difference between two adjacent isobaric surfaces is
greater than 200m, which also affects the prediction accuracy.
Therefore, the height of the position should not be too
high. 650 meters is an appropriate height in this study.
Figure 6 shows the LSTM wind speed based on the initial
field of the WRF (Y-axis) against the WRF predicted wind
speed (X-axis). The dots are not the full testing dataset.
We selected the data from February and July 2019 to show,
consistent with Figures 7, 8, 9 and 10. During the model
training, the samples of wind field prediction come from the
simulation result of numerical model. Therefore, the figure
also shows the comparison between the neural network and
the numerical model. The ordinate signifies the predicted
value of LSTM and the abscissa signifies the wind speed
value from WRF prediction. Under the ideal condition, the
predicted wind speed of the neural network and the value
from test set should be equal, and the scatter point should
be near the yellow line of y=x. The closer the point in the
figure is to the line y=x, the closer the predicted value is to
the simulated value. Therefore, the prediction performance
of neural network can be evaluated from the distribution of
the point in the figure. It can be seen from the figure that
most of the points are near y=x, and the error is within 20%.
It indicates that the neural network has a gratifying prediction
performance.

Figure 7, figure 8 and Figure 9 show the wind field
prediction results of wind field with LSTM, CNN and DNN.
In these figures, u is the actual zonal wind speed of samples;
u-3h is the predicted zonal wind speed at that current moment
by the machine learning model that is predicted using
the meteorological parameters three hours ago. Similarly,
v is the meridional wind speed of samples; v-3h is the

FIGURE 6. Comparison between WRF predicted wind speed and the LSTM
predicted wind speed.

predicted meridional wind speed that is predicted using the
meteorological parameters three hours ago.

The figures show that for the three kinds of neural
networks, the predicted wind field in 3 hours and 6 hours has
little deviation from the wind field of test set. Three kinds
of neural networks have huge deviations when predicting
wind field in 12 hours. In other words, the three kinds of
neural networks have no ability to predict the wind field after
12 hours. The prediction ability of neural network gradually
decreases with time going on, and it completely loses its
prediction ability in 12 hours. In addition, the figures show
that the prediction performances of CNN and LSTM are
similar, and they are obviously better than DNN. It also shows
that LSTMhas certain advantages in prediction of time series,
and CNN has more advantages in three-dimensional data
processing. The two kinds of neural networks have their own
optimization effect on the prediction of wind field in this
study.

Whether LSTM or CNN, the prediction error of wind
field is smaller than that of DNN. LSTM and CNN have
similar prediction effect due to their respective ad-vantages
in data processing and algorithm. The two models have good
prediction performance in wind field prediction in 3 hours:
The prediction error of wind speed is about 1.4m/s, and the
prediction error of wind direction is about 30 ◦. In addition,
the prediction errors of prediction results in 3 hours are small,
and the prediction errors of neural network will be larger
and larger with time. The three neural networks have no
prediction ability for wind field over 12 hours.

B. COMPARISON BETWEEN PREDICTION VALUES AND
ACTUAL VALUES
According to the comparison of numerical simulation and
machine learning pre-diction results, it is proved that the
prediction results of machine learning model, especially
LSTM and CNN, are similar to those of numerical model.
In order to verify that the machine learning model can be
applied in practice, it is necessary to compare the predicted
results with the actual monitoring values of wind field. If the
prediction results of the two prediction methods are close to
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FIGURE 7. Prediction results of Zonal wind speed by different prediction
models. (a) RMSE of zonal wind speed, (b) prediction results of zonal
wind speed of LSTM, (c) prediction results of zonal wind speed of CNN,
(d) prediction results of zonal wind speed of DNN.

FIGURE 8. Prediction results of meridional wind speed by different
prediction models. (a) RMSE of Meridional wind speed, (b) pre-diction
results of Meridional wind speed of LSTM, (c) prediction results of
Meridional wind speed of CNN, (d) prediction results of Meridional wind
speed of DNN.

30266 VOLUME 10, 2022



X. Chu et al.: Machine Learning-Based Method for Wind Fields Forecasting Utilizing GNSS Radio Occultation Data

FIGURE 9. Prediction results of the wind direction by different prediction
models. (a) MAE of wind direction, (b) prediction results of wind direction
of LSTM, (c) prediction results of wind direction of CNN, (d) prediction
results of wind direction of DNN.

FIGURE 10. Comparison of predicted and monitored values of wind field.
(a) Zonal wind speed of monitored values,WRF and CNN, (b) meridional
wind speed of monitored values,WRF and CNN, (c) wind direction of
monitored values,WRF and CNN.

the actual monitoring values of wind field, it verifies that the
machine learning has a good prediction performance and can
be applied to the actual wind field prediction.

