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ABSTRACT Photovoltaic (PV) output is greatly affected by meteorological factors. If it has no efficient
meteorological factors, the prediction accuracy for PV is a little low. Although the Radial Basis Func-
tion (RBF) network is already widely utilized in photovoltaic prediction, its prediction error is too large.
An algorithm for forecasting the evaluation of the short-term PV output based on fuzzy clustering of
meteorological data and a joint algorithm of the Genetic Algorithm Programming System (GAPS) and
Radial Basis Function (RBF) is proposed in this paper to increase the prediction accuracy. Selecting the three
main types of meteorological data, including atmospheric turbidity, relative humidity, and solar irradiance,
as clustering feature vectors of the cluster class and clustering that historical PV outputting data into three
groups by an improved fuzzy c-means clustering (IFCM) method are significant in this study. Finally, this
research implemented the computational simulation for a real case. Its results show that the proposed model
and algorithm work well and can reduce the dimension of the model and improve the prediction accuracy.

INDEX TERMS Photovoltaic, output, RBF neural network, forecast, meteorological, prediction accuracy.

I. INTRODUCTION

With the rapid development of the social economy, the
problem of fossil energy pollution and energy shortage is
becoming increasingly worse [1]. The sustainable utilization
and development of renewable and clean energy, mainly
based on wind power, and photovoltaic is an efficient, rea-
sonable, and feasible way to address this problem [2]. After
wind power generation, photovoltaic generation has already
become a new growth point in the region of renewable
energy [3]. Photovoltaic generation is beneficial because of
the alternation between day and night illumination.

The associate editor coordinating the review of this manuscript and
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At the same time, owing to the influence on photo-
voltaic generation from meteorological aspects, including
cloud cover, temperature [4], and aerosol [5], etc., photo-
voltaic generation also has the feature of great uncertainty [6].
These two reasons cause the photovoltaic power generation
grid-connected to the grid to affect the grid [7]. Conse-
quently, if the prediction accuracy of the PV output power
can be on time, it would be the key for power grid dis-
patching or regulating and stable operation for a PV power
station [8].

In photovoltaic power prediction, the collection and pro-
cess for the digital images rely on the satellite of GMS-5,
and the process usually includes four types of channel data,
including IR 1channel, water vapor channel, IR2channel, and
visible channel, etc. [9]. These geostationary satellite images
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alongside spatial resolutions of Skm at hourly time inter-
vals. Figure 1. shows a specific GMS-5 IR1 image and a
cloud/none cloud image [10]. The full name of the GMS-5
(also known as Himawari-5) is Geostationary Meteorological
Satellite-5 [11].

(a) IR1 image

(b) no cloud/ cloud images

FIGURE 1. IR1 image and no cloud/cloud image collected and processed
by GMS-5 a) IR1 image (b) no cloud/cloud images.

There are many classification methods for the prediction
of PV output. As far as the forecast principle is concerned,
there are two main methods of classification: a statistical
method and a physical way [12]. The physical way usually
depends on the equations of the PV module, the solar radi-
ation transfer, and some other physical equations. It needs
specific meteorological and geographic information about the
area with the photovoltaic station and photovoltaic module
information [13].

The physical method is not to demand over the histori-
cal data that records the operation of the PV station. The
statistical way works based on historical operation data for
the statistical analysis to derive the inner rule of photovoltaic
output and its affected factors. These methods include Sup-
port Vector Machine (SVM), grey prediction, and Artificial
Neural Network (ANN). Paper [14] constructed one forecast
model for the value of solar radiation based on the uncertainty
theory included the influence of the cloud cover on photo-
voltaic power.

However, it is hard to attain precise cloud cover data for
a meteorological station under the current conditions. The
literature above all considered the effect of these meteorolog-
ical factors on the photovoltaic output. Although the methods
mentioned above have a high prediction accuracy in non-
abrupt weather, the accuracy is low once in the abrupt one.

Figure 2 shows differences in the daily PV output plots
among different weather conditions of the rainy, cloudy and
sunny conditions. For these three weather conditions, con-
sidering the extreme conditional influence of rainy(worst)
or sunny (best) weather on photovoltaic and its character-
istics of generation conditions and uncertainty, we should
pay much more attention to the photovoltaic prediction of
the cloudy situation. It means that cloud cover is the most
significant factor that affects photovoltaic generation. There
are other reasons to explain the theoretical aspect of this case
in more detail listed in the beginning part of the next part of
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FIGURE 2. Comparison of photovoltaic power output under different
weather.

“Influencing factors of photovoltaic output”. The meteoro-
logical factors in the atmosphere could cause the diversity
mentioned above, which is gonging to affect the training
efficiency for the neural network, so the prediction accuracy
is also intended to be decreased.

The spectral band of an optical sensor is usually affected
via cloud shadow and clouds. According to the international
ISCCP-FD (Satellite Cloud Climatology Project-Flux Data),
the average cloud cover of the whole world per year is near
to 66% [15]. When those cloud shadows and clouds cover the
Earth’surface, the satellite images cannot correctly present
specific it; which probably influences many types of studies
in turn, including that on the land cover [16], atmospheric
correction [17], feature extraction, and change detection [18],
etc. Consequently, before different applications utilize satel-
lite images, an essential pre-procedure is cloud shadow and
cloud detection.

