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ABSTRACT To increase the sustainability in urban mobility, it is necessary to optimally combine public
and shared vehicles throughout a passenger’s trip. In this work, we present a survey on urban mobility based
on passengers’ data and machine learning methods. We focus on four applications for urban mobility: public
datasets, passenger localization, detection of the transport mode and pattern recognition and generation of
mobility models. Public datasets lack data of multimodal trips and are in need of guidelines to facilitate
the data collection and documentation processes. Passenger localization is predominantly done through
fingerprinting in indoor environments; and fingerprinting relies on unsupervised learning to survey access
points. The most common mean of transport detected is the bus, followed by walking and biking, while
e-scooters are not included within the detected transport modes. The existing works focus on predicting the
travel time of the passenger’s trajectory and no machine learning method stands out to estimate the travel
time. There is still a need for works that analyze how passengers make use of the urban infrastructure, which
will support municipalities and transport mode operators in resource planning and service design.

INDEX TERMS Transport modes, public, shared, artificial intelligence, pedestrian, passenger, bus, car,
subway, e-scooter, passenger-centric.

I. INTRODUCTION
More than 60%of theworld’s populationwill be concentrated
in cities by 2030 [1]. There will be a demand on sustainable
urban mobility options, which will be achieved through the
use of different and optimally combined transport modes
within the trip through the city.

The core of new multimodal urban mobility concepts
is to combine public transport with other motorized and
non-motorized modes as well as with new concepts of vehicle
ownership. New multimodal urban mobility concepts involve
also the use of smartphones and mobile apps to provide
information and access to all transport modes. Some services
such as personal mobility assistance involve booking and
smart ticketing. Yet there are several challenges to overcome,
e.g., accurate passenger localization, lack of information and
separate responsibilities.

There is a plethora of applications that aim at overcoming
the challenges of urban mobility. 2.5 quintillion bytes of
data are generated everyday [2]. Thus, there is potential to
address urban mobility challenges through machine learning
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and artificial intelligence methods. For instance, e-ticketing
is a service that enables passengers to use multiple transport
modes with a single ticket [3]. One of the key features of this
service is that the passenger needs only to pay a monthly,
weekly or daily bill that accounts for all the transport modes
used. To implement this service, one could use smartphone
data and machine learning methods to automatically detect
the transport mode and estimate the ticket fare that should be
applied.

Urbanmobility applications can be broken down into lower
level applications, e.g. localization of passengers in urban
canyons or the detection of transport mode. The combination
of two or more of these applications enables the implementa-
tion of higher level ones like e-ticketing.

In this article, we focus on the following aspects of urban
mobility applications:

• Collection of public datasets
• Localization of passengers
• Detection of transport modes
• Generation of mobility models

In the literature, there are already different surveys that
analyze the state-of-the-art of one specific passenger-centric
application, e.g., surveys on localization techniques with
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machine learning [4], surveys on the detection of the transport
mode [5] or surveys onmobility models [6], [7]. However, the
aforementioned works have two limitations:

• they do not place the passenger at the center of urban
mobility applications. Therefore, the existing works do
not focus on the crucial role that the passenger plays in
urban mobility applications.

• they do not survey urban mobility applications based on
both passenger-centric data and machine learning meth-
ods. For instance, Zhu et al. [7] and Abduljabar et al. [8]
survey only mobility models based on data from
infrastructure-based systems and automated vehicles,
respectively. Li et al. [4] and Elhoushi et al. [5] focus
only on localization and detection of the transport mode,
respectively.

It is essential to analyze urban mobility applications con-
sidering the passenger as their center element. The rea-
son is that passengers are at the heart of all cities and
urban mobility applications aim at improving the passenger’s
experience.

The goal of this article is to survey urban mobility appli-
cations based on machine learning methods and passenger-
centric data. More specifically, we do have the following
objectives:

• survey how the state-of-the-art uses machine learning
methods in the four main urban mobility applications
listed above, namely, the collection of public datasets,
the localization of passengers, the detection of the trans-
port mode and the generation of mobility models, and,

• identify the open challenges that remain to be addressed
in order to advance in the development of urbanmobility
applications based on machine learning methods from
passenger-centric data.

The remainder of this article is organised as follows:
Section II defines the set of machine learning concepts used
throughout the article, Section III surveys the state-of-the-art
of public datasets for urban mobility applications, Section IV
surveys the state-of-the-art of localization algorithms based
onmachine learning, Section V surveys the state-of-the-art of
algorithms for transport mode detection, Section VI surveys
the state-of-the-art of works that carry out pattern recog-
nition and generation of mobility models, and Section VII
concludes this work.

