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ABSTRACT Recently, the demand for spectral and energy efficiency has significantly been increased
along with new breakthroughs in programmable meta-material techniques. The integration of an intelligent
reflecting surface (IRS) into simultaneous wireless information and power transfer (SWIPT) systems has
attracted much attention from operators in advanced wireless communication networks (WCNs) such as
fifth-generation (5G) and sixth-generation (6G) networks. In addition, an IRS-assisted SWIPT system faces
many security risks that can easily be compromised by eavesdroppers. In this paper, we investigate the
physical-layer secure and transmission optimization problem in an IRS-assisted SWIPT system where a
power-splitting (PS) scheme is installed in the user equipment (UE). In particular, our purpose is to maximize
the system secrecy rate by jointly finding optimal solutions for transmitter power, PS factor of UE, and
phase shifts matrix of IRS under the required minimum harvested energy and maximum transmitter power.
We propose the alternating optimization (AO)-based scheme to obtain optimal solutions. The proposed
AO-based scheme can effectively solve both convex and non-convex problems; however, applying them
in practice still poses some difficulties due to the complexity and long computation time. This is because
manymathematical transformations are used and the optimal solution needs a number of iterations to achieve
convergence. Therefore, we also propose 5 types of data and DNN structures to potentially achieve efficiency
in computations by using a deep learning (DL)-based approach. The simulation results indicate that the
proposed IRS scheme provides an improvement in terms of the average secrecy rate (ASR) by up to 38.91%
when the number of reflecting elements is high (30 elements) compared to a scheme without an IRS.We also
observe that the DL-based approach not only provides similar performance to the AO-based scheme but it
also significantly reduces computation time.

INDEX TERMS SWIPT, intelligent reflecting surface, eavesdropper, secure transmissions, alternating
optimization, average secrecy rate, deep learning.

I. INTRODUCTION
In recent years, wireless communication technologies have
developed dramatically. The demand for quality of ser-
vice (QoS) has also increased because of the rapid increase
in the number of users, resulting in a scarcity of spectrum
resources [1]. In addition, power consumption is constantly
increasing due to expanding network infrastructure such as
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transmission lines, terminal equipment, and base stations
(BSs). Therefore, it is becoming increasingly important to
save energy. Efficient energy management helps to overcome
the bottleneck of wireless network applications operating
under battery and energy constraints. It not only helps to
reduce a device’s dependence on battery power and power
consumption, but also provides a continuous power source
for the long-term operation of devices on the network. As a
result, the simultaneous wireless information and power
transfer (SWIPT) transmission technique was developed to
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fulfill these requirements [2]–[5]. In the SWIPT system, the
received signal can be used for energy harvesting (EH) and
information decoding (ID). In addition, to simultaneously
perform power transfer and information transmission in a
SWIPT system, two practical structures are used: power
switching (PS) and time switching (TS) [5].

On the other hand, a SWIPT system also suffers negative
effects, such as channel attenuation and interference signals
from wireless transmission environments. Besides that, tall
objects like trees, traffic signs, or buildings can block the
communication link between the transmitter and the receivers
in wireless communication networks (WCNs). All of them
reduce the quality of the communication link and weaken
the information and energy received. Fortunately, with the
breakthrough developments inmeta-materials in recent years,
the intelligent reflecting surface (IRS) was developed and is
considered an effective solution to overcome these negative
effects [6], [7]. In addition, several variants of the IRS have
been developed, such as the large intelligent surface (LIS)
[8], [9], the large intelligent metasurface (LIM) [10], and
the reconfigurable intelligent surface [11], [12]. An IRS
includes an array of low-cost and passive reflecting elements.
Each reflecting element is able to change the frequency,
phase, amplitude, or even polarization of an incident signal
[6], [7]. An IRS is introduced to generate an additional
reflected link. Along with the signals directly received
via direct communication links, an additional reflected
signal can be added to suppress the channel interference
of undesired receivers and improve the received signal for
desired receivers. The IRS is more energy- and cost-efficient
than a conventional relay system. This is because in a relay
system, transmitting and receiving signals are done with
the active RF signal. Meanwhile, for the IRS, the incident
signal is reflected by reconfiguring the IRS’s phase shifts
without RF chains. So, the beamforming design in an IRS
is classified in a nearly passive manner. The IRS also has
quite low power consumption due to its lightweight and
compact size, and thus, it is easily installed in the indoor
environment (e.g., on ceilings and walls) and in outdoor
environments (e.g., on road signs, moving trains, building
facades, etc.).

Currently, we are living in an era of information and
data explosion where sharing and exchanging information
between devices takes place every day and hour. Personal
data and private communications easily become targets
of security threats such as eavesdroppers (Eave’s) [13].
Thus, a private conversation or communication in a SWIPT
advanced networking system, even in combination with an
IRS, may be secretly or stealthily overheard. Therefore, the
secure transmission problem in IRS-enabled SWIPT systems
must be considered more and more important.

From the above surveys, for the purposes of efficient
energymanagement, secure transmission and signal enhance-
ment from the IRS technique, we investigate the secure
transmission IRS-enabled SWIPT system which is one of the
current research topics of interest.

II. RELATED WORKS
There has already been a lot of work investigating the
system secrecy rate optimization problem with many modern
techniques applied, such as artificial noise (AN)-based
anti-jamming, and multi-antenna beamforming [13]–[15],
or even in the SWIPT system ifself [16], [17]. Liu et al. [16]
studied the secure transmission optimization problem in
SWIPT systems with multiple energy receivers (ERs) and an
information receiver (IR). They aimed to optimize the ERs’
weighted sum energy and the IR’s secrecy rate. The authors
in [17] maximized the system sum secrecy rate by satisfying
the constraints on the ER’s minimum harvested energy and
the IR’s minimum data rate. The secure transmission problem
was addressed in a SWIPT-enabled non-orthogonal multiple
access (NOMA) system that consisted of multiple IRs,
multiple ERs, and a BS. Studies on optimal secrecy rates have
also been conducted in WCNs with the help of IRSs [18],
[19], where the authors considered an IRS-assisted wireless
transmission system in which a single-antenna eavesdropper
attempts to listen to communications. The secrecy rate is
maximized by optimizing the IRS’s reflect beamforming
and the transmitter’s beamforming. Both systems used an
alternating optimization (AO) algorithm for solving opti-
mization problems. Simulation results showed a significant
improvement in terms of the secrecy communication rate
from the proposed scheme compared to a scheme not using
an IRS.

Furthermore, there have been many studies on the secure
transmission of IRS-assisted SWIPT systems. However, the
secrecy rate optimization problem was not considered as the
main optimization problem [20]–[23]. More specifically, the
authors in [20]–[22] aim to optimize transmit beamforming
while ensuring the constraints of the QoS and harvested
energy. Niu et al. [23] maximized the minimum robust
information rate among the legitimate IRs while the ERs are
considered as potential Eave’s. In addition, the IRS-assisted
SWIPT system was considered in [24], [25] to optimize
secrecy rate. However, the PS factor was not jointly optimized
in the secure transmission of IRS-assisted SWIPT system,
which is an important factor that can prolong the uptime and
improve the energy efficiency of devices.