From the review above, in the past two decades, people
have developed some methods for automatically screening
cloud shadows as well clouds and broadly utilized them in the
different satellite images. Most of the above articles adopted
a spatial matching way to fine-tune the initial cloud shadow
pixels for high prediction accuracy. There are about two
classes in these matching methods. On the one hand, based
on the law of the projection [19] and a geometric relation-
ship [20], the 1st class can predict and offer the location of
the given cloud shadow. Nevertheless, although it is easy to
obtain most meteorological aspects from the metadata files,
the cloud’s height is usually hard to know. Because different
clouds have different altitudes, each cloud object may utilize
those iterations. Therefore, the computing complexity may
cost high; On the other hand, the 2nd class thinks that it can
regard those cloud shadows as right if there are some cloud
pixels in the neighborhood of cloud shadows. Otherwise, the
methods will remove those wrong cloud shadows. Though
methods in the 2nd type can obtain the cloud shadow masks
at short notice, some effecting factors, including searching
direction and size setting of the local window, can still affect
the prediction accuracy. This research combines these two
categories of matching schemes, i.e., to determine the search-
ing direction by the former method and to find cloud shadow
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pixels via applying the latter one. Furthermore, the study also
proposed a new cloud shadow detecting strategy to improve
the detecting accuracy of regions surrounded by clouds.

A HYBRID prediction model based on an improved fuzzy
c-means clustering (IFCM) of meteorological aspects and
a Genetic Algorithm Programming System (GAPS) is pro-
posed in this article to optimize the initial thresholds and
weights of the RBF neural network for daily forecasting of
the PV output of the PV power station. The structure of this
paper is as follows. First, this method utilized a PEARSON
correlation coefficient [21] to analyze the correlation between
the photovoltaic output and meteorological factors. The paper
chooses atmospheric turbidity [22], relative humidity [23],
and solar irradiance [24] as clustering feature variables,
which is especially important for cloud days. Second, to build
a new dataset using the cloudy data to be forecasted and the
historical meteorological data. Third, using this data set and
the IFCM algorithm detected the cloud cover characterized
through these three meteorological factors can significantly
affect photovoltaic power. Finally, we chose out the historical
data of the PV output and the IFCM clustering data of the
prediction day before being selected to predict the output of
the PV power station via the GAPS-RBF algorithm.

The structure of this paper is as following 7 parts: in part [ is
the introduction to the sustainable development of renewable
energy, especially photovoltaic power output, and reviewed
its solution first; Then, in Part II, the factors affecting photo-
voltaic output are discussed. And the PEARSON correlation
coefficient is applied to analyze the correlation between the
photovoltaic output power and many meteorological factors
that can influence the photovoltaic power. Section III pro-
posed an IFCM algorithm to detect the cloud cover using
the dataset created in part II. and to predict the PV output of
the PV power station, part IV gives the RBF neural network
in detail, which will coordinate with the GAPS method in
part V. part VI, that is, the computing simulation results and
their analysis. Finally, section VII concluded some specific
summaries of this paper.

II. INFLUENCING FACTORS OF PHOTOVOLTAIC OUTPUT
Photovoltaic generation is a process that converts solar energy
into electrical energy directly by applying solar cells [25]
based on the specific principle of the photovoltaic effect [26].
The photovoltaic output depends on the radiation intensity
from solar radiation and the efficiency of the conversion from
solar cell modules to a great extent [27].

The daily PV is a type of short-term prediction because the
photovoltaic grid-connected inverter usually operates under
the tracking mode of the maximum power point, which has
a relatively stable power conversion rate [28]. Accordingly,
for an established photovoltaic power generation system,
because it includes the system information of those PV arrays,
we can consider the installation angle of the PV panel and
the conversion efficiency of the inverter as constants, and
the temperature of photovoltaic modules and the radiation
intensity from the surface as variables [29]. On the one hand,
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because it is difficult to measure the temperature of photo-
voltaic modules, the ambient temperature of a photovoltaic
power station can be applied. On the other hand, the surface
solar radiation is the solar irradiance reflected, scattered, and
absorbed via the atmosphere and reaches the earth’s surface,
and meteorological factors mainly affected it. The aerosol can
directly reflect, assimilate, and scatter the solar radiation. The
water vapor and the gas molecules can absorb and reflect
the solar radiation in the atmosphere. The analysis above
shows that there are a lot of meteorological factors, including
temperature, wind speed, aerosol, solar irradiance, humidity,
air pressure, and cloud cover, etc., which can affect the photo-
voltaic power output. Generally, the atmospheric turbidity d is
the ratio of the scattered radiation D to the direct radiation S to
measure the effect of aerosol over solar radiation as follows:

3 =D/S (1

The influence of each factor mentioned above on the PV
output is different. To improve the clustering accuracy and
reduce the complexity of this model, we utilized the Pearson
correlation coefficient to quantify the correlation among pho-
tovoltaic output power and these meteorological aspects [29].
Pearson correlation coefficient is a parameter applied to
detect whether the two data sets are alongside a line or
not, which is usually a way to measure a linear relationship
between some distance variables:

. N xiyi— ) xi ) i )

RN

Table 1 above gives the Pearson correlation coefficient
between photovoltaic and meteorological factors. The data in
this table are from statistical data recorded via the domes-
tic photovoltaic power station in August and September
2017 [30]. This table denotes that some meteorological fac-
tors with the closest correlation to PV power generation are
solar irradiance, environment temperature, relative humidity,
and atmospheric turbidity based on the computed correlation
coefficients above.

TABLE 1. Pearson correlation coefficient between photovoltaic and
meteorological factors.

