IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received February 26, 2022, accepted March 6, 2022, date of publication March 14, 2022, date of current version March 23, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3159715

Architecture of an Artificial Intelligence Model
Manager for Event-Driven Component-Based

SCADA Systems

ZLATAN SICANICA™?, STJIEPAN SUCIC!, AND BORIS MILASINOVIC 2, (Miember, IEEE)

! Kongar—Digital, 10000 Zagreb, Croatia

2Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia

Corresponding author: Zlatan Si¢anica (zlatan.sicanica@koncar.hr)

This work was supported by the Advanced Tools Towards Cost-efficient Decarbonisation of Future Reliable Energy Systems (ATTEST)
Project through the European Union’s Horizon 2020 Research and Innovation Program under Grant 864298.

ABSTRACT This paper analyzes Hat, an open-source framework for developing event-driven component-
based SCADA applications, and discusses possibilities to add various analytical tools to such platforms. As a
part of the contribution, an open-source component called Artificial Intelligence Model Manager (AIMM)
has been developed and integrated into a Hat-based SCADA platform. AIMM is extensible through various
plugins, allowing the addition of various models for advanced analytics e.g., machine learning tools,
statistical tools, etc. The paper describes AIMM architecture and provides a use case in which state
estimation was performed in a medium-voltage distribution grid. This case study demonstrates that it is
possible to extend component-based SCADA systems with components for advanced analytics with minimal

fundamental system changes.

INDEX TERMS Artificial intelligence, power system analysis computing, SCADA systems, software

architecture.

I. INTRODUCTION

Supervisory Control and Data Acquisition (SCADA) systems
have undergone many changes over the various generations
of software development trends. First SCADA systems were
among the earliest large-scale software systems, as they typ-
ically managed critical infrastructure. Over time, new soft-
ware development and architecture principles were applied
to incrementally improve these systems, introducing changes
and evolving the common SCADA development practices.
One of these architecture principles, which is the focal
point of our research, is the event-driven component-based
architecture.

An event-driven software architecture consists of indepen-
dent event consumers and producers communicating via a
common event bus [1]. The central unit of information is an
event — a data element that indicates a change in the producer.
Producers send events via TCP, function calls, or some other
communication method, to the event bus — an independent
actor that forwards registered events to its consumers. Con-
sumers are actors that receive and process events. Consumers

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhouyang Ren

30414

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

and producers are not necessarily separate entities; a single
entity may act as a consumer of one event type and a producer
of another.

Component-based systems are systems whose main func-
tionality is achieved by dividing the system into smaller,
loosely coupled components that focus on their specific
roles and are usually able to communicate with each other
via method calls or message passing [2]. Each special-
ized component implements a small subset of the main
system functionality. In the context of SCADA systems,
these components could include communication or graphical
user interfaces (GUI) and various data processing modules.
Combining this approach with the event-driven architec-
ture, a SCADA system developed this way would con-
sist of several independent processes that communicate
with each other via events and perform various SCADA
functions.

Event-driven component-based architecture principles
have seen an increase in use over recent years because they
offer many benefits:

o They are distributed, which increases their robustness

and allows implementation of redundant individual
components.

VOLUME 10, 2022

https://orcid.org/0000-0001-9731-3000
https://orcid.org/0000-0002-7889-3131
https://orcid.org/0000-0003-4177-8639

Z. Sicanica et al.: Architecture of AIMM for Event-Driven Component-Based SCADA Systems

IEEE Access

o The addition of new functionality amounts to adding a
new component which implements that function since
components are inherently less coupled than in alterna-
tive kinds of architecture.

o The increase in Internet speed enables better communi-
cation between components and the rise of trends such
as cloud computing and microservices improving ser-
vice availability without significantly impacting system
latency or security.

Event-driven component-based architecture principles are
not without drawbacks, such as higher data flow complexity
and greater communicational overhead. Despite these short-
comings, they find application in various industrial systems,
including the example used in our case study, power grid
management.

Another group of techniques, focused on inference from
historical data, has seen a large increase in usage. These
mainly include methods from the field of machine learning,
such as neural networks, various types of linear models,
or deep learning. They find application in a variety of indus-
tries that have nothing to do with SCADA, e.g. medicine [3],
computer vision [4], marketing [5], etc. The field of statistics
has also seen an increase in use since the improvements in
computer hardware have allowed more computationally chal-
lenging methods to be implemented. Here we refer mainly
to the increasing use of Bayesian statistics, which allows
inferred processes to be modeled using methods such as
structured time series, or Gaussian process regression, and
optimized using approaches such as Markov chain Monte
Carlo or variational inference [6]. Finally, in these data-driven
techniques, we also include methods from the field of soft
computing, such as fuzzy logic or evolutionary computation.
These are also widely used, either as stand-alone solutions to
practical problems [7] or as part of hybrids with other data-
driven approaches (e.g., neural networks optimized with a
genetic algorithm) [8].

Hereafter, we refer to above-discussed techniques as
advanced analytics. Apart from the aforementioned applica-
tions, all these techniques have also been successfully applied
to SCADA systems. This mainly includes solving problems
such as prediction, fault, or attack detection. However, in our
work, we apply them to solve the problem of state estimation
of an electrical power grid.

Electric power grids consist of a large number of different
interconnected elements, that serve to transmit and transform
electric current. Monitoring them and tracking measurements
is an important task of the SCADA systems that manage them.
Since the number of measuring devices that can be placed at
different points of the system is limited, advanced analytical
methods are used to estimate the most probable physical
state of the devices in the network. The elements whose
states are estimated are power buses, lines, and transformers,
while the states of elements consist of voltage magnitudes,
voltage angles, active powers, reactive powers, and currents.
Performing accurate state estimation of a power system has
many advantages, such as detecting outages, overloads, or

VOLUME 10, 2022

erroneous measurements. It can also serve as a first step in
solving the problem of load estimation and forecasting. In our
case study, we use a method based on weighted quadratic loss
optimization, but other advanced analytical methods such as
deep learning or Bayesian statistics can be used.

A. MOTIVATION AND RESEARCH CHALLENGES

In this paper, we analyze an existing event-driven component-
based SCADA system developed using an open-source plat-
form, Hat [9]. The Hat platform is publicly available and we
use it as an example of how a generic distributed component-
based SCADA system would work, focusing mainly on exist-
ing components and how they communicate with each other.
The SCADA system is configured to monitor the measure-
ments of a medium-voltage distribution network. Further
on, we propose the addition of a new component, Artificial
Intelligence Model Manager (AIMM), which specializes in
advanced analytics. The component is also open-sourced
and publicly available [10]. This component connects to the
SCADA’s event interface, receives events containing reported
measurements, and performs state estimation, returning the
estimated measurements to the SCADA system so they can
be shown on its user interface. For the most part, AIMM is
seamlessly integrated and respects all protocols and interfaces
of the event-driven component-based system.

Event-driven SCADA systems with distributed, component-
based architecture have the advantage of new components
being easily added without changing the rest of the system.
Since there is motivation to extend such tools with advanced
analytics, the question becomes how such a requirement
can be met and what are the architectural implications of
such a solution. We analyze the data model of the original
SCADA system to show what additional components and
event types should be added. Another point of interest is the
communication overhead that results from the fact that the
AIMM component communicates via Transmission Control
Protocol (TCP).