Summary, in all of the aforementioned work, the secure
transmission optimization problem was mostly considered in
following system models: the SWIPT system without IRS,
the conventional IRS-assisted WCN system, the IRS-assisted
SWIPT system with no secrecy rate optimization, and the
IRS-assisted SWIPT system with secrecy rate optimization
without considering PS scheme. Most recently, the secure
transmission optimization problem was studied in an IRS-
assisted SWIPT system where separate receivers are IRs and
ERs [26]. At the ERs, the harvested energy was formulated
by a practical non-linear model. In addition, the secrecy
rate was maximized while constraints on EH and transmit
power for the ERs and the BS being satisfied, by optimizing
the AN covariance, the BS’s transmit beamforming, and the
IRS’s reflective beamforming. The AO algorithm was also
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TABLE 1. The comparison of existing works related to IRS and SWIPT sysems.

implemented to solve the target problem. However, it is
noteworthy that our work is different from [26], although
the secure transmission issue is also considered in the IRS-
assisted SWIPT system. In the paper, we consider the unified
user equipment (UE) with a PS scheme where the secrecy
rate should be maximized by additionally considering the PS
factor at the UE. Furthermore, in our work, the computational
efficiency of the optimization algorithm is also studied in
comparison with the proposed deep learning (DL)-based
approach, which the previous works did not take into account.
Table 1 compares existing works related to IRS and SWIPT
systems.

Although the optimization algorithm-based approach is
a very powerful approach for solving most optimization
problems including convex and non-convex problems, it still
faces many challenges when deployed in many applications
with low computation time requirements. This disadvantage
comes from the implementation of optimization algorithms,
which are based on iterations and complex mathematical
transitions from non-convex problems to convex problems.
Fortunately, the DL technique can effectively overcome
these issues. DL technology has shown high efficiency
when applied in WCNs [27]. Sun et al. [28] investigated the
weighted minimum mean square error (WMMSE) discussed
in [29], and the interference was approximated by using
a deep neural network (DNN). Results showed that the
WMMSE problem can be well-approximated with low
computation time through a DNN model.

In this paper, to take advantage of the IRS and SWIPT
system, we investigate an IRS-assisted SWIPT systems in
which the IRS is deployed to improve the security of the
communication link between a single-antenna transmitter
and a single-antenna UE despite eavesdropping by a single-
antenna Eave’, as shown in Fig. 1. We not only study
the secure transmission optimization problem in the IRS-
assisted SWIPT system with a PS scheme in the UE, but we
also consider a neural network for achieving computational
efficiency. The optimization problem of secure transmission
is difficult to solve when it has non-convex form. Fortunately,
the optimization problems with non-convex form can be
effectively solved using the feasible point pursuit–successive
convex approximation (FPP–SCA) algorithm [30] and the
AO method [18], [19], [26]. The FPP–SCA algorithm

executes the non-convex functions (non-convex constraints,
or even non-convex objective functions) with upper convex
functions at each iteration. Specifically, the concave terms are
approximated around a feasible point by a convex function,
and the optimal solution of the convex problem in the current
iteration will be served for the next iteration as the feasible
point. On the other hand, the AO method optimizes one or
more variables by fixing remaining variables in an alternating
manner. Regarding the DL-based approach, training and
running stages are required. After the optimization algorithm
reaches feasible solutions, the optimal output along with the
corresponding input will be used as the training data for DNN
model. If the DNN is well-trained (i.e., the trained network
can provide predictive outputs almost identical to the feasible
solutions of the optimization algorithm), then, the trained
DNN can be applied to estimate optimal output in the running
stage with lower computation time.

In a nutshell, this paper’s main contributions are as follows.
• We consider an IRS-assisted SWIPT system where
a signal is transmited to the UE while an Eave’
tries to listen to the transmitter–UE communication.
By deploying an IRS in the system, network security
can be enhanced, and eavesdropping can be reduced.
Furthermore, the UE is equipped with a PS scheme
that makes the UE get both signal and harvested energy
simultaneously. We formulate the secure transmission
problem of an IRS-assisted SWIPT system with a PS
scheme to maximize the system secrecy rate by finding
the optimal solutions for the transmitter’s power, the
UE’s PS factor, and the IRS’s phase shifts matrix.

• We propose an AO-based scheme for solving the
optimization problem where FPP, SCA, and penalty
methods are used to solve the optimization problem.

• A DL-based approach is considered to improve compu-
tational performance. Specifically, 5 types of data and
DNN structures are proposed.

Notations: Matrices and vectors are denoted by boldface
capital and lower-case letters, respectively, while (·)H and
(·)T represent the Hermitian and the transpose operations,
respectively. The scalar’s absolute value is denoted by |·|. The
diagonal matrix is represented by diag {·} where the elements
of the input vector are diagonal. Cm×n represents a complex
matrix with an m × n space. CN

(
0, σ 2

)
denotes the random
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TABLE 2. The notation list.

variable distribution with zero mean and variance σ 2 of a
circularly symmetric complex Gaussian (CSCG), and ‘∼’
implies distributed as. The symbols E {·} and Tr(·) represent
expectation and trace operations. Defining Q � 0 means Q
is a positive semi-definite (PSD) matrix. The terms Im (a)
and Re (a) represent the imaginary part and the real part of
complex number a. Table 2 lists other notations used in this
paper.

The subsequent sections of this paper are organized as
follows. Section III presents the formulation of the problem
with the system model, the proposed AO-based scheme and
the proposed DL-based approach. Analysis and discussion of
the simulation results are in Section IV. Finally, Section V
presents the conclusion.

III. FORMULATION OF THE PROBLEM
A. CHANNEL MODEL
In this paper, an IRS-assisted SWIPT system is considered,
consisting of a transmitter, a UE, an Eave’, and an IRS
(as shown in Fig. 1). The UE, transmitter, and the Eave’
utilizes a single omni-directional antenna, respectively, while
M reflecting elements are used in a uniform linear array
(ULA), which is the IRS indexed by M 1

= {1, . . . ,M}. The
IRS is connected to a smart controller, which can configure
the IRS phase shifts in real-time manner for desired signal
propagation [12], [31]. The UE is equippedwith a PS scheme.
The IRS is placed parallel to the x-axis and is located in
the x − z plane. Let 8 = diag {φ1, φ2, . . . , φM } ∈ CM×M

be the IRS’s diagonal phase shifts matrix, where φm =
βmejϕm is the phase shift of the m–th reflecting element
with ϕm ∈ [0, 2π) and βm ∈ [0, 1] ,∀m ∈ M. The
phase shifts {φm} can be controlled continuously and βm is
the amplitude reflection coefficient of the m-th reflecting

FIGURE 1. The IRS-assisted SWIPT system with a power-splitting (PS)
scheme in UE.

element. In practice, when designing elements of the IRS, the
amplitude reflection coefficient is often set to 1 to achieve
maximum signal reflection such that we have βm = 1,∀m.
In addition, we assume that the center point of the IRS is
the reference point, where the horizontal coordinates and
altitude are indicated by wI = [xI , yI ]T and zI , respectively.
Therefore, the distance of the communication link from
a particular user node to the IRS can be approximately
equal to the distance from the corresponding user node to
the reference point of the IRS. The horizontal coordinates
of the transmitter, the UE, and the Eave’ are denoted by
wT = [xT , yT ]T ,wU = [xU , yU ]T , and wE = [xE , yE ]T ,
respectively.