Meteorological factors Pearson Correlation

Coefficient 7y,

Solar irradiance G 0.9503
Environment temperature 7' 0.7231
Relative humidity H -0.579
Atmospheric turbidity 9 -0.641
Wind speed w 0.2918
Air pressure p -0. 3525

Furthermore, the environmental temperature affects
the photovoltaic module in the photoelectric conversion.
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FIGURE 3. Flowchart of IFCM algorithm for cloud and cloud shadow detection.

The other three aspects influence the PV output by affecting
the solar radiation (i.e., cloud cover) that passes through the
atmosphere. It also confirms the previous opinion again that
“cloud cover is the most significant factor over influencing
photovoltaic generation” in part I, which will be researched
in the following section to obtain a method based on IFCM
to detect the cloud cover.

Ill. IFCM ALGORITHM FOR CLOUD AND CLOUD
SHADOW DETECTION
A. METHODOLOGY AND PRINCIPLE
As the review and analysis before, the cloud cover may be the
most significant affecting factor to the PV output. In addition,
it is an essential preprocess of the detection for cloud and
cloud shadow. Figure 3. shows this detection process in detail.
The three types of cloud characteristics of statistical, tex-
ture, and spectral are utilized in this study to represent
atmospheric turbidity, relative humidity, and solar irradiance,
respectively. Due to the wide range of those reflectance values
shown via all types of land cover objects and clouds, it is
hard to detect the clouds and cloud shadows precisely from
cloud-free observations by applying only a specific given
spectral band [31]. Therefore, synthesizing no less than two or
more distinctive bands and based on the spectral information,
some proper characteristics of the cloud shadow and cloud to
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emphasize the cloud shadows and clouds while reducing the
influence.

Consequently, for better abstracting these missed or
ignored clouds, this method involves secondary cloud detec-
tion is significantly essential, and the other features (e.g., the
texture features in our paper).

As shown in Figure 3., the processes of cloud detection
and cloud shadow detection based on IFCM include four and
three main steps, respectively. The following section explains
these two detecting processes step-by-step.

Firstly, there are four steps of cloud detection as below:

@ The three cloud characteristics, including spectral, sta-
tistical, and texture factors, are calculated via utilizing the
blue, green, red, and Near-infrared spectroscopy (NIR) bands
to highlight cloud pixels;

@ Statistical and spectral data are applied to detect an
original cloud by utilizing the IFCM;

@ After the first IFCM classification, then all of the cloud
factors of pixels belonging to the non-cloud class are used to
detect the next (i.e., secondary) cloud;

@ The cloud pixels gained in the secondary cloud detecting
process were checked and affirmed to resolve whether this
secondary cloud detection is essential.

Secondly, there are three main steps of cloud shadow detec-
tion in the following section below:

VOLUME 10, 2022



W. Jinpeng et al.: Hybrid Predicting Model for Daily Photovoltaic Output

IEEE Access

@ By utilizing the water test to separate the water pixels,
as well as the NIR band, to compute the cloud shadow index
for the non-water pixels;

@ Via utilizing the IFCM in the cloud shadow index to
obtain the original cloud shadow pixels;

® Using a fast cloud shadow and cloud matching algorithm

to get the ultimate pixels of a cloud shadow.
Therefore, the IFCM algorithm is the right way for cloud
detection and cloudy shadow detection. Nevertheless, one
spatial matching method is usually required to rectify the
original cloud shadow pixels.

B. IMPROVED FUZZY C-MEANS METHOD (IFCM)

The FCM proposed by Dunn [32] is a classical fuzzy clus-
tering algorithm that permits those data points to belong to
more than one cluster. Its purpose is to minimize the objective
function computed applying Equation (3) through optimizing
cluster centers ¢; gotten via the formulas (4,5) and iteratively
membership p;;:

n c
=220 Hapda 3
a=1 b=1

where the parameter p governs the quantity of the fuzzy
overlap among those clusters, and a smaller value indicates a
lower degree of overlap, and this value is commonly greater
than 1. In this article, the value of p is 2, w4 being a degree of
membership of the multi-dimension data, which is measured
from the a-th pixel in the b-h cluster; and ¢ and n symbolize
the number of classes and the number of pixels in one con-
stantly given image, respectively. And dis the distance from
the a-th measured data to the center of the b-th cluster cp:

1
Hap = ————— @
dg —1
ot (42)7
. ZZ:] H«bea 5)
Cp = ~n 7
Za:l Hap

In the expressions above, x, is the a-th measured data. The
iteration will not stop until the improvement ¢ in the objective
function between two consecutive iterations tends to be weak,
even none. Its setting value was 10~>. To save computing time
and prevent the iterative dead loop [33], the pre-definition of
the longest iteration time was a limitation of 100. According
to the same statistical data, which were recorded via a Chi-
nese domestic PV power station in August and September
2017 [34] and are also as references in Figure 2., Table 1, and
Figure 4. illustrate values of the membership degree every day
for 61 consecutive days of these two months.

C. CLOUD CHARACTERISTICS

As described before, the three types of cloud characteris-
tics of statistical, texture, and spectral are utilized in this
paper to represent atmospheric turbidity, relative humidity,
and solar irradiance, respectively [35]. In this section, the
three cloud characteristics, including spectral, statistical, and
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FIGURE 4. Distribution of the membership degree 1.

texture factors, are mathematically defined and explained in
theory successively.