An additional major research challenge is the development
of the AIMM system as a whole, its components, and the
setup of the state estimation case study. We are trying to create
a general-purpose tool with interfaces that are as generic as
possible and not just tailored to the specific case study. This
means that we leave options open for advanced analytics
applications other than state estimation.

The final challenge is the case study itself, as it serves
as a proof-of-concept for our solution. We are trying to
implement it with minimal changes to the underlying system.
Our goal is to obtain estimations in soft real-time in response
to measurement changes in the system.

B. MAIN CONTRIBUTIONS

There are several contributions presented in this article. The
first one is the design of a modular architecture for integrating
advanced analytics into SCADA systems. It shows the main
entities a component should contain and how they should be
interconnected. Components implementing this architecture

30415

IEEE Access

Z. Sicanica et al.: Architecture of AIMM for Event-Driven Component-Based SCADA Systems

can be used in any SCADA system that has an interface
allowing access to the data of the monitored process.

The second contribution is the implementation of such
an architecture. We describe an existing SCADA system
based on the Hat platform and show how such a system
can be extended with AIMM, a concrete implementation of
the previously mentioned architecture. In addition, AIMM
is integrated into an event-driven component-based SCADA
system, and there is little research analyzing the integration
of advanced analytics into such an architecture to solve prob-
lems the power industry faces.

The rest of the paper is structured to describe the compo-
nent development approach. First, we provide an overview
of the relevant research on event-driven component-based
SCADA systems, the application of advanced analytics
in the energy industry, concrete approaches to integrating
these methods into SCADA systems, and we finish with an
overview of Hat’s architecture. The second section describes
the AIMM component. We cover its internal architecture and
how it can be integrated into the Hat environment. The third
section focuses on the specific state estimation case study
and describes the problem setup, the way the measurements
are simulated, the results, and the discussion of potential
improvements. Finally, we present conclusions and topics for
potential future research.

Il. RELATED WORK
Many successful research use cases are demonstrating the use
of advanced analytics with SCADA systems. In this section
we provide an overview of the research, focusing on the
following:
« successful application of event-driven component-based
SCADA systems
« the application of advanced analytics to data derived
from SCADA systems, with a focus on power systems

o algorithms wused to solve the state estimation
problem

« examples of the integration of intelligent agents into
SCADA systems

A. EVENT-DRIVEN SCADA SYSTEMS

Event-driven component-based SCADA is based on the use
of events as general, central data structures that transport
information and indicate changes between system compo-
nents. The specialized components implement various sub-
sets of the SCADA functionality and communicate with each
other using these events. This concept has seen previous use,
Beck et al., for instance, provide an overview of a LabVIEW-
based control system that is event-driven and has SCADA
capabilities [11]. Approaches that implement SCADA as a
distributed event-driven system are also known. For example,
an actor-based framework has been presented that allows
software engineers to create modal functional blocks that fol-
low the event-driven principles and communicate with other
components via labeled messages [12]. There is also research
that addresses the security of such systems and proposes a

30416

security implementation scheme of a wide-area event-driven
SCADA system [13].

B. APPLICATION OF ADVANCED ANALYTICS TO POWER
SYSTEMS

There are many examples of the use of advanced analytics on
data coming from SCADA systems. In this paper, we focus
on SCADA systems used in the context of power systems.
One problem that is often solved by advanced analytics is
the short-term prediction of a measurement. Several review
articles show how advanced analytics can be used to predict
energy consumption in smart grids [14], [15], buildings [14],
or power systems in general [16]. Power generation is also
frequently predicted, usually in less reliable renewable energy
systems, such as wind farms [17]. Common algorithms men-
tioned in these reviews are neural networks, support vector
machines (SVM), or various hybrid models.

Another common application of advanced analytics in
SCADA systems focuses on improving the resilience of
the system to failures and cyber-attacks. There is research
showing machine learning can improve fault detection in
wind farms [18] and substations [19]. These reviews show
the use of neural networks, machine learning, and soft
computing. Another heavily researched topic is the secu-
rity of SCADA systems. This involves analyzing how
advanced analytical algorithms can be used to prevent data
injection [20], execution of unauthorized commands [21]
or man-in-the-middle, denial-of-service (DOS), and replay
attacks [22]. Ferrag et al. provide a comprehensive review of
cyber-security solutions specifically for fog-based SCADA
systems [23]. The proposed solutions mostly utilize neural
networks, SVMs, and various hybrid models. These are the
most common use cases for advanced analytics in SCADA.
However, some publications also show successful applica-
tions of these techniques in various specialized case studies
that do not fall under the previously described categories,
including the focus point of the case study of this paper, state
estimation.

C. CURRENT TRENDS IN STATE ESTIMATION

In this paper, we see the advanced analytics component
we implemented integrated into an existing, event-driven
SCADA system solving the state estimation problem. State
estimation is a process of using a set of available measure-
ments in a system to approximate the state of system compo-
nents for which exact measurements are not available [24].
This approach can also be used to indicate potentially inac-
curate measurements, such as when a measurement differs
greatly from the estimate of the same element. Some of the
methods used are more traditional, such as the weighted least
squares (WLS) algorithm or projection statistics [24], [25],
but there have also been successful applications of more com-
putationally intensive approaches such as autoencoders [26],
Markov chain Monte Carlo [27], and convolutional graph
networks [28].

VOLUME 10, 2022

Z. Sicanica et al.: Architecture of AIMM for Event-Driven Component-Based SCADA Systems

IEEE Access

D. INTEGRATION OF ADVANCED ANALYTICS TO SCADA
SYSTEMS

A topic separate from the domain-specific problems and
the methods used to solve them, and an important focal
point of our research, is the integration of these solutions
into SCADA systems. Previous research typically took the
approach of viewing SCADA as a multi-agent system and
treating the advanced analytic operations as actions of intelli-
gent agents [29]. They specify which interfaces these agents
can access and which actions they can perform. Standard-
ized multi-agent architecture such as Condition Monitoring
Multi-agent System and Protection Engineering Diagnostic
Agents have also been analyzed, highlighting the advan-
tages and disadvantages of both systems and examining
their interoperability. Recent research also shows similar
conclusions on what data sources the agents should be
able to access. These are usually the database and the pro-
cess data received from devices [30], [31]. However, some
approaches attempt to integrate intelligent agents in a more
seamless way, where the underlying system is unaware
that it is being analyzed by an agent and the agent is
unaware of the domain of the system it is observing but only
reacts to changes it perceives, pointing out anomalies [32].
The approach in our research is somewhere in the mid-
dle, where the advanced analytics component is not com-
pletely independent of the semantics of the data it receives
but is still separated from the SCADA system by a web
interface, which is more common in IoT-based SCADA
systems [33], [34].

Cloud and fog-based SCADA systems also have great
potential for easy integration of advanced analytics. One of
the applications explored is the integration of intrusion detec-
tion systems into such an architecture. Numerous research
results show the successful integration of supervised learn-
ing agents into the fog and cloud-based SCADA systems
[23], [35]. There are also examples of more autonomous
components based on reinforcement learning used in cloud-
based SCADA systems [36]. Cloud systems are typically
tasked with processing large amounts of data, and a review
by Pliatsios et al. lists how Big Data analytics can be inte-
grated into such systems, especially in the context of intrusion
detection [37].