Because the location of Eave’ is uncertain, the knowledge
of the channel state information (CSI) between transmitter
and Eave’ is difficult to achieve. However, many methods
and assumptions have been considered in recent studies
to solve this problem. This knowledge may range from
a complete lack of CSI (the approach based on studying
the compound wiretap channel [32]) to partial CSI (opti-
mizing the AN transmit covariance [33] or relaxing the
orthogonality constraint [34]) and statistical CSI (meeting a
target performance criterion in terms of SNR or rate at the
receiver based on allocating enough power [13]) or even the
CSI uncertainty (adopting a deterministic model [35]–[37]).
In addition, there are some methods to identify the presence
of an Eave’ such as detection-theoretic methods based on
its local oscillator leakage power and mutual communication
between the legitimate nodes based on realizations of a
constructed random variable [38]. Moreover, it is reasonable
to assume that the CSIs of links related to Eave’ can be
known when the Eave’ is considered as an active user but
untrusted by the legitimate user [13]. Besides, several channel
estimation techniques for IRS-assisted systems have been
proposed recently such as those mentioned in [10], [39].
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Therefore, to characterize the performance limit of the secure
transmission IRS-assisted SWIPT system, the CSIs of the
channels involved are assumed to be either completely known
at the BS/IRS or achievable based on existing channel
estimation techniques. In general, for the sake of simplicity in
our scenario, the CSIs of the channels involved are modeled
as the Rayleigh and Rician fading channels as follows.

Let hTU ∈ C1×1 and hTE ∈ C1×1, respectively, denote the
channel gain of transmitter–UE (T–U) and transmitter–Eave’
(T–E) links. We assume the channel gain of the T–U and T–E
links model a the Rayleigh fading channel, as follows:

hTU =
√
ρld
−αTU
TU h̃TU , (1)

hTE =
√
ρld
−αTE
TE h̃TE , (2)

where h̃TU and h̃TE denote the CSCG random variable
distribution, dTU and dTE denote the distances of the
corresponding communication links, calculated by dTU =√
‖wT − wU‖

2 and dTE =
√
‖wT − wE‖

2, respectively, α
denotes the path loss exponent, and ρl denotes the path loss
at reference distance D0 = 1 m [40].
In fact, the IRS can be installed on the facade of the

building so the links from the transmitter to the UE, and
from the IRS to the UE and to the Eave’ might not be
blocked by obstructions like trees or traffic signs. As a result,
there is a line-of-sight (LoS) component to these channels.
Hence, with the addition of the LoS path, the channel gain of
the transmitter–IRS (T–I), the IRS–UE (I–U), and the IRS–
Eave’ (I–E) links can model a Rician fading channel. Let
cl = {TI , IU , IE} denote the communication links of the
T–I, I–U, and I–E links. Then, the channel gain of the related
communication links, hcl ∈ CM×1, can be expressed as
follows:

hcl =
√
ρld
−αcl
cl

(√
βcl

1+ βcl
hLoScl +

√
1

1+ βcl
hNLoScl

)
, (3)

where dcl , αcl , and βcl represent the distances, the path
loss exponents, and the Rician factors of the related
communication links, cl, respectively. The distances of the
related communication links, dcl = {dTI , dIU , dIE }, are

calculated as follows: dTI =
√
z2I + ‖wT − wI‖

2, dIU =√
z2I + ‖wU − wI‖

2, and dIE =
√
z2I + ‖wE − wI‖

2. The
non-LoS (NLoS) and LoS components of a communication
link are denoted by hNLoScl and hLoScl , respectively. The NLoS
component of the communication link, hNLoScl ∈ CM×1,
follows a CSCG random variable distribution, wheares the
LoS component, hLoScl ∈ CM×1, is a ULA ofM elements [41]
and is given as:

hLoScl =

[
1, e−j

2π
λc
1ψcl , . . . , e−j

2π
λc
(M−1)1ψcl

]
, (4)

where λc and 1 represent the carrier wavelength and the
antenna separation, respectively; ψcl = {ψTI , ψIU , ψIE }
denotes the cosine of the angle of the related communication
links, in which ψTI =

xI−xT
dTI

denotes the cosine of the angle

of arrival (AoA) for the propagation path from the transmitter
to the IRS, while ψIU =

xU−xI
dIU

and ψIE =
xE−xI
dIE

denote
the cosine of the angle of departure (AoD) of the propagation
paths from the IRS to the UE and to the Eave’, respectively.

B. COMMUNICATION MODEL
The transmitter sends signal xt =

√
Ps, where s denotes the

information-bearing symbol, which is a CSCG distribution.
P denotes the transmitter power, and E

{
|s|2

}
= 1.

In this paper, the IRS is assumed to be able to impose
an additional time delay on the incident signals, which not
only helps the coherent superposition of multiple copies of
the desired signals but also guarantees their synchronization
in time. Specifically, one of the possible approaches is the
delay adjustable elements [42] cascaded with the existing
phase adjustable elements [6]. In addition, to ensure that
the incident signals are reflected independently by all IRS
elements, the reflected signal-coupling among neighboring
IRS elements is assumed that does not exist. Moreover, due
to the severe path loss, we only consider signals which are
reflected by the IRS first time [40], [43] by ignoring signals
which are reflected by the IRS two or more times. The
received signals at the UE and the Eave’ are defined as
follows:

yU = hU
√
Ps+ nU , (5)

yE = hE
√
Ps+ nE , (6)

where hU = hHIU8hTI + hTU and hE = hHIE8hTI + hTE ,
with nU ∼ CN

(
0, σ 2

U

)
and nE ∼ CN

(
0, σ 2

E

)
denoting

noise from the antenna at the UE and the Eave’, respectively.
By using the PS scheme, the UE is able to execute EH and
ID simultaneously. Regarding the PS structure, the received
signal can be divided into ID and EH streams with PS factors
θ and (1− θ), respectively, where θ ∈ (0, 1). The ID process
is only executed on the ID stream at the UE, and thus, the
signal-to-noise ratio (SNR) at the UE and the Eave’ can be
obtained. Accordingly, the achievable rates at the UE and the
Eave’ are defined as follows:

RU = log2

(
1+

θ |hU |2P

θσ 2
U + δ

2
U

)
, (7)

RE = log2

(
1+
|hE |2P

σ 2
E

)
, (8)

where v ∼ CN
(
0, δ2U

)
is the noise of the circuit on the ID

stream at the UE shown in Fig. 1. Regarding the EH stream,
the EH process is executed, and thus, the harvested energy at
the UE is determined as:

EHU = µ (1− θ)
(
|hU |2P+ σ 2

U

)
, (9)

whereµ ∈ (0, 1] and denotes the efficiency of the EH process
on the EH stream at the UE. In this paper, for simplicity in
computation, the UE is assumed to harvest all the energy from
the received signal, and thus, µ is fixed at 1 (µ = 1) for the
remainder of this paper.
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C. OBJECTIVE PROBLEM
For secure transmission, the success of the user is maximized,
whereas the success of the Eave’ needs to be minimized.
To estimate this performance metric the secrecy rate is often
used, defined as the variation between the achievable rates of
the user and the Eave’ [13]. Therefore, the secrecy rate at the
UE in bits/second/Hertz (bps/Hz) is given as follows:

Rsec (P, θ,8) = (RU − RE )+, (10)

where the function (x)+ = max (x, 0).
In this work, we aim to maximize the system secrecy rate

by optimizing the received PS factor, θ , the transmitter power,
P, and the phase shifts matrix,8, subject to constraints on the
required harvested energy and power. Then, the secrecy rate
optimization problem is formulated as:

max
P,θ,8

Rsec (P, θ,8) (11a)

s.t.: (1− θ)
(
|hU |2P+ σ 2

U

)
≥ e, (11b)

P ≤ Pmax , (11c)

0 < θ < 1, (11d)

|φm| = 1, ∀m ∈M, (11e)

where Pmax denotes the required maximum transmitter
power, and e represents the required minimum harvested
energy.

D. THE PROPOSED AO-BASED SCHEME FOR THE SECURE
TRANSMISSION PROBLEM
In this section, we propose anAO-based algorithm for solving
problem (11) which provides optimal value of P, θ and 8 in
an alternating manner. Since the AOmethod optimizes one or
more variables by fixing remaining variables in an alternating
manner, in the proposed scheme, the optimization of P, θ
with a fixed 8 is found by the FPP–SCA method, while the
optimization of 8 with a given P, θ is found by FPP–SCA
and a penalty method.

1) FINDING P, θ WITH A GIVEN 8

Since 8 is fixed, the constraint (11e) is satisfied. Then,
we remove the logarithm function and add two variables u, v
where u, v ≥ 0. Specifically, u2 is used for the numerator and
v is used for the denominator of the problem. Then, we can
get the inequality(

1+
θ |hU |2P

θσ 2
U + δ

2
U

)/(
1+
|hE |2P

σ 2
E

)
≥ u2

/
v

which is always guaranteed. Therefore, problem (11) can be
changed to:

max
P,θ,u,v

u2

v
(12a)

s.t.: 1+
|hU |2P

σ 2
U +

δ2U
θ

≥ u2, (12b)

1+
|hE |2P

σ 2
E

≤ v, (12c)

(1− θ)
(
|hU |2P+ σ 2

U

)
≥ e, (12d)

P ≤ Pmax , (12e)

0 < θ < 1, (12f)

u, v,P ≥ 0. (12g)

Then, problem (12) can be changed to:

min
P,θ,u,v

−
u2

v
(13a)

s.t.: 0 ≥ σ 2
Uu

2
+
δ2Uu

2

θ
−
δ2U

θ
− |hU |2P− σ 2

U , (13b)

0 ≥ 1+
|hE |2

σ 2
E

P− v, (13c)

0 ≥
1

1− θ
e− |hU |2P− σ 2

U , (13d)

0 ≥ P− Pmax , (13e)
0 < θ < 1, (13f)
u, v,P ≥ 0. (13g)

Due to the non-convex property of
(
−
u2
v

)
and

(
−

1
θ

)
in the objective function (13a) and under constraint (13b),
respectively, problem (13) is non-convex. Therefore, we need
to perform first-order Taylor approximation as follows:

u2

v
≥

u(n)
2

v(n)
+

[
2u(n)

v(n)
−u(n)

2

v(n)2

]([ u
v

]
−

[
u(n)

v(n)

])
=

2u(n)u
v(n)

−
u(n)

2
v

v(n)2
, (14)

1
θ
≥

1
θ (n)
−

1

θ (n)
2

(
θ − θ (n)

)
=

2
θ (n)
−

θ

θ (n)
2 . (15)

After that, non-convex problem (13) is reformulated
into an approximated convex problem with the n–th sub-
problem using the FPP–SCA method. From the FPP–SCA
method [30], slack variables s1, s2, s3, s4 are also added into
problem (13) to generate a feasible point. By replacing (14)
and (15), and adding the slack variables into problem (13),
non-convex problem (13) is converted into a convex problem
as follows:

min
P,θ,u,v,
s1,s2,s3,s4

−
2u(n)u
v(n)

+
u(n)

2
v

v(n)2
+ λ (s1 + s2 + s3 + s4)

(16a)

s.t.: 0 ≥ A− δ2U

(
2
θ (n)
−

θ

θ (n)
2

)
− s1, (16b)

0 ≥ 1+
|hE |2

σ 2
E

P−v− s2, (16c)

0 ≥
1

(1− θ)
e− |hU |2P− σ 2

U − s3, (16d)

0 ≥ P− Pmax − s4, (16e)

0 < θ < 1, (16f)

u, v,P, s1, s2, s3, s4 ≥ 0, (16g)
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where A = σ 2
Uu

2
+

δ2Uu
2

θ
− |hU |2P − σ 2

U and λ

is a trade-off factor between the slack term and the
objective function. In this work, by using the convex
Taylor underestimation of (14) and (15) and with the
FPP–SCAmethod, problem (13) is transformed into solvable
convex problem (16). Then, by using the interior-point
method [44], [45] with a solver tool like Matlab’s CVX [46],
the convex optimization problem will be solved easily.
Finally, the proposed FPP–SCA algorithm is presented
in Algorithm 1.

Regarding Algorithm 1, because problem (11) is converted
to convex sub-problem (16) in the n–th iteration, we need
to determine initial feasible points

(
P(0), θ (0), u(0), v(0)

)
.

We can set P(0) = Pmax and θ (0) = 0.5 such that constraints
(12e) and (12f) are satisfied, respectively. After that, u(0) and
v(0) can be calculated such that constraints (12b) and (12c)
are satisfied, respectively (step 2 in Algorithm 1).

In Algorithm 1, in each of the iterations and usingMatlab’s
CVX to solve the convex problem, we then obtain the
optimal solution. We assign P(n) ← P(n−1)

∗

, θ (n) ←
θ (n−1)

∗

, and u(n) ← u(n−1)
∗

, v(n) ← v(n−1)
∗

, where(
P(n−1)

∗

, θ (n−1)
∗

, u(n−1)
∗

, v(n−1)
∗
)

is the optimal solution
from the previous iteration. In other words, the (n+ 1)–
th iteration reuses the optimal solution at the n–th iteration
which is considered a feasible point. Therefore, the optimal
solution u∗ and v∗ will be assigned for the next iterations
of u and v, u(n+1) and v(n+1), respectively. This process
will be repeated until convergence. Besides, Algorithm 1
converges when the initial point is feasible and converges
to a stationary point. This is because the alternative
functions(

−
2u(n)u
v(n)

+
u(n)

2
v

v(n)2

)
and

(
2
θ (n)
−

θ

θ (n)
2

)
satisfy the convergence conditions as mentioned in
Section II-C [47]. Furthermore, the FPP–SCA approach
yields a non-increasing cost sequence when considering addi-
tional slack variables which make the optimal values non-
increasing after each iteration [30], and thus, Algorithm 1 is
guaranteed to be converged.