II. MACHINE LEARNING CONCEPTS
In this article, we distinguish between machine learning and
artificial intelligence. Murphy defines machine learning as
‘‘a set of methods that can automatically detect patterns in
data, and then use the uncovered patterns to predict future
data or to perform other kinds of decision making under
uncertainty’’ [9]. In contrast, we define artificial intelligence
as the area of computer science that aims at creating intelli-
gent machines that work and react like humans [10].

Since we focus on machine learning techniques, we define
the concepts that are used in the remainder of this article.

A machine learning method comprises a set of parameters
that need to be learned, i.e. estimated, based on input data,
e.g., sensor data from a smartphone. The output value of a
machine learning method can be:
• numerical, e.g., the estimation of a passenger’s position.
In this case, the machine learning method performs
regression.

• categorical, e.g., the estimation of the transport mode.
In this case, the machine learning method performs clas-
sification.

Machine learning methods can be classified in one of two
categories:
• supervised methods are those for which the output value
associated to each observation of the input data is known
a priori. The known output values are referred to as
labels.

• unsupervised methods are those for which the output
value associated to each observation of the input data
is unknown.

The learning process is depicted in Figure 1. The learning
process comprises four main stages:
• Data acquisition is the stage during which the data is
collected. In the case of this article, the data sources
are the sensors integrated in smartphones and wearable
devices.

• Data cleaning & preprocessing is the stage during which
the acquired data is cleaned, e.g., by deleting invalid
data, and preprocessed, e.g., standardizing categorical
data [11]. In this stage, the acquired data is split in a
training dataset and a test dataset [12].

• Modelling & learning is the stage during which the
parameters of a machine learning method are estimated
to fit the training data according to an optimization
function [9]. The input to this stage is not only the
training dataset, but also constraints specific to each
machine learning method, e.g., the number of hidden
layers in an artificial neural network [13]. The output of
this stage is the set of parameters of themachine learning
method.

• Evaluation is the stage during which the performance of
the machine learning method is assessed with the test
dataset. The output of this stage is a set of performance
figures, e.g., the classification accuracy. The estimated
performance figures can be used to tune the parameters
of the machine learning method in order to optimize the
performance figures.

FIGURE 1. Block diagram of the learning process.
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III. COLLECTION OF PUBLIC DATASETS
Training and evaluation data are key for the development
of machine learning methods. In the case of this article, the
data is acquired with smartphones or wearables carried by the
passenger. For instance, a transport mode detection algorithm
requires data from a smartphone while the passenger is using
different transport modes and the corresponding label of the
transport mode used at each instant. Another example is
positioning in traffic hubs with WiFi signals, which requires
signal strength measurements of WiFi signals in the traffic
hub of interest and the position of the access points.

Regardless the application, benchmark datasets are an effi-
cient tool to enable the development, evaluation and compar-
ison of machine learning methods. In this section, we review
public datasets with passenger-centric data. For the inter-
ested reader, there are further application-specific datasets
in [14], [15], Kaggle,1 the Localisation Systems Repository
(LSR)2 [16] or the IndoorLoc repository3 [17].
We analyze the public datasets regarding three aspects:

1) Sharing platform, see Table 1.
2) Dataset size, sensing technology and environment, see

Table 2.
3) Activities, transport modes, ground truth and recording

device, see Table 3.

A. SHARING PLATFORM
Table 1 shows that the most popular platform to share data is
a dedicated website, e.g., Microsoft in the case of the Geolife
GPS Trajectory Dataset. The second most popular platform
is data-sharing platforms, like Crawdad,4 the UCI Machine
Learning Repository5 and Zenodo.6 The third most popular
type of platform in Table 1 is servers.

Each of the aforementioned platforms has advantages and
disadvantages. Websites and dedicated servers allow institu-
tions to remain in control of the rights of their datasets and
other legal aspects. The disadvantage of these platforms is
that they require maintenance.

An advantage of data-sharing platforms is that they are cen-
tralized and, with time, they become popular among the com-
munity, e.g., the UCI Machine Learning Repository, as ‘‘the
place’’ where data can be found. Data-sharing platforms
could foster the publication of datasets in a standardized
and organised manner, e.g., through the publication of data
collection and documentation guidelines, which are one of
the current challenges in the collection of datasets [15]. The
disadvantage of data-sharing platforms is that institutions
need to waive the rights on the dataset or accept certain terms

1https://www.kaggle.com/ - Last accessed on 03/02/2022
2https://lsr.cs.upb.ro/datasets - Last accessed on 03/02/2022
3http://indoorloc.uji.es/ - Last accessed on 03/02/2022
4https://crawdad.org/about.html - Last accessed on 03/02/2022
5https://archive.ics.uci.edu/ml/index.php - Last accessed on 03/02/2022
6https://zenodo.org/ - Last accessed on 03/02/2022