When it comes to presenting the results of advanced ana-
lytics to the users of the system, different approaches are
proposed. Some advocate for the development of a separate
application, while others, including our research, propose
solutions that use the existing SCADA user interface to
display predictions and alerts as various graphs or system
alarms.

These papers show that advanced analytics can be inte-
grated into SCADA systems in a variety of ways, and in
Table 1 we compare the aspects of interest to our research.
In the last row, we also list our method.

In summary, related research shows the following:

o Event-driven SCADA systems have a practical

application.

VOLUME 10, 2022

« Power grid data, collected by SCADA systems, can be
used to add value through advanced analytic techniques.

o The state estimation problem can be solved with
advanced analytics.

o Advanced analytics are integrated into SCADA systems
as intelligent agents, with access to the database and
process data.

Event bus

—
Event
database

TCP

Function

TCP
calls

Protocol Data processing

converter modules GUI server

A x RS

1 Industrial

1 protcols
Modbus: IEC-104;

“ HTTP/Websocket
v ¥ v N
— @ ¢ @

Physical GUI
devices clients

FIGURE 1. Interpretation of a Hat-based application architecture.

E. EVENT-DRIVEN COMPONENT-BASED SCADA SYSTEM
One of the main focuses of this paper is Hat — an open-source
framework for development of event-driven component-
based SCADA applications [38]. SCADA systems developed
using this framework have a distributed architecture with
components connected via an event bus. Figure 1 shows what
the architecture of a generic Hat-based application could look
like if it used all of the available components. It can be divided
into four abstractions — event bus, data processing modules,
protocol converter, and GUI server.

Figure 2 also shows an example of interaction between the
three primary logical components. In this example, the system
is configured to receive data from two separate devices, one
of which communicates via the IEC 104 protocol [39], the
other via Modbus [40], and assign their values to separate
abstract process points. The process point values are then
manipulated by the data processing modules in various ways.
Finally, the process point values all end up on the GUI server,
which notifies its clients of the changes using the WebSocket
protocol [41]. In the following subsections, we describe the
primary components in more detail, often referring to the
sequence diagram as an example. We also compare the archi-
tecture to the Integrated Devices Open Management (IDOM)
SCADA, as it is an example of a practically used and docu-
mented SCADA system [42].

1) EVENT BUS
The event bus is a central component that allows other com-
ponents to connect, subscribe to, and register events. Its event
data structures consist of the following properties:
« Event type — list of string values used to determine what
the event refers to

30417

IEEE Access

Z. Sicanica et al.: Architecture of AIMM for Event-Driven Component-Based SCADA Systems

TABLE 1. Overview of related work demonstrating practices for integrating advanced analytics.

Reference

SCADA architecture

Problem

Advanced analytics
workflow

Integration method

Result presentation

Catterson et al. [29]

Uraikul et al. [30]

Leahy et al. [31]
Baldoni et al. [32]

Yadav et al. [33]

Fazlollahtabar [34]

Ferrag et al. [23]
Khorsand et al. [35]

Ghobaei-Arani et

Monolith

Monolith

Monolith
Generic distributed

ToT-based

ToT-based

Fog-based

Cloud-based

Cloud-based

Fault detection

Monitoring, control,
diagnostics

Fault detection
Anomaly detection

Intrusion detection

Assembly automation

Intrusion detection

Resource provisioning

Resource provisioning

Machine learning

Machine learning,
fuzzy logic

Machine learning
Statistical method

Machine learning

Probabilistic method

Supervised learning
Fuzzy logic

Reinforcement

Internal component

Internal component

Internal component
Separate component

Separate component

Autonomous devices

Separate component

Separate component

Internal component

System interface

System interface

SCADA interface
Separate interface
Separate interface

Implicit, device
actions

Separate interface

Implicit, agent actions

Implicit, agent actions

al. [36]

Pliatsios et al. [37] ToT-based Intrusion detection

Power grid state

Event-driven . .
estimation

Our method

learning

Big Data analytics Separate component SCADA interface

Statistical method Separate component SCADA interface

Data processing modules

Protocol converter Assign to

point

Sum GUl server

(point2 + point 3)

Scaling
(*0.5)

IEC-104 data - 10

devicel/addressX - 10

» | pointl = 10

Modbus data - 3 .
device2/addressY

.._____....._____....___)

;ﬂ WebSocket - pointl =

point2 =5 .
point4 =5

;H point3 = 3

o

point4 = 8

FIGURE 2. Sequence diagram of messages that can traverse a Hat-based system. Dashed arrows represent direct messages in various protocols, while full
arrows represent events that originate from their creator, traverse the event bus, and reach their consumers.

o Timestamp — the time when the event was registered (set
by the event server)

o Source timestamp — optional additional timestamp that
can be passed by the event creator

o Payload — JSON serializable data structure used to rep-
resent additional data

When connecting to the event bus, a component speci-

fies which event types it wants to subscribe to. When other

30418

components register events of that type, the component is
notified, receives the event, and can use it to perform its func-
tion (for example, the GUI server receives data to serve on
its web interface). The event bus stores the registered events
into a database and provides an interface for components to
query these events. This provides the components with access
to historical data and allows the state of the SCADA system
to be persisted while it is shut down.

VOLUME 10, 2022

Z. Sicanica et al.: Architecture of AIMM for Event-Driven Component-Based SCADA Systems

IEEE Access

Concerning the example shown in Figure 2, although the
event bus is not explicitly drawn, it still affects the behavior
of the system. Every full arrow between sequence actors in
the diagram means that the source of the arrow has registered
an event and that its targets have subscribed to events with
that event type. In this context, the event bus serves more as
a communication medium than as a participant in the data
sequence.

2) PROTOCOL CONVERTER

The main function of SCADA systems revolves around com-
munication with different types of devices which are used in
the managed industrial processes, such as meters, switches,
or transformers. The logic implementing this communication
varies from one device to another and often does not even use
the same communication protocol. For this reason, it is com-
mon practice to separate the implementation of this logic into
a separate component. The component unifies all available
communication drivers, the entities that use them to control
remote devices, and provides an interface to the business logic
layer of the SCADA system. This interface can be accessed in
a variety of ways. One common approach is to call functions
or use standard object-oriented principles [42]. In event-
driven SCADA systems, the method invocation is replaced
by sending and receiving events. The component receives
events describing what data to send to remote devices, and
it converts datagrams containing process data into events.
In Hat-based SCADA systems, this is done by the protocol
converter component.

This can also be seen in Figure 2, where the protocol
converter is connected to two different devices — one com-
municating with the IEC-104 protocol and the other with
Modbus. The protocol converter receives information pack-
ets from those devices and converts them into events. It is
important to note that it is possible to reverse the direction of
communication, from SCADA to the devices, to write data
or execute commands, even though this is not shown in the
sequence diagram.