2) FINDING 8 WITH A GIVEN P, θ
By removing the logarithm function, performing some
computational operations, and fixing P, θ , problem (11) with
regard to (w.r.t.) 8 becomes:

max
8

1
B |hU |

2
+ 1

1
C |hE |

2
+ 1

(17a)

s.t.: (1− θ)
(
|hU |2P+ σ 2

U

)
≥ e, (17b)

|φm| = 1, ∀m ∈M, (17c)

where B =
σ 2U+δ

2
U

/
θ

P and C =
σ 2E
P . Let a1 =

diag
(
hHIU

)
hTI , a2 = hTU , a3 = diag

(
hHIE

)
hTI , a4 = hTE ,

Algorithm 1 The FPP–SCA Algorithm Obtaining Transmit
Power (P) and PS Factor (θ ) by Fixing Phase Shift Matrix 8
Input: Channel gain of the related communication links

(hTU , hTE ,hTI ,hIU ,hIE ), fixed initial phase shifts matrix
8, convergence conditions (ε1, ε2), a feasible point with an
initial point u(0), v(0),P(0), θ (0), λ = 100, required minimum
harvested energy (e), required maximum transmit power
(Pmax), and n = 0

Output: The optimal value: P∗, θ∗⇒ R∗sec
1: Calculate:
hU = hHIU8hTI + hTU and hE = hHIE8hTI + hTE

2: Calculate initial feasible point at n = 0: choose P(0) =
Pmax , θ (0) = 0.5 such that they satisfy constraints (12e) and
(12f), respectively. Then, calculate u(0) and v(0) such that u(0)

and v(0) satisfy constraints (12b) and (12c), respectively

u(0) =
√
1+ P(0)|hU |2

σ 2U+
δ2U
θ(0)

, v(0) = 1+ P(0)|hE |2

σ 2E

3: repeat
4: Solve problem (16) using Matlab CVX solver and calculate:

P∗, θ∗, u∗, v∗, s∗1, s
∗

2, s
∗

3, s
∗

4
5: n = n+ 1
6: Calculate:

R(n−1) = − 2u(n−1)u∗

v(n−1)
+

u(n−1)
2
v∗

v(n−1)2
+ λ

(
s∗1 + s

∗

2 + s
∗

3 + s
∗

4

)
7: Update: P(n) ← P∗, θ (n) ← θ∗, u(n) ← u∗, v(n) ← v∗

8: until R
(n)−R(n−1)

R(n−1)
≤ ε1 and s1 + s2 + s3 + s4 ≤ ε2

9: return P∗ ← P(n), θ∗ ← θ (n), calculate optimal secrecy rate
R∗sec based on P∗ and θ∗.

q =
[
ejϕ1 , . . . , ejϕM

]H , and q̄ = [q; 1]. Then, we get:

hU = hHIU8hTI + hTU

= qHdiag
(
hHIU

)
hTI + hTU = qHa1 + a2, (18)

hE = hHIE8hTI + hTE

= qHdiag
(
hHIE

)
hTI + hTE = qHa3 + a4. (19)

The numerator and denominator of (17a) are converted to:

1
B
|hU |2 + 1 = q̄HA1q̄+ h̃U + 1, (20)

1
C
|hE |2 + 1 = q̄HA2q̄+ h̃E + 1, (21)

where

A1 =
1
B

[
a1aH1 a1aH2
a2aH1 0

]
, A2 =

1
C

[
a3aH3 a3aH4
a4aH3 0

]
,

h̃U =
|a2|2
B , and h̃E =

|a4|2
C . Accordingly, we rewrite

problem (17) into a more tractable problem, as follows:

max
q̄

q̄HA1q̄+ h̃U + 1

q̄HA2q̄+ h̃E + 1
(22a)

s.t.: (1− θ)
[
B
(
q̄HA1q̄+ h̃U

)
P+ σ 2

U

]
≥ e, (22b)∣∣qm∣∣ = 1, ∀m. (22c)

The optimal solution to problem (22) is really not easy to
find, since objective function (22a) is not only a non-concave
function w.r.t. q̄ but is also a fractional function. In addition,
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constraint (22c) is a non-convex quadratic equality function
for eachm. Let Tr (Q) denote the trace of matrixQ, and define
Q = q̄q̄H where Q is a PSD matrix and rank (Q) = 1. Then,
problem (22) is transformed as follows:

max
Q

Tr (A1Q)+ h̃U + 1

Tr (A2Q)+ h̃E + 1
(23a)

s.t.: (1− θ)
[
B
(
Tr (A1Q)+ h̃U

)
P+ σ 2

U

]
≥ e, (23b)

Qm,m = 1, ∀m ∈ {1, 2, . . . ,M + 1} , (23c)

Q � 0, (23d)

rank (Q) = 1. (23e)

By adding the two variables u, v to transform the fraction
function in a way similar to the transformation from
problem (11) to problem (13) in Section III-D1, problem (23)
changes to:

min
Q,u,v

−
u2

v
(24a)

s.t.: 0 ≥ u2 − Tr (A1Q)− h̃U − 1, (24b)

0 ≥ Tr (A2Q)+ h̃E + 1− v, (24c)

0 ≥
e

1− θ
− Tr (A1Q)BP− h̃UBP− σ 2

U , (24d)

u, v ≥ 0, (24e)

(23c), (23d), (23e). (24f)

Since we will also apply the FPP–SCA method to solve
this problem, it is essential to find the feasible point for the
final convex problem. Therefore, we can find feasible point
Q(0) from problem (24). Because variables u and v are only in
constraints (24b) and (24c), we do not use constraints (24b)
and (24c) when finding feasible point Q(0) of problem (24),
as follows:

min
Q

0 (25a)

s.t.: 0 ≥
e

1− θ
− Tr (A1Q)BP− h̃UBP− σ 2

U , (25b)

Qm,m = 1, ∀m ∈ {1, 2, . . . ,M + 1} , (25c)

Q � 0. (25d)

Solving problem (25), we can find feasible point Q(0).
Next, problem (24) has rank-1 constraint (23e). So, prob-
lem (24) is still non-convex. Therefore, we use the penalty
method to solve the rank-1 problem, as mentioned in [48],
[49]. We know that all eigenvalues of Q are non-negative,
since Q is a PSD matrix. And thus, Tr (Q) ≥ λmax (Q) holds
where λmax (Q) is the maximum eigenvalue of Q. Moreover,
Tr (Q) = λmax (Q) if and only if rank (Q) = 1. From this
insight, (Tr (Q)− λmax (Q)) should be smaller in each of
the subsequent iterations. By using the penalty method,
we can add the term η (Tr (Q)− λmax (Q)) to objective
function (24a), where η is the penalty factor. Problem (24)
can be rewritten as follows:

min
Q,u,v

−
u2

v
+ η (Tr (Q)− λmax (Q)) (26a)

s.t.: 0 ≥ u2 − Tr (A1Q)− h̃U − 1, (26b)