TABLE 1. List of passenger-centric datasets, their affiliation and the
platform through which these have been published. The following
acronyms are used: FTP (file transfer protocol), IPIN (indoor positioning
and indoor navigation).
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TABLE 2. List of datasets, their size and the main characteristics of environment. The following acronyms are used: GNSS (global navigation satellite
system), GPS (global positioning system), RSSI (received signal strength indicator).
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TABLE 3. List of datasets and their specific features. IMU stands for inertial measurement unit.
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and conditions which may conflict with the interests of the
institution that owns the dataset.

B. DATASET SIZE AND ENVIRONMENT
Table 2 lists the dataset size, the amount of data in time, the
sensing technology, the environment, the environment size
and the number of volunteers who have participated in the
tests. The size of the datasets ranges from a few kB to more
than [100]GB and depends on different elements. In general,
we believe that it is preferable to have:
• long recording times and a large variety of volun-
teers. The associated challenge is the cost in time and
resources.

• efficient data formats to store the data. Larger datasets
imply larger sizes, but the choice of one data format over
another one can reduce the size of the dataset for a given
recording time.

• thorough data documentation. The usability and read-
ability of the measurements in a dataset improves with a
thorough documentation, thus increasing the likelihood
that the dataset is useful to the community.

FIGURE 2. Duration of the data in the datasets plotted against the
dataset size.

Figure 2 is a qualitative representation of the dataset size
and the total duration of the data in minutes or hours.We have
only considered the datasets that provide the duration of the
tests. First of all, it is key to highlight that 35% of the works
do not specify the duration of the data. In some cases, the
datasets indicate the duration in days; however, it is not spec-
ified if the tests lasted [24]h or only a few hours on each day.
The key observation is that the choice of data format influ-
ences the size of the dataset. For instance, the Geolife GPS
Trajectory Dataset [22], [23] contains [48203]h data stored
in [300]MB of files. In contrast, the Sussex-Huawei Locomo-
tion Dataset [36], [51] contains [83]h of data in [10]GB of
files. One of the reasons for the disparity between the dataset
size and the data duration is that the Sussex-Huawei Locomo-
tion Dataset publishes more data, i.e., all smartphone data,
than the Geolife Trajectory Dataset, which only publishes
GPS data.

Table 2 shows that all sensing technologies are suitable for
indoor use but not for outdoor use. None of the works listed
in Table 2 uses WiFi or video technology in outdoor environ-
ments, whereas GNSS is used both in outdoors environments
and indoor environments through signals of opportunity
[29], [30]. The most common indoor environments are office

buildings. Thus, there is room for data collection and research
in other indoor environments like hospitals, factories or traffic
hubs.

71% of the works carry out the experiments indoors. Since
passengers transition seamlessly between indoor and outdoor
environments, there is a need for datasets with data not only
from outdoor environments but also data from indoor-to-
outdoor transitions and viceversa.

In Table 2, only 43% of the datasets specify the size of the
location and only 62% specify the number of users who have
participated in the experiment. This lack of information is an
indication of how the collection of datasets in a standardized
fashion is still a challenge, not only in the indoor localiza-
tion community in particular [15] but in the urban mobility
community in general.

C. ACTIVITIES, TRANSPORT MODES, GROUND TRUTH
AND RECORDING DEVICE
Table 3 details the activities, transport modes, ground truth
and devices used in each dataset. The dominant activity
is walking, one dataset considers running [36], [37] and
one dataset considers leisure activities like shopping and
sightseeing [20]–[23].

28% of the datasets consider multimodal transportation.
Thus, we can state that it is necessary to invest effort in
the collection of multimodal datasets. Only then, machine
learning methods can be developed to address the needs of
passengers in cities. In fact, the raising popularity of the
Sussuex-Huawei Locomotion Dataset [52]–[54] shows that
there is a demand for datasets with multimodal transportation
data.

A successful urban mobility application has to cope with
an unknown smartphone location. An alternative is to develop
machine-learning-based methods to predict the smartphone
location, as Gjoreski et al. suggest [36]. The advantage of
datasets like the one in [36] is that the same dataset can be
used for different purposes [51], e.g., identifying the carrying
mode or developing localization algorithms that are indepen-
dent of the carrying mode.

The ground truth is a key feature of any dataset and depends
on the application. In Table 3, we consider the following
types of ground truth:

• Lables, which are tags that identify the activity or the
transport mode used by the passenger.