3) DATA PROCESSING MODULES

Business logic is usually the core of any system, and in
Hat-based systems, it is implemented with data processing
modules. These modules are intermediate components that
subscribe to events and generate new ones. While in non-
event-driven systems, business logic is usually implemented
by modeling the process using object-oriented program-
ming [42], Hat achieves it with a data flow. A module acts
as an independent component that defines the types of events
to which it subscribes. Once these events are registered, the
component registers new events based on them (referred to as
processing). The modules differ from each other depending
on the exact kind of processing they do. One module might
register events indicating that a switch position has changed,
but then other modules might receive that event and regis-
ter new events based on it, for example, indicating that the
change is dangerous and triggering an alarm. By chaining

VOLUME 10, 2022

different modules in such a way that the output events of
one module are inputs of another, the data flow, and thus the
business logic, is implemented.

In the sequence diagram in Figure 2 these modules are
placed in the middle. There are three different modules,
distinguished by how they process events. The one labeled
‘Assign to point’ converts events registered by the protocol
converter that are protocol-specific into process points. The
‘Scaling” module multiplies any process point by 0.5 and
creates a new process point with a scaled value. The ‘Sum’
module receives two process points and creates a new one
with a value equal to the sum of values of the input process
points.

4) GUI SERVER

Graphical user interfaces (GUI) of Hat applications are web-
based applications deployed on a component called the GUI
server. It represents the presentation layer of the SCADA
system and is implemented similarly to SCADA systems such
as IDOM, consisting of a web-based frontend and a backend
that serves it [42]. The backend acts as an intermediary
between the frontend and the business logic contained in the
data processing modules. It communicates with the frontend
using HTTP and WebSocket protocols.

The GUI server connects to the event server, receives
events, and notifies its clients when relevant changes occur.
A simple example of a change would be the GUI server
receiving an event stating a measurement has taken a new
value. The server would then notify all its clients of the new
measurement value that needs to be displayed. Since GUI
clients must be authenticated before accessing any data, the
GUI server would notify only clients with sufficient access
rights.

Reverse data flow is also supported: GUI clients can send
requests to the server, which can lead to the creation of
new events. This is necessary whenever a client needs to
make a change that affects the global state of the system,
i.e. the change should somehow affect other GUI clients or
external devices. This could, for instance, be manual entries,
alarm confirmations, or commands. The same rules regarding
authentication apply to this direction of the data flow, i.e. the
GUI server filters out all requests for which the logged-in user
does not have sufficient rights.

The sequence diagram in Figure 2 illustrates most of these
concepts (all except the opposite data flow). The GUI server
subscribes to all process point events and notifies its clients
of their changes via a WebSocket connection.

IIl. ARTIFICIAL INTELLIGENCE MODEL MANAGER

In addition to standard components described in the previ-
ous chapter, we add a new component to the Hat environ-
ment whose function is to apply advanced analytics to Hat
events: Artificial Intelligence Model Manager (AIMM). The
component is open-source and publicly available [10]. The
repository is also documented with examples, one of which
shows the case study described in the following chapter,

30419

IEEE Access

Z. Sicanica et al.: Architecture of AIMM for Event-Driven Component-Based SCADA Systems

FIGURE 3. AIMM'’s integration into the Hat environment.

with a simplified SCADA and publicly available power grid
data [43].

The component can be viewed as a model manager, where
models are implementations of various analytical algorithms.
These models can be instantiated (an instance is a concrete
configuration of a model), trained, and executed. The AIMM
component provides interfaces that allow its users to create
and execute models, access data, and implement control and
storage interfaces. There are four independent components —
plugins, controls, backend, and the engine. Plugins allow
users to create their models and data access functions, con-
trol interfaces serve as entry points to system functions, the
backend component manages the storage of model instances,
and the engine acts as the central component that manages
actions and resources created by the other three components.
Control and backend instances can also connect to Hat’s event
server and use its infrastructure. The interaction of all these
components and the way they are integrated into the Hat
environment is shown in Figure 3. Following subsections
describe each subcomponent in greater detail.

A. PLUGINS

Plugins are the most extensible part of the AIMM compo-
nent. Their function is to register entry points for various
workflows specific to analytical algorithms, such as fitting or
prediction functions, instantiation of machine learning mod-
els, or data access and preprocessing. The plugins are imple-
mented as various functions and classes that follow interfaces
defined by the AIMM component. These implementations are
registered on the AIMM server so that other components can
use them in their actions.

This approach has several advantages — it provides flexi-
bility when it comes to adding new algorithms to the system
and it allows the plugins to be used in offline mode so that
integrators can try different configurations of models before
deploying them (if they use the same plugins locally as on

30420

Event bus

A 4 \ A
L AIMM 5
Y Y ' A\ 4 :
Data Event-based) Event-based
Frotacol processing GUI server : control » Engine > backend :
converter - .
modules , :
REPL control \ 4
Plugins !

the server). Also, plugin implementations can report progress
status, which gives users more insight into longer-running
operations and provides a better user experience. One draw-
back is the need to implement plugins to use the component,
which could be a problem for users who are not programmers.
This problem could be mitigated by developing a standard
plugin library that includes generalized plugins.

interface Model:
def constructor (xargs)

def fit (xargs)

def predict (xargs) -> result
def serialize() -> bytes
@classmethod

def deserialize (model_bytes) —-> Model

LISTING 1. Pseudocode of the model interface.

The current implementation of AIMM supports implemen-
tations of two types of artifacts used by the engine: models
and data access points. Models are objects that contain imple-
mentations and various parameters of advanced analytics.
Their public methods are used by the rest of the AIMM
objects to create, serialize, deserialize, train, and use the mod-
els (at the moment, only the supervised learning workflow is
supported). The current implementation can still be modified,
but the basic necessary methods need to be specified as
shown in Listing 1. Some method arguments are only loosely
specified since a precise specification might limit the needs
of the plugin implementer. Arguments for progress reporting
callback functions can be specified here, which can then be
used by the rest of AIMM to inform the user of the progress
of those calls.

Data access points are functions that are called to access
datasets. They handle long-lasting file reads or downloads of

VOLUME 10, 2022

Z. Sicanica et al.: Architecture of AIMM for Event-Driven Component-Based SCADA Systems

IEEE Access

def data_access (xargs) -> data

LISTING 2. Function signature of the data access plugin.

datasets, and any optional data preprocessing while retaining
the previously mentioned benefits of plugin calls. A data
access plugin must match the signature in Listing 2. As it is
shown, it does not have to meet precise requirements for its
arguments, for the same reason as the model interface.

B. BACKEND

The purpose of the backend component is to persist model
instances. At startup, the backend is queried for all persisted
model instances so that they can be included in the server
state. Subsequently, the engine can request storage of model
instances at various times during runtime. There is no single
implementation of the backend, it is an interface, and the
specific implementation is defined in the component config-
uration.

AIMM allows the implementation of backends that can
access the event bus and use events to store and load model
instances. Such a backend implementation is also used in
our case study for state estimation. Since events can contain
binary data, the backend can serialize each model instance,
register the event with the instance bytes and query the event
server for any stored instances on subsequent launches. This
has the advantage of having a single source of truth for
all persisted data since all persisted data are stored on the
event server. If the AIMM component is running in redundant
mode and the primary component is shut down, the secondary
component can access any model instances that the primary
component may have created. The disadvantage is the loss
of control over how the instances are stored. This could be
problematic if the event server storage method is suboptimal
for this purpose.

interface Backend:
def constructor (conf, event_bus)
def get_models () —-> List[Modell]
def save_model (model)
def update_model (model, model_id)

LISTING 3. Pseudocode for the backend interface.