0 ≥ Tr (A2Q)+ h̃E + 1− v, (26c)

0 ≥
e

1− θ
− Tr (A1Q)BP− h̃UBP− σ 2

U , (26d)

u, v ≥ 0, (26e)

(23c), (23d). (26f)

In problem (26), the rank-1 solution of Q can be obtained
when the penalty factor is large enough. However, prob-
lem (26) is still non-convex because functions

(
−
u2
v

)
and

(−λmax (Q)) are non-convex. Regarding non-convex function(
−
u2
v

)
, we perform first-order Taylor approximation for the

u2
v function, as seen in (14), and convert the non-convex
problem into the iterative optimization problem using the
FPP–SCA method as follows:

min
Q,u,v,
s1,s2,s3

−
2u(n)u
v(n)
+

u(n)
2
v

v(n)2
+ λ (s1 + s2 + s3)

+η (Tr (Q)− λmax (Q))
(27a)

s.t.: 0 ≥ u2 − Tr (A1Q)− h̃U − 1− s1, (27b)

0 ≥ Tr (A2Q)+ h̃E + 1− v− s2, (27c)

0 ≥
e

1− θ
− Tr (A1Q)BP− h̃UBP− σ 2

U − s3,

(27d)

(26e), (23c), (23d). (27e)

Regarding non-convex function (−λmax (Q)), we observe
that λmax (·) is a convex function [49]. Therefore, we can
approximate the λmax (·) function in an iterative manner.
We review again Theorem 1 regarding the maximum
eigenvalue, which is mentioned in [50].
Theorem 1: It is assumed that the PSDmatrices areX andY,

so λmax (X)−λmax (Y) ≥ yHmax (X− Y) ymax will be achieved
where λmax (·) is the maximum eigenvalue function, and ymax
is the eigenvector according to the maximum eigenvalue of Y.
From Theorem 1, we can get the inequality of PSD

matrices, Q and Q(n):

λmax (Q) ≥ λmax
(
Q(n)

)
+ y(n)Hmax

(
Q− Q(n)

)
y(n)max , (28)

where y(n)max is the eigenvector according to maximum
eigenvalue λmax

(
Q(n)

)
of Q(n). With w(n)max as the eigenvector

corresponding to maximum eigenvalue λmax
(
Q(n)

)
, we solve

the convex sub-problem in the n–th iteration as follows:

min
Q,u,v,
s1,s2,s3

−
2u(n)u
v(n)
+

u(n)
2
v

v(n)2
+ λ (s1 + s2 + s3)

+η
(
Tr (Q)− w(n)Hmax Qw

(n)
max

) (29a)

s.t.: (27b)− (27e). (29b)

Then, optimal solutions u∗, v∗, and Q∗ of the n–th convex
sub-problem will be used to serve as the (n + 1)–th iteration
(i.e., we update u∗, v∗, and Q∗ to u(n+1), v(n+1), and Q(n+1),
respectively). We obtain Q = λmax (Q)wmaxwHmax when
Tr (Q) ≈ λmax (Q). After that, optimal solution vector q̄ =
√
λmax (Q)wmax . And then, the optimal phase shifts vector

q∗ can be calculated as q∗ = [q̄](1:M). From the definitions

8 = diag
{
ejϕ1 , . . . , ejϕM

}
and q =

[
ejϕ1 , . . . , ejϕM

]H ,
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Algorithm 2 The FPP–SCA and Penalty Method–Based
Algorithm for Obtaining the Phase Shifts Matrix (8) by
Fixing the Transmit Power (P) and the PS Factor (θ )
Input: Channel gain of related communication links

(hTU , hTE ,hTI ,hIU ,hIE ), given wireless resources (P,
θ ), convergence tolerances (τ , ε2), penalty factor η, trade-off
factor λ, required minimum harvested energy (e), required
maximum transmit power (Pmax), and n = 0

Output: The optimal phase shifts: q∗ and 8∗⇒ R∗sec
1: Solve problem (25) to find feasible point Q(0), and from Q(0),

calculate w(0)max
2: Calculate u(0) and v(0) such that u(0) and v(0) satisfy constraints

(27b) and (27c), respectively
u(0) = Tr

(
A1Q(0)

)
+ h̃U + 1, v(0) = Tr

(
A2Q(0)

)
+ h̃E + 1

3: repeat
4: Use Matlab CVX solver to find the optimal solution for

problem (29), and obtain
(
Q(n)

∗

, u(n)
∗

, v(n)
∗
)

5: n = n+ 1
6: Update Q(n) ← Q(n−1)

∗

, u(n) ← u(n−1)
∗

, v(n) ←
v(n−1)

∗

,w(n)max ← w(n−1)max
7: until (Tr (Q)− λmax (Q)) ≤ τ and s1 + s2 + s3 ≤ ε2
8: Obtain q̄∗ via the eigenvalue decomposition of Q(n)
9: return final q∗ and 8∗, calculate optimal secrecy rate R∗sec

based on the given P, θ and 8∗.

Algorithm 3 The Proposed AO-Based Algorithm for Solving
Problem (11)
Input: Channel gain of related communication links

(hTU , hTE ,hTI ,hIU ,hIE ), initial phase shifts matrix 8,
convergence tolerances (τ , ε1, ε2), penalty factor η, trade-off
factor λ, required minimum harvested energy (e), required
maximum transmit power (Pmax), and n = 0

Output: The optimal solutions: P∗, θ∗,8∗⇒ R∗sec
1: repeat
2: For the given 8, use Algorithm 1 to solve problem (16) and

obtain P∗ and θ∗

3: For the given P∗ and θ∗ obtained from Step 2, use
Algorithm 2 to solve problem (29) and obtain 8∗

4: n = n+ 1
5: Update 8(n) = 8∗

6: until convergence
7: return the optimal solution

(
P∗, θ∗,8∗

)
, calculate optimal

secrecy rate R∗sec based on
(
P∗, θ∗,8∗

)
.

we get the optimal phase shifts matrix 8∗ from q∗ with
8∗ = diag

{
q∗H

}
.

Algorithm 2 presents the proposed iterative algorithm
based on FPP–SCA and the penalty method, while Algo-
rithm 3 presents the proposed overall iterative algorithm for
solving main problem (11).

Regarding Algorithm 2, we need to determine initial
feasible points

(
u(0), v(0),w(0)max

)
of convex sub-problem (29)

where w(0)max is the eigenvector corresponding to maximum
eigenvalue λmax

(
Q(0)

)
which is related to the initial feasible

point Q(0). Fortunately, the initial feasible point Q(0) can be
obtained by solving the problem (25) (step 1 in Algorithm 2).
After that, u(0) and v(0) can be calculated such that con-
straints (27b) and (27c) are satisfied, respectively (step 2 in

Algorithm 2). Note that, in step 2, to calculate u(0) and v(0),
the matrices A1 and A2 need to be calculated. As analyzed
in Section III-D2, the matrices A1 and A2 are involved in the
calculation of the values B andC , respectively, which are also
computed based on P and θ . Because Algorithm 2 finds the
phase shift matrix 8 by fixing P and θ , the transmit power
P and the PS factor θ are in this case the optimal transmit
power and the optimal PS factor, which can be obtained from
Algorithm 1, respectively.