1) SPECTRAL CLOUD CHARACTERISTICS

In general, clouds generally have a much larger reflectance
than the land. Thus, clouds appear brilliant and white in
the RGB space. The factor of the HOT index [36] was as
the first cloud spectral feature initially, calculating from the
expression below can get it:

HOT = Bpiue — 0.5 X Brea (©6)

In expression (6) above, HOT symbolizes the values of the
HOT index, and the parameters B,.4 and By, represent the
reflectance values of the red and blue bands, respectively.

The brilliant value of pixels was chosen as the second cloud
spectral feature because clouds are usually opaque and white
in the RGB [37] space:

(Bred + Bgreen + Bblue) /3 (N

where the parameter Brilliant is a bright value, and Bgeen
represents the reflectance value of the green band, similar to
the definition of B,.; and Bpje.

Furthermore, the third cloud spectral feature intends to be
on a fixed dark channel because of the problem of color for
the cloud shadow. This dark tunnel can remove haze, which
is efficient and feasible for detecting the cloud. It formulated
as follows:

Brilliant =

DARK = Bblue + Bgreen + Br@d (8)

where DARK denotes the value of dark. Consequently,
by now, these three factors {HOT, Brilliant, and DARK}
listed above can be considered cloud spectral features.

2) STATISTICAL CLOUD CHARACTERISTICS
In this article, using variances and local means illustrated the
details and intensity of the initial image.

[1 N
2 2
(opM ﬁ ZreQH (B —M,)
1 N
Ma ﬁ Zreﬂa Br (9)

In expression (9), parameters oaz and M, are the variance
and mean value of the a-th pixel, respectively; B, is the
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specific r-th pixel of the fixed spectral band within a regional
(i.e. local)window €2, surrounding the a-th pixel, N symbol-
izes the number of pixels located at this local window, and
the size of this window is set to 3-5. Accordingly, approx-
imately twelve statistical characteristics can be obtained in
sum because all the visible bands were included in this paper.

3) TEXTURE CLOUD CHARACTERISTICS

Based on the analysis of the results of principal compo-
nents [38], considering the source of more than 98% of the
information of the initial image, the first and second main
components of the image are chosen to compute the cloud
texture features. The Gabor filter is commonly a well-known
and efficient model for identifying texture:

oo (2N (5
P 202 P A
/

x' = xcosyr + ysinyr

/

y = —xcosyr + ysiny (10)

g, y, A, 0,¥)

In this research, A represents the wavelength of the sinu-
soidal function, and its setting is to be 4 and 3. ¥ is the
orientation and its value to be 0, 45°, 90°, and 135° respec-
tively; o symbolizes the standard deviation of the Gaussian
signal intensity envelope(Note please. here sets the value of
the Gaussian signal intensity envelope as a data set of [—1, 1]
for convenience.) and limits its value at of [0,1].

Parameter i is a specific variable relevant to the wavelength
and bandwidth; y is the aspect ratio, which governs the
ellipticity of the Gaussian envelope, and was selected to be
a fixed value of 0.5. After computing these texture features,
Each PC can produce eight texture characteristics and utilize
16 cloud texture features.

4) FEATURE FUSION

After computing the characteristics above, these features
need to be Synthesized into specific basic feature sets and
regarded as the inputting ends of the IFCM classification at
last. The fusion process for the features includes two paces:
First, all kinds of cloud features gained above are normal-
ized and then selecting some appropriate characteristics from
these normalized features combined into the best subset of
the factors. These multiple-class factors can be normalized to
a set [0,1] as follows:

fnor _ f _fmin

fmax _fmin
In formula (11) above, f,,- symbolizes the normalization
data of features, f is the original feature data, and fi,in, finax
are the minimum and maximum values of the original feature
data, respectively.

Y

D. FLOWCHART AND ANALYSIS OF THE

CLOUD DETECTION

The IFCM algorithm was applied to detect clouds after merg-
ing these subsets. In the detecting process of clouds, IFCM
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was utilized twice, as in previous reviews and discussions.
For every time, the target pixels need sorting into two classes:
non-cloud pixels and clouds. The total grades of membership
of a specific pixel within two clusters are equal to the value
of 1. To determine whether a pixel belongs to the cluster,
adopting the grade of membership of the pixel for each group
as a decision factor is a significant way. Within the detec-
tion process of the original clouds, some pixels with higher
degrees of membership in the cloud clusters are consid-
ered cloud pixels. Accordingly, we can set the classification
threshold to 0.5 due to the distinctly big difference between
the non-cloud pixels and the cloud. After the first cloud
detection, the second one may be harder to detect than the
initial detecting process. Consequently, using expression (12)
can obtain an adaptive threshold at this time as follows:

TH,es = Mean (U) + 0% (U) (12)

In the formula above, TH ., is the threshold, U represents a
set of degrees of membership of that non-cloud pixel after the
original cloud detection for cloud clusters (CDCC). Indexes
o2 {-} and Mean {-} denote the standard deviation and mean
values, respectively.

Using an assured cloud verification step judges the pix-
els of some potential clouds. Once the difference between
the non-cloud clusters and cloud clusters is tremendous, the
conclusion draws that non-cloud pixels and the cloud are
separated or the classification for the cloud and non-cloud
pixels as false.