• Ground truth points, which are discrete points with
known location and are visited during the trajectory.

• Position, which is a continuous estimation of the vol-
unteer’s position computed, e.g., through GNSS or a
motion tracking system.

Localization applications frequently use ground truth
points [29], [30], [44] whereas classification applications use
labels [20]–[23], see Table 3. Designing and collecting the
ground truth of a dataset is time consuming, expensive and,
in applications like localization, the ground truth needs to
satisfy a certain degree of accuracy [15], [55].
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FIGURE 3. Percentage of the devices used in public datasets.

95% of the published data sets in Table 3 include ground
truth. Labels are the predominant ground truth among the
datasets with multimodal transport data [20]–[23], [36], [37],
[39], [40]. The reason may be that other types of ground truth
are difficult to set up and record when the passenger is not
walking. For instance, it is challenging to deploy ground truth
points inside public spaces like underground stations and a
GNSS-based ground truth is not appropriate inside indoor
areas or outdoor urban environments.

The device specified in Table 3 indicates the instrument
used to gather data from the sensing technology specified
in Table 2. Table 3 shows that some datasets consider more
than one device, [18], [24]. There are three main reasons
for using multiple devices while collecting a dataset. Firstly,
the application itself requires measurements from multiple
devices simultaneously [56]. Secondly, the comparison of
different systems requires them to be tested under the same
conditions [44]. Finally, the data collection requires data
variety while maintaining efficiency high and costs low [37].

According to Table 3, the most popular device for data col-
lection is the smartphone. In fact, 62% of the public datasets
collect smartphone data, see Figure 3. Wearable devices are
the runner-up device in popularity; e.g., inertial measurement
units (IMUs) are commonly placed on the foot or the front
pocket of the trousers [31], [44].

D. CONCLUSIONS AND OPEN CHALLENGES
Datasets are vital to develop machine learning methods. The
choice of platform to publish these datasets conditions the
popularity of the dataset and therefore its potential usability.

We have observed that datasets for multimodal transporta-
tion consider mostly smartphones as data collection devices.
Therefore, these datasets tend not to restrict the carrying
mode of the smartphone.

Datasets for urban mobility have open challenges. Among
these, we identify the following:

• it is necessary to standardize the methodology for data
collection and documentation of multimodal datasets in
order to facilitate their usability and understandability.

• it is necessary to invest effort in the collection of datasets
with data of outdoor environments, indoor-to-outdoor
transitions and viceversa.

• it is necessary to invest on the collection of datasets
with multimodal transport modes. At the moment, the
predominant transport mode is walking which is not
enough to develop machine learning methods in urban
mobility.

• it is necessary to develop tools for a standardized collec-
tion of ground truth.

We think that researchers and developers could make a
better use of tools like conferences and journals to dissem-
inate information on the available datasets. In this way, other
researchers and developers could save time by not having to
collect datasets and focus on the development of machine
learning methods for urban mobility with public datasets.
Such a strategy would increase the awareness on public
datasets, thus facilitating the analysis of the state-of-the-art,
the open challenges and therefore the design of measures to
address these challenges.

IV. LOCALIZATION OF PASSENGERS
Urban mobility applications rely on passenger localization,
e.g. to implement adaptive trip planning algorithms or to learn
how people move around the city, thus enabling an efficient
planning of resources.

This section presents our analysis of state-of-the-art works
that address localization challenges with machine learning
methods. We review two main types of works: localization
and detection works. The former refers to works that develop
systems or methods that localize a passenger in indoor and
outdoor environments and the latter to works that detect
environmental features like doors, escalators and elevators.
The detection of such environmental features is used to
improve the performance of a subsequent passenger localiza-
tion algorithm.

A. SENSING DEVICES AND THEIR PLACEMENT
Table 4 shows that most of the reviewed works use machine
learning for indoor localization and only five of the reviewed
works detect environmental features [57]–[60].

Figure 4 shows the percentage of works that use a specific
sensing device. Approximately 62% of the reviewed works
use a smartphone to localize passengers. This fact reassures
that smartphones are currently popular sensing devices to
address urban mobility challenges. We see in Table 4 and
Figure 4 that some works do not specify the sensing device
and that less than 17% of the surveyed works use dedi-
cated devices like wearables, e.g., IMUs, cameras or radio
receivers.

In Section III, we mentioned that it is necessary that
smartphone-based applications cope with an unknown device
location. The column Arb. plac. in Table 4 indicates whether
a work allows for an arbitrary placement of the device or
not. Only two works specify that they support an arbitrary
placement of the smartphone [63], [71], which shows that
smartphone-based localization is still a challenge. In fact,
54% of the reviewed works do not specify where the device
is located.
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TABLE 4. List of works that use machine learning for the detection of
environmental features (detection) or the localization of passengers
(localization). The next abbreviations are used: arbitrary placement of the
device (Arb. plac.), device placement (Dev. place.), smartwatch
(Smartwa.).