The interface that each backend must implement is the
same as previous descriptions, as shown in Listing 3. In addi-
tion, there is a certain implementation detail related to access-
ing the event interface: the backend receives an instance of an
object representing access to the event bus that it can use to
create events containing serialized model instances.

C. CONTROL
The control component is used to host various interfaces that
serve as entry points for actions that the AIMM system can

VOLUME 10, 2022

perform. There may be several different implementations of
these interfaces running in parallel. The control interface is
also needed because its implementations are the ones that
communicate with external systems. This means that, in order
to integrate AIMM into a different SCADA system, the only
requirement is the development of new control implementa-
tion, one specific to the external interfaces of that SCADA
system.

interface Control:
def constructor (conf, event_bus)

LISTING 4. Pseudocode for the control interface.

The control interface is simpler than other interfaces since
its implementations only need to be instantiated at startup
and then act independently thereafter. This is reflected in the
interface pseudocode in Listing 4.

One interface used in the case study was nicknamed the
REPL interface, REPL referring to the term Read—eval—print
loop. This is a programming environment in which users can
enter commands from a scripting language and the results
of the command are immediately printed to standard output.
AIMM’s REPL interface is designed to allow users to perform
server actions by running a Python REPL, invoking the com-
mand to connect to the server, and executing the functions that
correspond to desired actions. The motivation is to provide
an interface that allows users to quickly upload new model
instances, update old ones, access existing instances, and
perform model training and executions, without hiding these
actions deep in the business logic of the server’s runtime.

The second implementation of the control interface served
as a bridge between the event server and the AIMM sys-
tem. This interface subscribes to various events, performs
the appropriate actions specified by those events, and reg-
isters new events that contain the model execution results.
The interface waits for events informing it what action to
perform with which model instance and optional parameters
or configurations. This information is passed using the event’s
event type and payload and is generic concerning plugins,
meaning that the event control is not aware of which plugin
functions exist or the exact semantics of their arguments and
configuration parameters. The results of triggered actions are
then also registered as events to which other components of
the SCADA system can react.

This way, AIMM can either receive historical data as inputs
from its clients (i.e. as an event payload in the case of an
event-based control implementation), or it can implement
control with access to the event bus and an interface that
allows its users to specify query parameters when requesting
model fitting, which would then be used to retrieve the data.
The first option is easier to implement because it is up to the
caller of the control interface to specify the data, while the
advantage of the second option is that it avoids the creation
of bloated events (a disadvantage of the first option) since

30421

IEEE Access

Z. Sicanica et al.: Architecture of AIMM for Event-Driven Component-Based SCADA Systems

one event can be interpreted as one entry of historic data in
the query result.

D. ENGINE
The engine is the central component of the AIMM archi-
tecture. It is used to synchronize all other components to
implement expected behavior of the entire system. Workflow
actions like fitting or executing model instances are executed
in separate processes since they usually take a long time.
Management of these processes is also handled by the engine.
The workflow of a generic server action could be repre-
sented with the following steps:
1) A control starts a new engine action.
2) The engine loads resources required to execute the
action.
3) The engine accesses configured plugins and uses them
to execute the action.
4) The action result is returned to its caller but is also
available in the engine state.
5) When an action creates or modifies a model instance,
the engine uses the backend to persist it.
Currently supported actions in the engine allow controls
to create, update and upload new model instances, fit the
instances to the data and run models on unseen data.

IV. STATE ESTIMATION OF A MEDIUM-VOLTAGE GRID
State estimation is a problem that is often solved using various
methods from fields of statistics or artificial intelligence since
there is no analytical solution. The goal is to use a small subset
of all available measurements in a power grid to estimate
states of various elements in the system. This subset is not
sufficient to accurately evaluate the entire grid using laws of
physics, so various approximation mechanisms must be used.
In the case study, a state estimation was performed for a
medium-voltage grid. The only available measurements were
active and reactive power loads on all buses. The objective
was to estimate voltage values and their angles on the buses.

A. SYSTEM SETUP

1) DEVICES

In the case study, all configured devices are used to report
measurements. These measurements show active and reac-
tive power values on buses in the distribution network. The
GUI is configured to display the measurements next to the
corresponding buses. The complete setup of the scheme is
shown in Figure 4. The scheme represents the medium-
voltage grid of a Croatian county and was provided by
the project ATTEST. We also created a publicly available
demonstration using the IEEE 14-bus grid, but with a simpli-
fied SCADA implementation that would not have been used
in practice [43].

2) UNIFIED DATA MODEL

As mentioned earlier, separate data processing modules are
used to transform and manipulate data as it travels from

30422

Bus 1 (110 kV)
T vV 1l4pu
Va 0.00°

Bus 2 (10 kV)
P 9.34MW
Q 9.58 MVar
vV 1.07pu
Va -1.23°

Bus 6 (35 kV)

P 9.49 MW

Q 9.88 MVar

vV 1.09pu.

Va 003° —

Bus 9 (35 kV)
P 10.00 MW

Q 9.10 MVar
vV 1.08pu
Va -031°

Bus 5 (10 kV)

P -9.47 MW

Q_ -9.36 MVar Bus 8 (10 kV)

v 121pu P -0.00 MW

Va 321° Q 0.42 MVar
vV 1.13pu
Va 046°

FIGURE 4. Electrical schematic for the case study showing measurements
(P and Q) and state estimates (V and Va).

devices to user interfaces. Since there are many different
types of devices, data transformations, and user actions that
the SCADA system must handle, a separate unified data
model (UDM) was introduced that synchronizes the events
originating from these sources under the same event type
and payload structure. The UDM represents all readings
from devices as process points, similar to the example in
Figure 2. Process points are identified by their event types
and contain information such as measurement values, qual-
ity of data, or other protocol-specific information in the
event’s payload data. When a device reading changes its
state, e.g. a measurement changes or a switch changes its
position, an event representing that change is mapped onto a
UDM event, performing any additional transformations. The
process point event is then transformed into a GUI-specific
event that should be consumed by the GUI server component.
The reverse direction works similarly, where user actions are
registered as GUI-specific events that target process points
and are converted into device-specific events only when
needed.

3) HAT-AIMM INTERFACE
A new module has been added to the event server’s data
processing modules whose function is to register events
for the AIMM component to respond to. The module pro-
cesses UDM'’s process point events and generates AIMM-
specific events containing data necessary to perform state
estimation. To avoid simultaneous registration of too many
events requesting state estimates in cases where measure-
ments change rapidly, a buffer time of 0.5 seconds was intro-
duced. This way, measurement changes would accumulate in
these 0.5 seconds and a single request for a state estimate
would be registered after this time had elapsed. The mod-
ule would also handle the reverse communication direction,
i.e. it would subscribe to all events registered by the AIMM
component and use them to update the UDM with estimation
data.

From a functionality standpoint, this module was not nec-
essary — the AIMM component has access to the event bus

VOLUME 10, 2022

Z. Sicanica et al.: Architecture of AIMM for Event-Driven Component-Based SCADA Systems

IEEE Access

and could have used events that the module would normally
handle to directly generate state estimation events for the
GUI server component. Nevertheless, the specialized module
for state estimation was added to the event server, mostly to
ensure separation of concerns.