® The cloud pixels after the initial [IFCM classification
®The cloud pixels after the secondary IFCM classification
®The non-cloud pixels after the secondary IFCM classification
#The cloud cluster center after the initial IFCM classification
The non-cloud cluster center after the initial IFCM classification
 The cloud cluster center after the secondary IFCM classification
K The non-cloud cluster center after the secondary IFCM classification @

(1 Y °
[ ) ° eo®
L4 ° °
[ ] .. [
e © ! @@
e % o
° (] [
°g® o e o!
I ] I
®e0® oe° 1
| 90® e |
oo , 0° |
0 o _e® i
1 %e !
I
R i
CDCC2-L CDCCI-L CDCC2-H CDCC1-H Mu“i_dimenSion features

FIGURE 5. Position of four centers of clusters on the specific axis for
multi-dimension characteristics.

In Figure 5, as for the initial Cloud Detection in Cloud
Clusters (CDCC), the non-cloud cluster centers and the cloud
are symbolized as CDCCI_L and CDCCI1_H, respectively,
and CDCC2_H and CDCC2_L denote the cloud and non-
cloud cluster centers for the secondary CDCC. The number
of characteristics applied in every IFCM classification is
virtually the size of the cluster centers, that is, its length. The
authors utilized these cluster centers with overlapping factors
to compute the distance owing to the difference in the cloud
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feature subsets between the original and the second cloud
detection.

However, on the opposite, it can be derived that the non-
cloud and the cloud pixels gained via this second cloud
clusters detection are not efficient. Accordingly, we can con-
sider those cloud pixels gotten from the original cloud clus-
ters detection as clouds indeed firstly. The distance among
CDCC2_L and CDCC2_H mentioned above can be written
by the normalized distance:

) CDCC2_H — CDCC2_L
Distanceyng = (13)
CDCC1_H — CDCC1_L

In expression (13), Distance;,q represents the normalized
distance between the non-cloud cluster centers and the cloud
in the process of secondary cloud cluster detection. Once this
normalized distance is longer than an exact threshold, the
secondary cloud cluster detection is essential, and the selected
value was 0.25 in this paper.

For a Fixed region Cloud Cover (FrCC), which is the
definition of one value that calculated by dividing the number
of the cloudy pixels at non-cloud or cloud images by the total
number of pixels in the same picture:

A
FrCC = cloud

(14)
total

In equation (14), A¢jouq denotes the number of the cloudy
pixels in the non-cloud or cloud image, Ny, the total number
of pixels in the same picture, and FrCC € [0, 1]. For instance,
if there are 55 cloud pixels in a profile of 10 x 10 non-clouds
and clouds, then the FrCC of this cloud and the non-cloud
image is 0.55.

IV. RBF NEURAL NETWORK

From the analysis about obtaining the cloud and non-cloud
features, part III defined the cloud cover directly relative
to photovoltaic power. Furthermore, as random and uncer-
tain [39], the cloud cover can be simultaneously forecast
through the RBF neural network if FrCC is as the input of
this RBF neural network and the inputting vector of the RBF
neural network X (¢) is the FrCC at the time 7.

A. RBF NEURAL NETWORK

Powell proposed the first presentation of a multiple-variable
interpolation Radial Basis Function (RBF) algorithm in
1985 [40]. The neural network of RBF applies a specific
radial basis function for the activating function and imitat-
ing neurons of the human being, which have specific local
reactions to the outer stimulation.

Figure 6. shows the structure of the neural networks of
RBF, which is a feed-forward network, and generally has
three layers, including an inputting layer, a linear outputting
layer, and a hidden layer with a specific nonlinear RBF
activating function.

As seen from figure 6. that the input port X =
(x1,x2, -+ - ,xn)T is an n-dimensional vector, and the out-
putting port ¥ = (y1,y2,---,ym)! is an m-dimensional
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FIGURE 6. Structure of RBF neural network.

vector in RBF. X(¢) is a function of FrCC with time parameter
t as an independent variable, and g; denotes the output of the
hidden layer as for neuron i:

gi = @ (Ilx —cil) (15)

In the expression above, ¢; symbolizes the center of the
hidden layer neuron i, and is an n-dimensional vector with
i = 1,2,3,...; ||e]| is generally adopted as the Euclidian
distance; ®(e) exactly is the radial basis function, which is
the transforming function of those hidden layers.

It is a non-negative and nonlinear function with the fea-
tures of local experience, which also has characteristics of
attenuation on the center of radial symmetry and the original
distribution.

This function has many types of forms and mirrors the
nonlinear mapping ability of the RBF neural network. This
study adopted A Gaussian as the radial basis function:

2
D (x) =exp <—%> (16)

Supposing the node k is an outputting layer neuron, then
its corresponding output y; can be written as a specific linear
combination for the output of the hidden layer neurons:

Yk = Z Wiiqi — Ok (17
i
In equation (17) above, wy; represents a linking weight
value from the neuron k of the output layer to neuron i of
the hidden layer, and 6 is the threshold of neuron %k of the
outputting layer.

B. PREDICTING STEPS BASED ON RBF NEURAL NETWORK
1) PREPARATION OF TRAINING SAMPLES
To reach the FrCC prediction’s needs. It is significant to
obtain sufficient training samples to train the neural net-
work [40]. To forecast, FrCC is a specific detection algorithm
for cloud cover based on an RBF neural network, which
utilizes the values of k£ consecutive times from the time i to
forecast the value at time i + k.