B. MACHINE LEARNING FEATURES
Table 5 summarizes the characteristics of the machine learn-
ing methods implemented in the localization works of
Table 4. As expected, the works that detect environmental
features implement classification methods [57]–[60]. In con-
trast, the works focused on localization implement regression
methods to create a map with specific information [63]–[65],
to estimate the passenger’s position [18], [34], [70] or
to locate unknown transmitters [67]–[69], among other
applications.

Table 6 details the characteristics of the machine learn-
ing methods that do classification. The main environmental
features detected are escalators, elevators [57], [58] and

FIGURE 4. Percentage of works that use a sensing device in their
localization systems.

FIGURE 5. Percentage of works that use a machine learning method in
their localization systems.

doors [59]. The first two works in Table 4 place the IMU on
the passenger’s foot because it is the body location closer to
the platform that the passenger rides. Therefore, it is easier to
identify the platform with a foot-mounted IMU than with an
IMU placed further away from the floor.

In general, we see from Table 6 that some of the exist-
ing classification works do not provide relevant details. For
instance, only Lang et al. [58] and Jackermeier et al. [57]
specify how they validate their model, whereas only
Lang et al. specify their feature selection method.

It is possible to implement localization with classification-
based machine learning. For instance, Chriki et al. divide the
environment in areas of a given size and aim at classifying the
area where a passenger is [60].

The input to the machine learning methods in Table 5
are the raw signals or a processed version of the raw
signals recorded by the sensors indicated in the column
Sensor. Figure 5 shows a clear dominance of the use of
machine learning in fingerprinting technologies. The rea-
son is that fingerprinting requires learning a map with
RSSI values [64], [65] or magnetic signatures [63]. A chal-
lenge of radio-based localization is how to survey the
existing transmitters and estimate their location. This chal-
lenge can be addressed with unsupervised machine learning
methods [68], [69].

62% of the works in Table 5 are based on radio tech-
nologies like WiFi. One work uses the magnetometer, which
indicates that radio-technologies are the dominant ones in
nowadays machine-learning-based localization. Nonetheless,
these radio-based localization systems are not applicable
outdoors.
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TABLE 5. List of works focused on localization and the characteristics of their respective machine learning methods. In the column sensor, the term radio
has been used if the corresponding work did not specify the radio technology used. The following acronyms and abbreviations are used: pedestrian dead
reckoning (PDR), k-NN (k-nearest neightbour), support vector machine (SVM), distance estimation (dist. estim.), transmitter location (trans. loc.), position
estimation (pos. estim.), velocity estimation (vel. estim.).

C. CONCLUSIONS AND OPEN CHALLENGES
In this section, we identify four main conclusions regarding
the use of machine learning methods in passenger local-
ization systems. The first conclusion is already stated in
Section III-D: smartphones are the most popular device not

only for data collection, but also for developing passenger
localization systems.

The second conclusion is that machine learning methods
can be successfully used to classify environmental features,
e.g., escalators and elevators. The third conclusion is that
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TABLE 6. List of localization works that implement classification and the main features of their machine learning methods.

machine learning methods for positioning are mostly used
in passenger localization systems based on fingerprinting.
The reason is the inherent learning component associated to
learning a map of radio or magnetic fingerprints.

Finally, the fourth conclusion is that unsupervised machine
learning can be used to discover and survey transmitters.
Thanks to unsupervised machine learning, one can automate
the surveying process and therefore decrease the chances of
human errors.

We identify the following open challenges regarding the
use of machine learning methods in passenger localization:

• Development of localization algorithms with an arbi-
trary placement of the smartphone for localization algo-
rithms whose performance depends on the carrying
mode, e.g., dead-reckoning algorithms.

• Development of machine learning methods to detect
environmental features with radio technologies, e.g., the
detection of elevators or doors with radio receivers.

• Development of machine learning methods based on
non-radio technologies and machine learning, e.g.,
magnetic-based fingerprinting valid for both indoor and
outdoor environments.

• Validation of the outcome of unsupervised machine
learning for the discovery of transmitters.

V. DETECTION OF TRANSPORT MODES
The detection of transport modes can be used to implement
urban mobility applications such as e-ticketing or new con-
cepts of the mobility budget service [79].

This section reviews the state-of-the-art works that use
machine learning methods to detect the transportation mode
used by a passenger. These works have two characteristics
in common: they all use a smartphone as sensing device and
supervised classification methods.