Since the ERA-interim data of ECMWF has the shortest
time interval of 6 hours, that is, there is only one monitoring
data at least every 6 hours, this paper compared the prediction
results of machine learning and numerical model with the
actual monitoring values in 6 hours. The comparison is shown
in Figure 10. Different from the previous conclusion, we show
the figure from February here because it is better displayed
here and can highlight the relationship among the three
variables.

Table 1 shows that compared with the actual monitoring
value of wind field, the prediction errors of wind speed in
6 hours of prediction models, whether WRF or ma-chine
learning, are less than 3m/s, and the prediction error of wind
direction is about 30 ◦. The prediction results of numerical
model and machine learning model are close to the actual
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TABLE 1. Comparison of errors between predicted and monitored values.

wind field, which shows that the two prediction models can
accurately predict the actual wind field.

C. THE EFFECT OF PARTITION OF DATASET ON
PREDICTION RESULTS
The ultimate goal of machine learning is to apply the trained
machine learning model to actual practice. The model must
have excellent prediction ability in actual practice and smaller
error compared with the real value. If the number of samples
is large enough, the division of training set and test set will not
have a great impact on the prediction performance. But when
the number of samples is not large enough, it is necessary
to adjust the ratio of training set to test set to improve the
prediction performance. In this study, the ratio of training set
to test set is adjusted under the condition of other parameters
fixed. Figure 11 shows the influence of different division pro-
portion on prediction performance. It can be seen from the
figure that when the ratio of training set to test set is 8:2,
RMSE and MAE of the model is the smallest, which is the
best partition ratio. When the proportion of training set is too
low, the prediction performance is not good because there
is no enough samples for training; When the ratio is more
than 8:2, the proportion of test set is too low, which cannot
reflect the real training effect. Therefore, 8:2 is the best ratio
of training set to test set in this study.

D. COMPARISON OF TRAINING TIME AND PREDICTION
TIME
The training time reflects the training speed of different
machine learning models. The prediction time reflects
the computing time of different models. The shorter the
prediction time is, the shorter the time from data input to
prediction results output is, and it can better meet some spe-
cific requirements of timeliness information. The numerical
model also needs to be tested to compare the difference
of prediction time be-tween machine learning model and
traditional weather simulation model. Table 2 shows the
training time and prediction time of different models.

Due to the different structure of the models, among the
three machine learningmodels, DNN has the shortest training
time and prediction time, and CNN has the longest training
time and prediction time. Compared with the machine
learning model, the numerical model does not need to be
trained in advance, so it has no training time; However,
the machine learning method only takes about 2 seconds
to predict the wind field, and WRF takes 15 minutes. The

FIGURE 11. The influence of the ratio of dataset on the prediction
performance. (a) RMSE of Zonal wind speed with different ratio of
dataset, (b) RMSE of Meridional wind speed with different ratio of
dataset, (c) MAE of wind direction with different ratio of dataset.

prediction time of machine learning is only 0.2% of WRF.
The time of machine learning is much shorter than that of
numerical model. In addition, the conditions required for
numerical models are more complex than that for machine
learning, including surface data and pressure level data with
various necessary parameters, as well as complex operations
such as making input files, configuring relevant parameters.
However, machine learning only needs three atmospheric
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TABLE 2. Training time and prediction time of different models.

parameters: temperature, humidity and pressure. All in all, the
machine learning method can process the information in time
and has great advantages in the timeliness of information.

E. VALIDATION OF MACHINE LEARNING FOR GNSS-RO
DATA
In the process of model training and testing, the input data
of temperature, humidity and pressure of the model come
from ERA-interim dataset. In order to verify that the model
has the same prediction performance on GNSS-RO data,
it is necessary to validate the effectiveness of the model on
GNSS-RO data.

One occultation event can only provide one occultation
data profile of the position of the satellite at that time.
Therefore, it is necessary to obtain the meteorological data
in the prediction area from GNSS-RO by interpolation.
Each occultation event is classified according to the periods.
The period of at least seven occultation events occurred in
Beijing Tianjin Hebei region during two hours is selected for
interpolation of meteorological parameters. The temperature,
humidity and pressure are interpolated according to the
same grid distribution as ERA-interim, and the corre-
sponding meteorological parameters (temperature, humidity
and pressure) in longitude and latitude can be calculated.
Figures 12, 13 and 14 show the distribution of temperature,
humidity and pressure near the predicted position (115 ◦ E,
40 ◦ N), which are obtained by the interpolation of GNSS-RO
data and the actual monitoring value separately.