4) AIMM CONFIGURATION

AIMM was configured to connect to the event server and
receive events that trigger state estimates. A plugin was devel-
oped that uses the pandapower package to perform estima-
tion [44]. It uses the Gauss-Newton method to find the most
likely estimates while modeling the problem as a WLS regres-
sion. Incoming events, sent by the newly developed module
contain information about available measurements. These
measurements are passed to the plugin, which processes them
and attempts to estimate the states of the remaining measure-
ments in the system. The estimates are then sent back to the
event server module. The module translates them into UDM
events enabling their visualization as regular measurements
in the remaining components.

An important concept to point out is that AIMM’s event
server control, engine, and backend are not aware of seman-
tics of incoming and outgoing events. Their purpose is infras-
tructural — they connect incoming data to the plugins and
provide evaluation results to whoever is listening, in this
case, Hat’s event server. This means that AIMM’s only devel-
opment requirement is plugin development, which should
normally depend on the context of its use. An alternative
approach could have involved development of a specialized
control implementation that is aware of exact functions the
AIMM component provides. This way, it would not have
been necessary to implement a new module of the event
server, since the functions it provides are covered by the
specialized control. Nevertheless, the case study opted for
the first approach, i.e. developing a specialized module and
using the generic event control, mainly because the authors
considered this to be an architecturally “cleaner” solution
since the SCADA system is aware of the AIMM component
to some extent and this awareness does not affect its core
functions.

B. SIMULATION

Since the communication with all configured devices is done
via TCP, readings can be simulated by hosting a server for
each device (or connecting with a client if the SCADA sys-
tem is to act as a server). The connections are then used
as communication channels that send simulated data to the
protocol converter. IEC 104 protocol was used to transmit the
data [39].

Since real measurements were not available in large num-
bers, the simulated data were created using the available
measurements as a reference. Nevertheless, simulated inputs
did not contain values that would not have been available in
the real measurements. This means that the model did not

VOLUME 10, 2022

have access to additional data that it would not have had in a
real scenario.

C. RESULTS

The state estimation was successfully deployed with mini-
mal changes to the preexisting SCADA system. The only
modification was the addition of an event server mod-
ule that communicated with the AIMM component, which
could have also been avoided using the alternative method
described at the end of subsection A. Overall, AIMM
was successfully integrated into the Hat environment, had
access to all necessary data, and was able to contribute
its estimates.

Since the AIMM component was running in a separate
process, there was no impact on SCADA performance, and
even if there had been, the component could have been moved
to a separate device since events are transmitted over TCP.
A potential negative side-effect of implementing the state
estimator in a separate component of a distributed system is
an increase in response time from reading the measurements
to displaying the estimates on the user interface. Since the
components ran on the same physical device, this effect
was not particularly pronounced when the case study was
conducted but could increase in configurations where they
are connected over the network. Figure 5 shows the flow
of messages through the system and the times at which
they were received by the components processing them.
The times were measured in over 4500 simulation scenarios
where measurements change their values, AIMM performs
estimation and the changes are displayed in the SCADA
GUI An additional reason why events requesting estimation
are registered after measurement events are available on the
GUI is the buffer time mentioned in the Hat-AIMM interface
section. Overall, the measured times show that the biggest
factor in the delay between measurement change times
and estimate availability is the calculation of the estimate

itself.
GUI
SCADA AIMM (web browser)

Measurements

Measurement
s
Estima“on
"equest
0.6671s
0.9491 s
L matioft
Esm“onse

(es

3.7743 s

\ 3.0085 <

FIGURE 5. Component messages and their average arrival times
over 4500 simulation scenarios.

30423

IEEE Access

Z. Sicanica et al.: Architecture of AIMM for Event-Driven Component-Based SCADA Systems

D. DISCUSSION

The solution in the case study has managed to provide state
estimates in soft real-time. Nevertheless, some improvements
can be added in the future. For example, since most analytical
algorithms this paper refers to are based on approximation,
the question of quantifying uncertainty rises. It is common
for estimators to not only produce estimates but to express
how likely they are to be incorrect. This is usually expressed
by a probability or a confidence interval. The quantification
of uncertainty may also depend on the type of method used,
e.g. Bayesian methods always provide distributions of esti-
mates rather than individual values. Therefore, methods such
as Gaussian process regression are useful in use cases where
such quantification is important, as shown in [45]. Uncertain-
ties from non-probabilistic methods can also be quantified,
but usually using separate workflows, independent of the
process of estimation, e.g. with probabilistic collocation [46].

To reduce the possibility of inaccurate measurements,
another potential improvement to the solution is noise han-
dling. Measurement noise is partially handled by the estima-
tion method itself. Pandapower’s estimators take into account
the standard deviation of the measurements since it is a
configurable parameter. However, the implemented workflow
could be improved by adding a separate step to analyze noise
before calculating the estimate. In pandapower, this is usually
done using chi-squared tests to calculate the probability that
a measurement is correct. Another option would be to not use
pandapower’s methods and implement our own. However,
such a method would still be based on statistics, it would
just use a different test. Adding the noise analysis step would
affect the estimation workflow in such a way that a SCADA
alarm could be triggered if the estimation is not possible due
to noisy measurements.

Another problem associated with unstable measurements
is the convergence of the algorithm. The estimator requires
a large number of continuous input variables, which means
it may not be able to compute a solution for every possible
combination. The statistical test mentioned earlier could be
used to check measurements before the estimation. In addi-
tion, the case where an estimate could be made must be
handled in the AIMM control, probably by raising an alarm
in the SCADA system. Another approach could be to use
a model based on Bayesian statistics, which would pro-
vide a distribution of estimates and enable determining not
only the estimated measurements but also their reliability.
This approach could converge more often but would clas-
sify estimates based on unrealistic measurements as highly
unreliable.

Finally, the speed of the estimation method itself could be
improved. The WLS estimator has an imprecise computa-
tional complexity, that depends mainly on the convergence
speed of the Gauss-Newton optimization. In practice, this
is acceptable for the presented case study only if the esti-
mates have to be computed at least every 3 seconds for this
case study’s power grid. If the metering changes consistently

30424

arrive faster, the estimates cannot adjust quickly enough.
A solution to this problem is buffering where the event
server module responsible for generating events for estima-
tion requests does not generate events every time a measure-
ment change occurs, but only every 0.5 seconds, as mentioned
in the case study. For the simulated use case, the 0.5 seconds
were sufficient to produce acceptable results, but in a real-life
scenario, that interval might need to be increased as changes
could occur much more randomly.

Another approach to solving the estimation speed problem
could be to change the estimation algorithm and use a less
complex solution that does not perform optimization during
the calculation of estimates. For example, one could use a
neural network already optimized for the power grid on which
it performs estimates. Another improvement is shown in [47]
and [48] where using sparse models, Bayesian methods, and
special feature importance quantification methods, irrelevant
measurements are detected and excluded from calculation.
A potential drawback is that such models are generalized and
not coupled in any way with the state estimation problem,
which could lead to a loss of accuracy in the estimates,
as the model would lose insight into physical aspects of
the power grid. Pandapower’s implementation of the state
estimator could also use a general method but is specific to
the state estimation problem — its models are aware of the
complete grid topology, all elements within it, and their states,
e.g., which switches are opened or closed. Arguably, reducing
the number of features or using a generalized model such as
neural networks could lead to a loss of estimation accuracy
and poor ability to generalize, if these details are ignored.
However, this should be further confirmed in a separate
study.