Using follows formula can obtain the samples for training:
{x (@) |t=1,2,3-.-} symbolizes the time series for changes
in a specific FrCC, and W denotes a sliding window, whose
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width is k 4+ 1 (i.e., this sliding window involves k + 1
consecutive time). The window W will slide on the series of
the time with step 1 (once a time), as well as obtain these
values from W for k 4 1 times, where i represents the location
of W in this time series, and W; is the k + 1 value of FrCC at
the initial time i:

Wi={x@,x(@+1, - x(+&-=1),x@+k)} (18)

Splitting W; into two sections of the (k + 1)”’ value
(i.e., the target one.) and the initial k value (i.e., those mea-
sured values). Table 2 illustrates some forms of {measured
value, target value} obtained from a lot of training samples
by constantly moving the sliding window of W.

TABLE 2. Samples for training.

Measured Data Targeting Values
x(D,x(1+1),x(1+ (k-1) x(1+ k)
x(2),x2+1),x2+ (k-1) x(2 +k)

x(@),x( + 1), x( + (k — 1)) x(i + k)

2) TRAINING THE NEURAL NETWORK OF RBF

To train the neural network of the RBF. Firstly, inputting
those training samples obtained from step (1) into RBF, and
we regard the measured values as an input port and think of
target values as the output of the network. The adjustment for
these weights of the network is not finished until learning all
training samples one after another.

3) PREDICTION BY APPLYING THE NEURAL NETWORK

OF THE RBF ALREADY TRAINED

Obtaining k times of the actual value before time j
e, {xG—k),xG—(*k—1)),---,x(G — 1)}) is significant
to predict FrCC at time j. And then, by putting the k actual
values into the network can get the prediction value x(j).

4) EXPERIMENTAL PROCESS AND ITS PREDICTION
RESULTS USING RBF
There are main four steps in the procedure of the prediction:
@ Step 1: Choosing distinct values of the parameter k
(.e.,k =1,2,3,4,5,6) to prepare those training samples.
@ Step 2: Utilizing two hundred training samples with
distinct k values to train the neural network of the RBF.
® Step 3: Forecast FrCC via applying this trained network.
@ Step 4: Comparing the actual values and those predicted
values of different k values, and computing the Average
Predictive Absolute Error (APAE) of the practical value and
those predicted ones via equation (19) below, and using the
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FIGURE 7. g Predicting results for selecting distinct values of the
parameter k.

TABLE 3. Predicting results FrCC under different values APAEs.

Cloud Prediction Values
Cover
(FrcCe | k=1 k=2 k=3 k=4 | k=5 | k=6
[0,1])
1.00 0.9782  0.9803 09762 0.9757 0.9948 0,9929
0.98 09132  0.9676 1.0235 0.9433 0.7648 0.4156
0.91 0.9001 09155 09584 09111 0.8844 0.7954
APAE  0.0247 0.0192 0.0373 0.0434 0.0536 0.0954

smallest APAE to confirm an ideal one of the parameter k:
APAE = 1 Xn: |x{ — X;
n P

i=1

, n=1,2,---,15 (19)

Figure 7. illustrates the experimental results of the predic-
tion for selecting different values of the parameter k simulated
by MATLAB. Table 3 lists the predicted FrCCs and their
corresponding APAE. As seen from Fig.7 and Table 3 that
the APAE of the actual values and predicted values are com-
paratively little when k is 1, 2, 3, 4, and 5, except for 6.

In particular, when k = 2, the APAE reaches a minimum
value of 0.0192. The curve plot of the predicted values is
much closer to that of the actual values. The results illustrate
that the prediction accuracy of the RBF neural network was
quite good. Furthermore, with the increase in the parameter k,
APAE also increases gradually. It indicates that the predicted
values deviate from actual values slightly when k = 4, 5, 6.

V. PREDICTION MODEL BASED ON GAPS-RBF

NEURAL NETWORK

The theory of membrane computing (also known as
P-system) involves simulating the function and structure of
living cells and extracting a computing model from them.
In the Genetic Algorithm Programming System (GAPS),
we introduced an Adaptive Genetic Algorithm (AGA) into
the membrane calculation. Based on the genetic operation.
The procedure involved some operation rules of the commu-
nication between membranes. It can enrich the evolution rules
of this algorithm and those solution object sets and address
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the problem about GA’s “premature,” in which every object
denotes one solution and produce those initial objects in the
distinct membranes of the membrane system. Considering the
characteristics of the three types of clouds discussed before,
and including the three types of cloud features of statistical,
texture, and spectral, the membrane structure of degree 3 was
selected as the genetic membrane utilized in this study and
follows expression can formulate its multi-groups:

[[=W.T.C.1. 01,02, 03, R, p1) . (R, p2) . (R3, p3))
(20)
The crossover probability and mutation probability of this

genetic algorithm can be written via the adaptive function,
respectively, using the following equations:

(Fmax_Fa)

Ki————, Fp,<F
P. = Finax — Favg e
K>, Fp > Faye
Foax — F,
 Fnax = Fa) < Fu
Py = Finax — Favg (21)
K>, Fp > Fag

In equation (21), P, and P,, are the crossover probability
and mutation probability in this genetic algorithm. F, and
F, is this fitness for individuals to be crossed and mutated;
Parameter K; (i = 1, 2, 3, 4) is a random number, which has
the value of (0,1) and K_1>K_2, K_3>K_4. F,, and Fy;;qx
are the averages and maximum values of the fitness for the
current population.

In every iteration, using a genetic operation and the trans-
ferring rule on the membrane selection can choose out the
individuals with the best fitness value in membranes. At the
same time, the same genetic operator is also operated outside
the membrane to obtain the optimal ones and send them
to the membrane. Accordingly, these operations can help
realize communication among membranes and increase the
efficiency of membrane computation.