A. SENSING DEVICES AND THEIR PLACEMENT
Table 7 lists the works that detect the transport mode and
focuses on two key aspects of the systems: where the smart-
phone is placed and the sensing technology. The placement
of the smartphone is key to the acceptance of the systems by

the passengers. A system will likely be accepted if it works
with arbitrary placements of the smartphone.

A total of 67% of the works in Table 7 do not specify the
placement of the smartphone. We believe the reason may be
one of the following:

• The placement of the smartphone is irrelevant for the
system. In this case, the system uses technologies
like GNSS [80]–[82]; which enables the system perfor-
mance to remain almost unaltered regardless the place-
ment of the device.

• The authors skipped this information while elaborat-
ing the article. Thus, the lack of information makes it
challenging for readers to understand the system perfor-
mance since not all the required features of the system
are provided.

Table 7 specifies two elements regarding the placement
of the smartphone. Firstly, column Arb. plac. indicates,
by yes, if the authors specified that their systems work
in arbitrary placements of the smartphone. Secondly, some
authors restrict the arbitrary placement of the smartphone
to the placements listed in column Smartphone placement.
[52]–[54], [83]. These works restrict the smartphone place-
ment to similar ones; namely the hand, the bagpack, the
pocket and the torso.

Table 7 lists the sensing technology or technologies for the
detection of the transport mode. Figure 6 shows that there
are two dominant technologies: GNSS and inertial sensors.

FIGURE 6. Percentage of works that use a technology in their transport
mode detection algorithms. The following abbreviations are used:
magnetometer (magn.), barometer (baro.), base station ID (B.S. ID) and
gravity sensor (grav.).
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TABLE 7. List of works that classify the transport mode. The next
abbreviations and acronyms are used: arbitrary placement (Arb. plac.),
magnetometer (magn.) and barometer (baro.), transmission control
protocol (TCP).

These two technologies are complementary which explains
why they are frequently used together. The output of these
sensors is used to estimate features that are fed to the machine
learning methods that detect the transport mode.

According to Figure 6, magnetometers and barometers are
also used in the detection of the transportation mode. One of
the reasons is that these sensors are already integrated within
most smartphones. Thus, these measurements are available at
no additional costs. Magnetometers have potential of aiding
the detection of the transport mode as different transport
modes may present different magnetic signatures. Likewise,
one could assess the barometric pressure measured with a
smartphone in different transport modes, as different trans-
port modes may be exposed to different barometric pressure
depending on the environment, the altitude, the speed, etc.

It is worth highlighting that GNSS can only be used to
detect transport modes that function above ground, e.g., cars

or buses. In contrast, technologies like inertial or magnetic
sensing are suitable for either outdoor or indoors. Thus, they
enable the detection of underground transport modes such as
the subway. Another alternative is to use, if available, RSS
signatures of free WiFi that the transport operator may have
made available to passengers.

B. MACHINE LEARNING FEATURES
Table 8 complements Table 7 and presents the main features
of the classification methods that detect the transport mode.
In Figure 7, the most popular classification methods to detect
the transport mode are random forests followed by neural
networks. Decision trees and SVMs are also popular classifi-
cation methods to detect the transport mode.

FIGURE 7. Percentage of works that use a machine learning method.

The suitability of one classification method over another
one depends on the type of classification problem. In the
case of detecting the transportation mode, the classification
is more complex the more motorised vehicles are considered.
For instance, the differences between a car and a bus are more
subtle than between a car and a subway. Therefore, it is more
challenging to distinguish travelling by car from travelling
by bus than to distinguish travelling by car from travelling by
subway.

Figure 8 summarizes the transport modes detected by the
works in Table 8. In general, transportmodes can be classified
in two categories: non-motorised and motorised transport
modes. The most common non-motorised transport modes
are walking and biking. Running is also considered as a
transport mode, but less frequently, provided that running
could be considered a fitness activity rather than a transport
mode.

Regarding motorised transport modes, we observe that
all works detect the bus, and less than 55% of the works
include other public transport modes like the subway or
the train. Public transport is one of the main commute
means in cities, therefore public datasets should include data
from other types of mean of transport rather than the bus,
e.g. subways, regional trains, trams. [95], [96].

The second most common motorised transport mode in
the surveyed works is the car, which can be either a private
vehicle or a taxi. We believe this result is an indication that
the use of public transport modes in urban areas can still be
improved. In fact, recent surveys confirm that private vehicles
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TABLE 8. List of works that classify the transport mode and the characteristics of their machine learning methods. The following acronyms are used: CDF
(cumulative distribution function).

remain the main commute choice in multiple countries like
the U.S.A., France, Germany, and China. [97].