V. CONCLUSION

In this paper, we presented an architecture for a new com-
ponent of an event-driven, component-based SCADA system
that provides capabilities for advanced analytics. We config-
ured the SCADA to monitor measurements of a medium-
voltage network and used the new component to solve the
state estimation problem. The addition of the component
was mostly seamless, requiring only minimal changes to
the SCADA system (and even those changes were not nec-
essary, but were added because they made architectural
sense).

The work shows that a generalized approach to integrat-
ing advanced analytics into event-driven component-based
SCADA can be achieved. The interface between the central
data processing component and the AIMM component was
not specific to the state estimation problem, nor was it limited
to processing power grid measurements. This suggests that
the component could have been applied to any SCADA-
related problem that requires advanced analytics. A more
formal generalization could be a topic of future research.
As for specific goals of this work, we believe they were
successfully achieved.

VOLUME 10, 2022

Z. Sicanica et al.: Architecture of AIMM for Event-Driven Component-Based SCADA Systems

IEEE Access

REFERENCES

[1]
[2]

[3]

[4]
[5]

[6]

[71

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

B. M. Michelson, “Event-driven architecture overview,” Patricia Seybold
Group, vol. 2, no. 12, p. 1057, 2006.

B. J. Cox, Object Oriented Programming: An Evolutionary Approach.
Reading, MA, USA: Addison-Wesley, 1986.

A. Rajkomar, J. Dean, and 1. Kohane, ‘“Machine learning in
medicine,” New England J. Med., vol. 380, no. 14, pp. 1347-1358,
2019.

A. 1 Khan and S. Al-Habsi, ‘“Machine learning in computer vision,” Proc.
Comput. Sci., vol. 167, pp. 1444-1451, Oct. 2020.

D. T. Senthil Kumar, “Data mining based marketing decision support
system using hybrid machine learning algorithm,” September, vol. 2, no. 3,
pp. 185-193, Aug. 2020.

R. van de Schoot, S. Depaoli, R. King, B. Kramer, K. Mirtens,
M. G. Tadesse, M. Vannucci, A. Gelman, D. Veen, J. Willemsen, and
C. Yau, ‘“Bayesian statistics and modelling,” Nature Rev. Methods
Primers, vol. 1, no. 1, p. 1, Dec. 2021.

M. Abdel-Basset, G. Manogaran, A. Gamal, and V. Chang, “A novel
intelligent medical decision support model based on soft computing and
10T,” IEEE Internet Things J., vol. 7, no. 5, pp. 4160—4170, May 2020.
R. Zhang and J. Tao, “A nonlinear fuzzy neural network modeling
approach using an improved genetic algorithm,” IEEE Trans. Ind. Elec-
tron., vol. 65, no. 7, pp. 5882-5892, Jul. 2018.

B. Kopic, J. Krstulovi¢ Opara, Z. Sic¢anica, and A. Trstenjak. (Dec. 2021).
Hat-Open—About. [Online]. Available: https://hat-open.com

Z. Sicanica. (Mar. 2022). Introduction—AIMM Documentation. [Online].
Available: https://aimm.readthedocs.io/en/latest/introduction.html

D. Beck, K. Blaum, H. Brand, F. Herfurth, and S. Schwarz, “A new control
system for ISOLTRAP,” Nucl. Instrum. Methods Phys. Res. A, Accel.
Spectrom. Detect. Assoc. Equip., vol. 527, no. 3, pp. 567-579, Jul. 2004.
C. Angelov, X. Ke, and K. Sierszecki, “A component-based framework
for distributed control systems,” in Proc. 32nd EUROMICRO Conf. Softw.
Eng. Adv. Appl., Aug. 2006, pp. 20-27.

Y. Zhang and J. L. Chen, “Wide-area SCADA system with distributed
security framework,” J. Commun. Netw., vol. 14, no. 6, pp. 597-605,
Dec. 2012.

M. Q. Raza and A. Khosravi, “A review on artificial intelligence based
load demand forecasting techniques for smart grid and buildings,” Renew.
Sustain. Energy Rev., vol. 50, pp. 1352-1372, Oct. 2015.

C. Deb, F. Zhang, J. Yang, S. E. Lee, and K. W. Shah, “A review on time
series forecasting techniques for building energy consumption,” Renew.
Sustain. Energy Rev., vol. 74, pp. 902-924, Jul. 2017.

A. Baliyan, K. Gaurav, and S. K. Mishra, “A review of short term load
forecasting using artificial neural network models,” Proc. Comput. Sci.,
vol. 48, pp. 121-125, Jan. 2015.

T. Hong, P. Pinson, and S. Fan, “Global energy forecasting competition
2012, Int. J. Forecasting, vol. 30, no. 2, pp. 357-363, Apr. 2014.

A. Stetco, F. Dinmohammadi, X. Zhao, V. Robu, D. Flynn, M. Barnes,
J. Keane, and G. Nenadic, “Machine learning methods for wind turbine
condition monitoring: A review,” Renew. Energy, vol. 133, pp. 620-635,
Apr. 2019.

M. Kezunovic, “Substation fault analysis requirements,” in Proc. Innov.
Smart Grid Technol., Jan. 2010, pp. 1-6.

Y. He, G. J. Mendis, and J. Wei, “Real-time detection of false
data injection attacks in smart grid: A deep learning-based intelligent
mechanism,” IEEE Trans. Smart Grid., vol. 8, no. 5, pp. 2505-2516,
Sep. 2017.

R. C. B. Hink, J. M. Beaver, M. A. Buckner, T. Morris, U. Adhikari, and
S. Pan, “Machine learning for power system disturbance and cyber-attack
discrimination,” in Proc. 7th Int. Symp. Resilient Control Syst. (ISRCS),
Aug. 2014, pp. 1-8.

W. Gao, T. Morris, B. Reaves, and D. Richey, “On SCADA control system
command and response injection and intrusion detection,” in Proc. Ecrime
Res. Summit, Dallas, TX, USA, Oct. 2010, pp. 1-9.

M. A. Ferrag, M. Babaghayou, and M. A. Yazici, “Cyber security for fog-
based smart grid SCADA systems: Solutions and challenges,” J. Inf. Secur:
Appl., vol. 52, Jun. 2020, Art. no. 102500.

A. Abur and A. G. Exposito, Power System State Estimation: Theory
Implemention. Boca Raton, FL, USA: CRC Press, 2004.

L. Mili, M. G. Cheniae, N. S. Vichare, and P. J. Rousseeuw, ‘“Robust state
estimation based on projection statistics,” IEEE Trans. Power Syst.,vol. 11,
no. 2, pp. 1118-1127, May 1996.

VOLUME 10, 2022

(26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

(34

=

(35]

(36]

(37]

(38]

(391
(40]
(41]

(42]

[43]

(44]

(45]

[46]

[47]

(48]

P. N. P. Barbeiro, J. Krstulovic, H. Teixeira, J. Pereira, F. J. Soares, and
J. P. Iria, ““State estimation in distribution smart grids using autoencoders,”
in Proc. 8th Int. Power Eng. Optim. Conf., Mar. 2014, pp. 358-363.