Figure 8. shows the flow chart of the GAPS-RBF algo-
rithm. The first module of the initialization has four parts,
including the determination of the RBF neural network
structure, initialization of the parameters for the RBF neu-
ral network, given the population number and optimization
objectives, and code in actual numbers for the initial weights
and thresholds of neurons. The second module of the pro-
cessing procedure for GAPS-RBF is involved in the compu-
tation of fitness of each group, selection operation, crossover
operation, mutation operation, etc. The third module of the
output and its evaluation consists of getting the optimal initial
weights and thresholds of neurons, error calculation, and
refresh for updating the initial weights and thresholds.

In addition to these processing parts, two conditions can
link two modules or two procedures. The first decision con-
dition for achieving the optimal object connects the second
and third modules. Furthermore, the second judgment case
on the ending requirements links the two procedures of output
results and updating the initial weights and thresholds.
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FIGURE 8. Flow chart of the GAPS-RBF algorithm.

This algorithm of prediction based on GAPS-RBF can be
described in detail as follows:

VI. RESULTS ANALYSIS AND DISCUSSION FOR
EXPERIMENTAL SIMULATION
A. EXPERIMENTAL SAMPLES
In the experiment, the selected database is 235 times cloud/
none cloud images with 1-hour temporal and Skm spatial
resolution whose recorded span is from 1 March 2011 at
00UTC to 16 August 2011 at 1600UTC, as well as the chosen
study area is a region of 10 * 10 size.

Some other settings are: the iteration number of the IFCM
is 100 times, the number of those clustering centers is C = 3,
and the power weight is m = 2. As for the RBF neural
network, its iteration number is 1000, and it adopted 24-15-22
as structure, which means that the nodes of the input layer,
hidden layer, and output layer are 24, 15, and 22, respectively.
Furthermore, the iteration number of the genetic membrane
is 2000, and the iteration number of the genetic algorithm for
comparison is 2000. Meanwhile, using the expression (22)
below normalized all samples:

Xi — Xomin

X = mn (22)
! Xmax - Xmin

’ . . .
where X; and X; are the original and normalized data, respec-
tively. And X,nqx and X i, are the maximum and minimum
values, respectively, in all samples.
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Algorithm 1 Algorithm of GAPS-RBF
1: Initial start.

2: Determination of RBF neural network structure;
3: Initialize Parameters of RBF neural network;
4: Given the population number and optimization objectives;

5: Encode in real numbers for the initial weights and
thresholds of neurons.

6: Compute the fitness of each group jointly based on former
steps and pre-processing for samples

7: Selection operation

8: Crossover operation

9: Mutation operation

10: Communication rules between membranes;

11: {if Is Optimization objective achieved? Endif;}, then to
obtain the optimal initial weights and thresholds of neurons;
Otherwise, return to the step 6.

12: To calculate the error
13: To update initial weights and thresholds;

14: If is it Ending reached? To output results; Otherwise,
return to step 12.
15: All End.

TABLE 4. Comparisons between the FCM and other two methods.

Sensor Method Average PAR  Average NAR  Average UAR
FCM 0.9366 0.0613 0.8756
Landsat 7 FMASK 0.9718 0.1109 0.6489
SVM 0.8895 0.0845 0.8914
FCM 0.9364 0.0518 0.9615
Landsat 8 FMASK 0.9861 0.1482 0.7105
SVM 0.7911 0.1066 0.9961

B. RESULTS AND ANALYSIS

1) FCM RESULTS

As seen in Table 4, although the average PAR (Producer
Agreement Rate) obtained from the FCM is a little lower
than that from the FMASK method (Function of MASK
method proposed by Woodcock), the average NAR (Non-
Agreement Rate) of the FMASK way is higher. Furthermore,
the NAR and average PAR of the FCM is better than the
SVM method. Consequently, among these three algorithms,
the best method is the FCM, and the SVM way is the second
one that follows it.

The algorithm of the FMASK has the highest average
NAR and PAR, meaning that though FMASK can catch most
of the clouds, but also wrongly classify some pixels in the
clear sky as clouds. In contrast with the FCM method, the
SVM way can have a little lower average PAR but higher
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average UAR (user agreement rate), suggesting that the SVM
method may wrongly detect or not detect some pixels of the
actual cloud. Similarly, the lowest average UAR obtained
from the FMASK method indicates the results may contain
some pseudo cloud pixels.

2) PREDICTION RESULTS AND ANALYSIS

In the experimental simulation, we predicted the photovoltaic
output for each 30 minutes time point from 7:30 to 17:30 in
one day. Figure 9 shows the forecasted data, and Table 5 lists
the corresponding original data.

Cloudy

—(O— Real power

—#F— Prediction based on IFCM-GAPS-RBF algorithm

Photovoltaic output (/mW)
>

07:30 08:30 09:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30
Time (hour)

FIGURE 9. The forecasted results of a cloudy day.

TABLE 5. The original data corresponding to the predicted data.

Tested
Weather Trained samples
samples
Sunny 10.5,10.9,10.12,10.19,10.21,10.2 10.23,10.24
Cloudy 9.5,9.7,9.8,9.12,9.13,9.14,9.18 10.12,10.13
Rainy 9.6,9.17,9.19,9.20,9.27,9.28,10.3 10.29,10.30

According to the original data in Table 5 and the predicted
results for the three classes of the weather seen in Figure.10,
the forecast plot of the sunny day is fundamentally coherent to
the physical truth and only has a small prediction error. There
is usually a deviation in the prediction profile of the cloudy
weather, and its forecasting error is also the largest among
these three weather classes, which is affected by the specific
uncertainty of the cloud position and cloud amount.