Figure 9 shows an example of a bike, e-bike and e-scooter
and their mainmotion feature: either pedals ormotors or both.
Only few works in Table 8 consider transport modes such as
e-bikes or motorbikes. E-scooters are becoming increasingly
popular, especially with e-scooter sharing services like Lime7

7https://www.li.me/electric-scooter

or Tier.8 Such a service is attractive for those passengers who
need flexibility to move in the city but do not want to cope
with the challenges of public transport schedules or parking
of private vehicles.

The last column in Table 8 indicates the number of features
that each work uses in their respective machine learning
methods. Despite the importance that features have, there are

8https://www.tier.app/

30360 VOLUME 10, 2022



D. B. Ahmed, E. M. Diaz: Survey of Machine Learning Methods Applied to Urban Mobility

FIGURE 8. Percentage of works that include a specific transport mode in
their classification methods.

FIGURE 9. From left to right: bike, e-bike and e-scooter. The e-bike has a
motor that adds additional push while the biker is pedalling. The
e-scooter has a motor and it does not require the biker to pedal.

yet some works that do not provide information on feature
design, number of features or feature selectionmethod in their
respective articles [52], [53], [86].

We distinguish two types of works regarding the number of
features: works which use a low number of features, namely
less than 10 features [80], [81], [84], and works which use a
high number of features; e.g., [82] with 54 features or [88]
with 169 features. Using a low number of features has the
advantage that the machine learning method is less computa-
tionally complex; however, a low number of features cannot
model complex processes. In contrast, a machine learning
method with a large number of features can model complex
processes andmaybe even capture latent patterns not apparent
to the human eye, e.g., the differences between travelling
by car and travelling by bus. Nevertheless, such a machine
learning method will inevitably be computationally demand-
ing, which increases not only the training and the execution
time of the machine learning method but also the power
consumption of the device running the detection algorithm.

The feature selection method is another piece of informa-
tion often missed in the articles. In Table 8, only 33% of
the articles specify this information. There is a variety of
methods that could be used for feature selection [12]. Some
of these methods are machine learning methods themselves
like random forests or convolutional neural networks.

One of the crucial phases of training machine learning
methods is the validation, see Table II. Among the works
in Table 8, only 30% of the works specify the evaluation
method. In these works, the common method to evaluate the
performance of the machine learning method is k-fold cross
validation [83], [87], [88].

C. CONCLUSIONS AND OPEN CHALLENGES
The first conclusion of this section is that smartphone-based
transport mode detection needs to account for a variable
location of the device in order to foster the acceptance among
passengers.

The second conclusion of this section is that the two domi-
nant technologies to detect the transport mode are GNSS and
inertial sensors either separately or combined. Furthermore,
the dominant machine learning methods to detect the trans-
port mode are random forests and neural networks.

The third conclusion of this section is that the bus is the
most popular public transport mode in the reviewed works.
Future works should consider other transport modes like
subways or trains, as they also play an important role in large
cities.

The open challenge that we envision regarding the trans-
port mode is the inclusion of e-scooters within the classes of
the machine learning method. This transport mode is becom-
ing increasingly popular and future systems will have to be
able to detect this transport mode as well.

VI. PATTERN RECOGNITION AND GENERATION OF
MOBILITY MODELS
Identifying mobility patterns and generating mobility models
is an interesting set of urban mobility applications. Pattern
recognition is the analysis of data collected from real-word
environments and the subsequent estimation of figures or
relevant statistics that quantify the environment from which
the data was collected. For instance, a pattern recognition
application may target analyzing how passengers make use of
a train station at different times during the day. Model gener-
ation in urban mobility is the creation of an informative rep-
resentation of some aspect of the urban mobility environment
and can be used to predict features of this aspect. In general,
model generation can benefit from the pattern recognition.
For instance, a model of the usage of a bike-sharing system
may allow to estimate how many bikes will potentially be
required at rush hours.

In [8], Abduljabar et al. survey the state-of-the-art of
urban mobility models generated with machine learning and
data from autonomous vehicles. An overview of the pro-
cess to generate urban mobility models with cellular devices
is provided in [6]. The authors review data preprocessing
techniques, as well as urban mobility models. The article
finalizes with a brief insight into the evaluation of the models.
Zhu et al. present a survey on urbanmobilitymodels with data
from infrastructure-based systems [7].

The existing surveys focus on the use of data collected from
vehicles or infrastructure, [7], [8]. In the following, we focus
on applications that exploit passenger-centric data to either
recognize patterns or generate models.