J. Du, S. Ma, Y.-C. Wu, and H. V. Poor, “Distributed hybrid power
state estimation under PMU sampling phase errors,” IEEE Trans. Signal
Process., vol. 62, no. 16, pp. 40524063, Aug. 2014.

A. S. Zamzam and N. D. Sidiropoulos, ‘“Physics-aware neural networks
for distribution system state estimation,”” IEEE Trans. Power Syst., vol. 35,
no. 6, pp. 4347-4356, Nov. 2020.

V. M. Catterson, E. M. Davidson, and S. D. J. McArthur, “Issues in
integrating existing multi-agent systems for power engineering applica-
tions,” in Proc. 13th Int. Conf. Intell. Syst. Appl. Power Syst., 2005,
pp. 1-6.

V. Uraikul, C. W. Chan, and P. Tontiwachwuthikul, ““Artificial intelligence
for monitoring and supervisory control of process systems,” Eng. Appl.
Artif. Intell., vol. 20, no. 2, pp. 115-131, Mar. 2007.

K. Leahy, C. Gallagher, P. O’Donovan, K. Bruton, and D. O’Sullivan,
“A robust prescriptive framework and performance metric for diagnosing
and predicting wind turbine faults based on SCADA and alarms data with
case study,” Energies, vol. 11, no. 7, p. 1738, Jul. 2018.

R. Baldoni, L. Montanari, and M. Rizzuto, “On-line failure predic-
tion in safety-critical systems,” Future Gener. Comput. Syst., vol. 45,
pp. 123-132, Apr. 2015.

G. Yadav and K. Paul, “Architecture and security of SCADA sys-
tems: A review,” Int. J. Crit. Infrastruct. Protection, vol. 34, Sep. 2021,
Art. no. 100433.

H. Fazlollahtabar, “Internet of Things-based SCADA system for config-
uring/reconfiguring an autonomous assembly process,” Robotica, vol. 4,
pp. 1-18, Jun. 2021.

R. Khorsand, M. Ghobaei-Arani, and M. Ramezanpour, “FAHP approach
for autonomic resource provisioning of multitier applications in cloud
computing environments,” Softw., Pract. Exper, vol. 48, no. 12,
pp. 2147-2173, Dec. 2018.

M. Ghobaei-Arani, A. Souri, T. Baker, and A. Hussien, “ControC-
ity: An autonomous approach for controlling elasticity using buffer
management in cloud computing environment,” IEEE Access, vol. 7,
pp. 106912-106924, 2019.

D. Pliatsios, P. Sarigiannidis, T. Lagkas, and A. G. Sarigiannidis, A survey
on SCADA systems: Secure protocols, incidents, threats and tactics,” IEEE
Commun. Surveys Tuts., vol. 22, no. 3, pp. 1942-1976, 3rd Quart., 2020.
B. Kopi¢, J. Krstulovi¢ Opara, Z. Sicanica, and A. Trstenjak.

(Mar. 2021). Hat-open/hat-core-Koncar—KET. [Online]. Available:
https://github.com/hat-open/hat-core
IEC International Standard 2.1, document IEC 60870-5-

104:2006+AMD1:2016 CSV, Jun. 2016.

A. Swales, “Open modbus/tcp specification,” Schneider Electr., vol. 29,
pp. 3-19, 1999.

I. Fette and A. Melnikov, “The websocket protocol,” Internet Eng. Task
Force (IETF), Wilmington, DE, USA, Tech. Rep. RFC 6455, Dec. 2011.
A. Monaco, “‘Analysis and development of supervisory control and data
acquisition system for industry 4.0,” Ph.D. dissertation, Dept. Control
Comput. Eng., Politecnico di Tori, Turin, Italy, 2019.

Z. SiCanica. (Mar. 2022). Getting started—AIMM documentation.
[Online]. Available: https://aimm.readthedocs.io/en/latest/getting_
started.html

L. Thurner, A. Scheidler, F. Schafer, J.-H. Menke, J. Dollichon, F. Meier,
S. Meinecke, and M. Braun, ‘“Pandapower—An open-source Python tool
for convenient modeling, analysis, and optimization of electric power
systems,” [IEEE Trans. Power Syst., vol. 33, no. 6, pp.6510-6521,
Nov. 2018.

K. Liu, Y. Shang, Q. Ouyang, and W. D. Widanage, “A data-driven
approach with uncertainty quantification for predicting future capacities
and remaining useful life of lithium-ion battery,” IEEE Trans. Ind. Elec-
tron., vol. 68, no. 4, pp. 3170-3180, Apr. 2021.

G. Lin, N. Zhou, T. Ferryman, and F. Tuffner, ‘“‘Uncertainty quantification
in state estimation using the probabilistic collocation method,” in Proc.
Power Syst. Conf. Expo. (PSCE), Mar. 2011, pp. 1-8.

K. Liu, X. Hu, H. Zhou, L. Tong, W. D. Widanage, and J. Marco, ‘‘Feature
analyses and modeling of lithium-ion battery manufacturing based on
random forest classification,” IEEE/ASME Trans. Mechatronics, vol. 26,
no. 6, pp. 2944-2955, Dec. 2021.

K. Liu, Z. Wei, Z. Yang, and K. Li, “Mass load prediction for lithium-
ion battery electrode clean production: A machine learning approach,”
J. Cleaner Prod., vol. 289, Mar. 2021, Art. no. 125159.

30425

IEEE Access

Z. Si¢anica et al.: Architecture of AIMM for Event-Driven Component-Based SCADA Systems

ZLATAN SICANICA was born in Zenica, Bosnia
and Herzegovina, in 1993. He received the B.S.
and M.S. degrees in computing from the Univer-
sity of Zagreb, Zagreb, Croatia, in 2015 and 2017,
respectively, where he is currently pursuing the
Ph.D. degree in computing with the Faculty of
Electrical Engineering and Computing.

He works as a Software Engineer at Kon¢ar—
Digital, where he works in the department for real-
time applications development. He has authored

several conference papers with a focus on the artificial intelligence applied

to SCADA systems.

STJEPAN SUCIC received the master’s and Ph.D.
degrees in electrical power engineering from
the University of Zagreb, in 2008 and 2013,
respectively.

He works as the Head of software products
development at Koncar—Digital. His research
interests include middleware technologies for opti-
mized and adaptable smart grid automation. His
main research interests include middleware anal-
ysis, architectural application design paradigms,

service-oriented integration, and M2M applications. He is the National Rep-
resentative at IEC for several TC57 working groups related to international

standard IEC 61850.

30426

BORIS MILASINOVIC (Member, IEEE) gradu-
ated from the Department of Mathematics, Fac-
ulty of Science, University of Zagreb, in 2001.
He received the M.Sc. and Ph.D. degrees in com-
puting from the Faculty of Electrical Engineering
and Computing, in 2006 and 2010, respectively.

He is currently an Associate Professor at the
Department of Applied Computing, Faculty of
Electrical Engineering and Computing, University
of Zagreb. His main research interests include soft-
ware development methodologies and workflow management. He has been
a member of the Editorial Board of Computer Science and Information
Systems journal, since 2018; a member of the Editorial Board of CIT. Journal
of Computing and Information Technology, since 2021; and a program
committee member of several international conferences.

VOLUME 10, 2022