For convergent analysis, similar to Algorithm 1, in Algo-
rithm 2, the n–th optimal solution

(
Q∗, u∗, v∗

)
is a feasible

point to the problem (29) at the (n + 1)–th iteration, and the
optimal value of problem (29) is non-increasing over each
iteration and converges to a stationary point. Subsequently,
convergence of Algorithm 2 is guaranteed.

3) THE COMPUTATIONAL COMPLEXITY OF THE PROPOSED
AO-BASED ALGORITHM
In this section, we discuss about the computational complex-
ity of the proposed AO-based scheme. The computational
complexity is mainly from steps 2 and 3 in Algorithm 3,
which includes the computation complexity of Algorithm 1
and Algorithm 2. As observed in Algorithm 1, problem (16)
is only consisted of single non-negative variables. Therefore,
the computational complexity of Algorithm 1 can be
neglected. Besides, at step 1 of Algorithm 2, problem (25) is
performed once to find the initial feasible pointQ(0), and thus,
the computational complexity of this step can also be ignored.
Finally, the computational complexity of the proposed overall
algorithm is mainly from step 3 to step 7 of Algorithm 2
when solving problem (29). It is noteworthy that the convex
sub-problem (29) can be solved by using the interior-
point method. Therefore, the computational complexity can
be calculated based on Theorem 3.12 [45]. According to
Theorem 3.12 [45], in each iteration, when the semi-definite
programming problem with an n × n PSD matrix and m
constraints is given, the computational complexity is given
by O

(√
n log

(
1
/
ξ
) (
mn3 + m2n2 + m3

))
where ξ > 0 is

the solution accuracy and O (·) is the big-O notation. For
problem (29), since the PSD matrix Q is an (M + 1) ×
(M + 1) matrix, we can set n = M + 1. In addition,
as observing problems (23) and (27), we can set m =

4 due to (27b), (27c), (27d), and (23c) constraints which
are related to the PSD matrix Q. If we denote the number
of iterations of proposed algorithm for convergence as K1,
total computational complexity of the proposed algorithm is
approximated asO

(
K1 log

(
1
/
ξ
)
(M + 1)3.5

)
because of the

small number of constraints (m = 4).

E. LEARNING TO OPTIMIZE: THE PROPOSED DEEP
LEARNING–BASED APPROACH
In the previous section, we proposed the AO-based scheme,
which provides optimal solution but requires high complexity
and long computation time. Therefore, in this section we
will consider a DL-based approach to predict the transmit
power, PS factor, and the phase shifts vector. Regarding the
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FIGURE 2. Overall flow of the DL-based approach.

FIGURE 3. Five types of data and DNN structures.

DL-based approach, a simple DNN model is used, called a
feedforward neural network (FFNN). Fig. 2 shows the overall
flow of DL-based approach with training and running stages,
where the training data are based on the solution of the
AO-based scheme.

1) REPAIRING DATA SAMPLES AND DNN TRAINING STAGE
In this work, the DNN-based method uses the optimal
solutions obtained by the AO method as training data
including transmit power, PS factor, and phase shifts.
Choosing a reasonable data and DNN structures for the
training process will contribute to a significant improvement
in performance. Therefore, in this section, we investigate
5 types of data and DNN structures as shown in Fig. 3.

First, we generate N samples of the channel power gain on
the related communication links {hTU , hTE ,hTI ,hIU ,hIE }.
By using the proposed scheme, we can get the optimal
solution for transmit power P∗, PS factor θ∗, and the phase
shifts vector q∗ corresponding to the channel power gain of
the related communication links.

In addition, we can use all channel gains of
{
hTU , hTE ,hTI ,

hIU ,hIE
}
for training data of which case in the paper is

denoted as the deep learning all channels (DL AC). However,
in practice it is very difficult to get the channel gain associated
with the Eave’ {hTE ,hIE }. Therefore, we consider other case

where we only use channel gains of {hTU ,hTI ,hIU }, which
is denoted as the deep learning partial channels (DL PC).
In addition, different training data structures are built for
the training stage, which are denoted as Type 1 to Type 5.
For simplicity, instead of using the phase shifts vector as a

complex number (i.e., q∗ =
[
ejϕ
∗

1 , . . . , ejϕ
∗
M

]H
), we convert

it into the real part and the imaginary part of the phase shifts
vector, denoted Re (q∗) and Im (q∗), respectively.
We denote the channel gain matrix as X, with Y being

the output matrix of the optimization solution, which is the
optimal power allocation, the PS factor, and the real and
imaginary parts of the phase shifts vector. The size and
structure of the training data will depend on the type of
structure. For construction of the data for the training stage,
we present the case under DL AC. DL PC is done similarly,
but only with the channel gains of {hTU ,hTI ,hIU }. The
training data structures are described as follows.
• Type 1 (Fig. 3a): the optimal transmit power and PS
factor are constructed separately (and thus, will also be
trained separately). The optimal phase shifts vector is
used and combined with the predictive training output
for transmit power and the PS factor in order to calculate
the secrecy rate. Then, the input and output matrices are
given as follows:

X1
1 =

[
|hTU |2; |hTE |2; |hTI |2; |hIU |2; |hIE |2

]
(1:N )

,

(30)

Y1
1 =

[
P∗
]
(1:N ) , (31)

Y1
2 =

[
θ∗
]
(1:N ) . (32)

The superscripts of X and Y indicate the type of
training data structure from Type 1 to Type 5 whereas
the subscripts are the distinctive numbering. Because
hTU , hTE ∈ C1×1 and hTI ,hIU ,hIE ∈ CM×1 where
M is the number of reflecting elements. In addition,
if the number of samples for training data is N , the
training input and output data size of Type 1 will be
X1
1 ∈ C(2+3M)×N and Y1

1,Y
1
2 ∈ C1×N , respectively.