The figures show that the meteorological parameters of the
area obtained by interpolation of GNSS-RO data are close to
the actual monitoring values, and the errors are less than 10%,
which verifies the reliability of the interpolation to calculate
meteorological parameters.

In application, the meteorological parameters obtained
from interpolation of GNSS-RO data are used as the input
of the machine learning model to predict the wind field.
Figure 15 shows the prediction errors of the machine learning
model with different numbers of occultation profiles. It shows
that the more occultation profiles, the smaller the prediction
error. When the number of occultation profiles is at least 7,
the machine learning model have the similar prediction error
and the error is close to that verified by the test set. This
verifies that GNSS-RO data is effective for machine learning
prediction.

FIGURE 12. (a) Interpolation temperature of GNSS-RO data, (b)actual
monitoring temperature and (c)the relative error between the
temperature of interpolation and actual monitoring.
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FIGURE 13. (a) Interpolation humidity of GNSS-RO data, (b)actual
monitoring humidity and (c)the relative error between the humidity of
interpolation and actual monitoring.

FIGURE 14. (a) Interpolation pressure of GNSS-RO data, (b)actual
monitoring pressure and (c)the relative error between the pressure of
interpolation and actual monitoring.
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FIGURE 15. The prediction errors of the machine learning model with
different numbers of occultation profiles.

V. CONCLUSION
This paper provides a machine learning-based method
to predict regional wind field utilizing GNSS-RO data.
For remote sensing observation, sometimes we can only
obtain thermodynamic parameters due to the limitation of
instruments carried by satellites. We used machine learning
method to establish the relationship between thermodynamic
parameters and kinetic parameters and we can predict kinetic
parameters only by using thermodynamic parameters, which
is impossible only using numerical model. Firstly, the
numerical model WRF is used to simulate and predict the
wind field over Beijing-Tianjin-Hebei region, and it provides
the datasets including temperature, humidity, pressure, wind
speed and direction. Secondly, different machine learning
models are established to capture the relationship between
meteorological parameters and wind field. The transfer
learning solves the problem that the machine learning
model cannot achieve good training performance due to the
insufficient sample of GNSS-RO. Finally, the GNSS-RO
data is used to predict the wind field through the trained
machine learning model. The number of samples in the
data set used in this paper is only 1700. In the follow-up
study, if we can expand the number of samples, it will be
a good choice. Especially with the development of micro-
nano satellite technology, GNSS radio occultation will soon
achieve constellation detection of a scale of hundreds of
satellites. At that time, the huge amount of occultation data
is expected to bring great changes to numerical prediction.
By the analysis of the results, the following conclusions can
be drawn:

1. Machine learning has a good performance in predicting
wind field. The error be-tween machine learning and
numerical model is very small. Among the neural networks,
LSTM and CNN have smaller prediction error than DNN.
When predicting the wind field in 3 hours, the wind speed
error of LSTM and CNN is about 1.4 m/s and the wind
direction error is 30◦. Compared with DNN, the wind speed
error of LSTM and CNN is reduced by 57% and the wind

direction error is reduced by 50%. The longer the prediction
time, the greater the prediction error.

2. The error between the prediction results of machine
learning model and the actual monitoring values of wind
field is very small. In the 6-hour wind field prediction, the
wind speed error between the prediction results in 6 hours
of machine learning and the actual monitoring value is about
2.5m/s, and the wind direction error is about 30◦. It shows
that the machine learning model has good performance on
predicting the actual wind field, which verifies the reliability
of the machine learning method.

3. The dataset has a certain influence on the prediction
performance. Through the comparison of training effect
under different division methods of datasets, more effective
machine learning models are screened out. After testing and
comparing, it is found that when the ratio of training set to
test set is 8:2, the prediction performance is the best.

4. Machine learning and the numerical model have similar
prediction performance, but the prediction time required by
machine learning is only 0.2% compared with the numerical
model. The prediction speed is far higher than that of the
numerical model. It shows that machine learning method has
great advantages in the timeliness of information. In addition,
the prediction conditions required for numerical models
are more complex than machine learning. The machine
learning meth-od only needs three atmospheric parameters:
temperature, humidity and pressure.

5. The interpolated GNSS-RO data is used as the input data
of machine learning model in application, and the prediction
performance is excellent. The requirement of meteorological
data acquisition including temperature, pressure and humid-
ity from GNSS-RO data is occultation occurs at least seven
times during two hours. The error between the interpolation
result and the actual monitoring value is less than 10%. The
interpolated meteorological parameters are used for machine
learning prediction of wind field. The prediction error is close
to that of the test set. It is verified that GNSS-RO data can
be used in practical application to predict the wind fields by
machine learning model.
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