A. MODEL, SENSING DEVICE AND TYPE OF DATA
Table 9 lists the works that aim at recognising patterns and
generating mobility models. It provides general details about
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TABLE 9. List of works that generate mobility models. Acronyms used:
API (application programming interface).

each work, namely the focus of the analysis, the sensing
device and the type of data.

The focus of the analysis conditions the type of data
required and thus, the sensing device. For instance, ticketing

data is required in order to analyze the usage of the public
transport infrastructure such as bus or subway stops. This
information can be obtained with either smart card data [98]
or smartphone apps [116] which are generally released by the
public transport operator.

The identification of mobility patterns is done mainly with
smarthpone data [106]. This information is useful to transport
operators to tailor their services to the need of the passengers.
Information such us the start and end stop of a ride, the week
day and time of a ride provide useful insights as to how
the population use certain transport modes during specific
days of the week or times of the day. It is worth highlight-
ing that aspects like traffic congestion can be analysed with
passenger-centric data [104], which otherwise would require
infrastructure-based data [117], [118].

Surveys have not disappeared as a means to collect pas-
senger data [101], [102]. In fact, they remain a useful tool to
provide additional information and context to, for instance,
quantitative data such as sensor measurements. In Table 9,
surveys are being used to predict the travel time of passengers.

B. MACHINE LEARNING FEATURES
Table 10 lists the key machine learning features of the works
in Table 9, namely the machine learning method and the type
of machine learning. The only machine learning method that
is repeated in different works is the decision tree [99], [100].
The variety of the topics on pattern recognition and model
generation leads to the use of a variety of machine learning
methods. For instance, similar applications such as predicting
the travel time can be addressed with methods like SVM,
kNN [101] or a Boltzmann machine [102].

50% of the works in Table 10 implement unsupervised
learning. Therefore, 50% of the works have no prior ground
truth to evaluate the machine learning method. This result is
expected due to the nature of the application at hand, where
one cannot expect to have prior information, e.g., regarding
how people behave in a train station.

Unsupervised learning is a powerful tool to discover clus-
ters in certain areas of urban mobility. For instance, one could
assess with unsupervised learning how gender, age effect the
choice of transport mode by analysing data from passengers’
smartphones or smart cards [98]. Uncovering this information
is useful to adapt mobility options to passenger and even
design traffic hubs or cities to match the needs of different
population clusters.

C. CONCLUSION AND OPEN CHALLENGES
This section summarizes the three main conclusions
regarding pattern recognition and model generation in urban
mobility. The first conclusion is that pattern recognition and
generation of mobility models for urban mobility is a new
topic, which shows potential and we expect it to be explored
in more detail in the future.

The second conclusion is that surveys remain a means of
extracting additional information which allows to add mean-
ing to quantitative measurements like those of smartphone
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TABLE 10. Method and type of machine learning method used in each of
the works in Table 9. The following abbreviations and acronym are used:
hidden Markov model (HMM).

sensors. Finally, the third conclusion is on the importance
of unsupervised learning to recognise patterns and generate
mobility models particularly if no prior knowledge on the
training is available.

There are open lines of research in the field of pattern
recognition and model generation in urban mobility. The
importance of this topic has only grown over the last years
and thus, the open challenges in this field are:
• Determining how to respect privacy concerns in the
analysis of the usage that passengers make of the urban
transport infrastructure,

• Determining how to quantitatively verify the outcome of
an unsupervised training,

• Identifying and developing features that quantify how
passengers make use of the urban transport infrastruc-
ture,

• Developing and evaluating models that represent pas-
senger behaviour and allow to make predictions.

• Identifying patterns and developing mobility models
based on data collected from passengers’ smartphones.

VII. CONCLUSION
This article reviews the state-of-the-art of how different
works use machine learning methods in urban mobility appli-
cations. We identify four main applications: data collection
for public datasets, localization of passengers, detection of
the transport mode and pattern recognition and mobility
model generation.

Each section of this work presents the conclusions of each
topic, yet we highlight three main conclusions. Firstly, the
smartphone is nowadays the most popular device in urban
mobility applications. Smartphones provide first-hand insight
on passengers’ preferences and usage of transport modes.
Secondly, public datasets are key for the development of
urban mobility applications but are in need of guidelines
that aid their design and documentation. In order to address
these challenges, municipalities and transport mode operators
of public and shared vehicles could work together to gen-
erate these guidelines and collect the data. Finally, pattern
recognition and model generation are in an early stage. Other
applications like passenger localization and transport mode
recognition may provide useful inputs to identify mobility
patterns and generate models of how passengers use the urban
infrastructure and move in cities.
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