For quantitatively assessing the effectiveness of FCM,
there are four indexes are used in this paper, including PAR
(Producer Agreement Rate), NAR (Non-Agreement Rate),
UAR (User Agreement Rate), and RER (the ratio of PAR to
NAR) defined as below:

NCS
Pro — Agreement = —— (23)
NCST
NCS
User — Agreement = ——— (24)
NCSR
CSN + NCS
Non — Agreement = CN + NES (25)
NT
RER — Pro — Agreement 26)

Non — Agreement

With or without the secondary detection(as shown in
figure10). The proposed method has the best accuracy. The
statistical solution is better than the physical way.
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FIGURE 10. Prediction accuracy between the proposed algorithm and the
traditional methods.

3) SIMULATION AND ANALYSIS OF THE ERROR

To analyze and compare the prediction for these three weather
types in quantity. The authors regarded the Root Mean Square
Error (RMSE) as the factor for assessing the error. The ana-
lyzed results are as shown in Table 5, and the RMSE is as
follows:

N
1 2
RMSE = | — > " (Ppi = Pmi) 27)

i=1
In the expression above, Pp; and P,,; are the actual power

and the predicted output of the PV, respectively. N is the total
number of output powers in the prediction system.

TABLE 6. Predicting error of the three weather types (RMSE (mw)).

Type

Model 1 Model 2 Model 3

Weather
Sunny 0.9636 1.0429 2.2058
Cloudy 4.0123 42112 5.8902
Rainy 2.9828 3.4191 4.0885

Following the error data shown in Table 5 and Fig. 11,
under the three types of weather situations, the predicted
results of models 1 and 2 are almost more consistent with the
actual PV output of the day to be forecasted.

However, the forecasted value of model 3 is far from the
actual values because the original data used in this model are
not fit to cluster via IFCM.

Therefore, as found from this result, using IFCM cluster-
ing can improve the prediction. Meanwhile, in contrast to
model 2, the prediction error of model 1 is lower because of
the introduction of the computation of the genetic membrane
based on the GAPS-RBF algorithm, which can better choose
the optimal solution in the population.
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FIGURE 11. Forecasted results of three types of weather types.

C. DISCUSSION

1) CONTRIBUTIONS OF THE INITIAL AND SECONDARY
CLOUD DETECTIONS

To most scenes, the method of initial cloud detection can
achieve much higher BERs, PARs, and lower NARs than that
of secondary cloud detection, which means that the initial
cloud detection possesses a better detecting accuracy. This
result is because the initial cloud detection mostly screenings
the clear clouds while applying the secondary cloud detection
may detect those thin clouds surrounding the thick clouds
that are hard to find. Furthermore, the method of secondary
cloud detection could look like being much more key in the
scenes with a large amount of thin cloud, just like the Land-
sat 7 ETM+ scene. Meantime, even though the secondary
cloud detection mislabels some pixels in the clear sky as
clouds, it also can improve the PARs.

2) NECESSITY OF THE SECONDARY CLOUD DETECTION

It is not suitable to use the secondary cloud detection in eight
Landsat 7 ETM+ images due to the relatively short distance
between those cluster centers gotten from this detection way.
Secondary cloud detection is not a suitable method for these
scenes. Additionally, although secondary cloud detection is
not a stable way to screen the eight images, it can improve
the average BER. Therefore, that means it is better to exclude
these eight images for the second cloud detection and then
set a reasonable threshold to determine the necessity of this
detecting algorithm.

3) SEARCHING WINDOW SIZE FOR CLOUD

SHADOW DETECTION

From the results and analysis above, it is visually to deter-
mine the searching window size and is easy to fine-tune it.
In addition, it should be better not to set the searching window
size too small or too large. It may include some pixels of the
pseudo cloud shadow if the searching window size is too big,
and there may exclude some pixels of the actual cloud cover
once the searching window size is too small, which could
decrease the UAR.
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4) SUMMARY OF CONTRIBUTIONS
The experimental results denote conclusions as follows:

(1). it is reasonable to utilize RBF neural networks for
predicting a change of some specific regions cloud cover;

(2). to choose a value of K can improve the performance of
the prediction accuracy for cloud covers;

(3). the proposed algorithm is an intelligent prediction way
to forecast, and it can have good generalization ability and
better robustness.

VIl. CONCLUSION

To forecast the photovoltaic output of the photovoltaic
station precisely daily. This paper proposed a HYBRID
prediction model based on an improved fuzzy c-means clus-
tering (IFCM) of meteorological aspects and GAPS opti-
mized by a radial basis function (RBF) neural network as
predicting model. First, utilizing the PEARSON correlation
coefficient to choose the three most significant factors in
many factors affecting the photovoltaic output; Second, based
on the three types of data, and using IFCM algorithm to detect
the cloud cover; Finally, a detailed RBF neural network is
given and coordinated with the GAPS method to predict the
PV output of the PV power station and apply the genetic
membrane optimization algorithm for optimizing the initial
weight threshold of the RBF neural network model. The
usage of the RBF neural network for predicting the PV is fea-
sible and can improve the prediction accuracy by choosing k.
The results show that the proposed method is efficient and
suitable, can efficiently reduce the prediction error, and has
good generalization ability and better robustness.
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