• Type 2 (Fig. 3b): the optimal transmit power, the
PS factor, and the phase shifts vector are constructed
separately. Because the real part and imaginary part of
the phase shifts vector are used, we also need to convert
channel gain to the real part and imaginary part, which
ensures the channel gain and the phase shifts vector use
the same dimension of the samples for the training stage.
Then, the input and output matrices are given as follows:

X2
1 = X1

1, (33)

Y2
1 = Y1

1, (34)

Y2
2 = Y1

2, (35)

X2
2 = [{Re (hTU ) , Im (hTU )} ; {Re (hTE ) , Im (hTE )} ;

{Re (hTI ) , Im (hTI )} ; {Re (hIU ) , Im (hIU )} ;
{Re (hIE ) , Im (hIE )}](1:N ) , (36)

Y2
3 =

[{
Re
(
q∗
)
, Im

(
q∗
)}]

(1:N ) . (37)
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Similarly, the training input and output data size of
Type 2 based on (33), (34), and (35) are X2

1 ∈

C(2+3M)×N and Y2
1,Y

2
2 ∈ C1×N , respectively. Due to

the real and imaginary parts of the phase shift and the
size of the phase shift, q, depends on the number of
elements M , the training data size of X2

2 and Y2
3 are

X2
2 ∈ C(2+3M)×2N and Y2

3 ∈ CM×2N , respectively.
• Type 3 (Fig. 3c): the optimal transmit power and PS
factor are constructed and used for the training data,
whereas the optimal phase shifts vector is used. The
input and output matrices are:

X3
1 = X1

1, (38)

Y3
1 =

[
P∗; θ∗

]
(1:N ) . (39)

The training input and output data size of Type 3 are
X3
1 ∈ C(2+3M)×N and Y3

1 ∈ C2×N , respectively.
• Type 4 (Fig. 3d): the optimal transmit power and PS
factor are constructed and used for the training data,
whereas the optimal phase shifts vector is constructed
separately for the training stage. The input and output
matrices are:

X4
1 = X1

1, (40)

Y4
1 = Y3

1, (41)

X4
2 = X2

2, (42)

Y4
2 = Y2

3. (43)

The training input and output data size of Type 4 are
X4
1 ∈ C(2+3M)×N , X4

2 ∈ C(2+3M)×2N , Y4
1 ∈ C2×N , and

Y4
2 ∈ CM×2N .

• Type 5 (Fig. 3e): the optimal transmit power, PS factor,
and the phase shifts vector are constructed and used for
the training data for the training stage. The input and
output matrices are:

X5
1 = X2

2, (44)

Y5
1 =

[{
P∗, θ∗

}
;
{
Re
(
q∗
)
, Im

(
q∗
)}]

(1:N ) . (45)

The training input data size of Type 5 is X5
1 ∈

C(2+3M)×2N . According to (45), the training data output
size is Y5

1 ∈ C(1+M)×2N .
Next, the training data are trained by the DNN using

backpropagation. The scaled conjugate gradient algorithm is
used in the training process to optimize the mean squared
error (MSE). To perform backpropagation in the training
stage, two activation functions are used: purelin (·) is used for
the output layer, whereas tansig (·) is used for hidden layers;
they are calculated as follows:

tansig (x) =
2

1+ e−2x
− 1, (46)

purelin (x) = x. (47)

2) DNN RUNNING STAGE
In the running stage, we also generate channel matrices Z
for the input layer according to the type of training data
structure but withK samples for channel power gain. Channel

gain is generated the same way as in the training stage.
Then, for the run data, the well-trained network is loaded
for channel matrix Z. Finally, the output layer produces
the running predictive optimal value, which includes the
predictive optimal transmit power P̂, PS factor θ̂ , real part
Re
(
q̂
)
and imaginary part Im

(
q̂
)
of predictive optimal phase

shifts vector q̂ according to the type of training data structure.
Fig. 3 shows the 5 types of data and DNN structures where

Type 1 and Type 3 structures only estimate power P̂∗ and PS
factor θ̂∗ by using DNN while the optimal value of the phase
shift q∗ directly is calculated. Specifically, in the running
stage of Type 1 and Type 3 structures, the value of the phase
shift is not available so, for the new channel gain input,
we must use to Algorithm 2 to get optimal q∗. That is, we can
get the phase shifts matrix by using Algorithm 2 while fixing
the transmit power and the PS factor as the estimated power
P̂∗ and PS factor θ̂∗. Even we can set the estimated value of q̂∗

by DNN as initial value for Algorithm 2. On the other hand,
Type 2, Type 4, and Type 5 structures estimate transmit power
P̂∗, PS factor θ̂∗, and phase shift q̂∗ using DNN structures.

IV. SIMULATION RESULTS AND DISCUSSION
First, we set the necessary parameters for the optimization
algorithm and the DNN. Then, the numerical results for the
average secrecy rate (ASR) from changing the transmitter
power and the number of IRS reflecting surfaces are provided.
We also consider the effect on the ASR of circuit noise at
the UE as well as factors affecting channel gain (such as the
vertical distance between the UE and the IRS, as well as
the path loss exponents). Regarding the DL-based approach,
we use the DL scheme for the ASR based on changes
to the required minimum harvested energy with different
structures of the training data. With regard to the proposed
optimization-based approach, the solution to the problem can
be obtained, and it converges to the optimal value through
a number of iterations. Meanwhile, the proposed DL-based
approach shows the ability to approximate the response that
is produced by the optimization algorithm. In our work,
benchmark schemes are used, including a scheme without an
IRS, a random phase shifts scheme, and the equal PS–factor
scheme. The scheme without an IRS only finds the optimal
resource allocation (i.e., only the optimal transmit power
and PS factor). The random phase shifts scheme reuses the
optimal resource allocation from the scheme without an
IRS, and combines it with the random phase shifts vector
to calculate the system secrecy rate. The equal PS–factor
scheme uses the optimization algorithm without IRS to solve
the problem, and the PS factor is fixed so that the gain of the
PS factor across the ID and EH streams is equal, i.e., the PS
factor is set to 0.5 (θ = 0.5).

A. THE NEURAL NETWORK CONFIGURATION AND
SIMULATION PARAMETERS
In our work, we setup the system at small scale on a
three-dimensional Cartesian coordinate system. The refer-
ence (center) point of the IRS is located at wI = [4, 0]T m
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FIGURE 4. The horizontal coordinates of the IRS, the transmitter, the UE,
and the Eave’ on the x − y plane.

TABLE 3. Hyper-parameters descriptions.

and zI = 5 m. The transmitter, the UE, and the Eave’ are
located in the x − y plane, and thus, zT = zU = zE = 0 m.
The horizontal coordinates of the transmitter, the UE, and the
Eave’ on the x − y plane are denoted by wT = [8, 5]T m,
wU = [0, 5]T m, and wE = [2, 8]T m, respectively. For
visualization, in addition to the altitude of the IRS (zI = 5m),
the locations of the IRS, the transmitter, the UE, and the Eave’
on the x − y plane are shown in Fig. 4.
Regarding the channel model, the CSCG random variable

distribution was used for the channel gain of the T–U link
(h̃TU ), the T–E link (h̃TE ), and the NLoS components of
related communication links (hNLoSTI ,hNLoSIU ,hNLoSIE ). Depend-
ing on the requirements of the simulation, the required
maximum transmit power (Pmax) and the required minimum
harvested energy (e)were specifically provided in each simu-
lation. For the DL-based approach, an FFNNmodel with four
layers was used, which has not only input and output layers
but also two hidden layers. We set 20 neurons for each hidden
layer. The other simulation parameters are shown in Table 3.

B. THE SECRECY RATE PERFORMANCE UNDER VARIOUS
CONFIGURATIONS
In this section, system performance is compared under
different settings. First, we investigate the convergence

FIGURE 5. The ASR of the proposed AO algorithm based on the number
of iterations when changing the number of reflecting elements, M.

property. Then, we check the effect of the number of IRS
reflecting elements in terms of the ASR. After that, the ASR
based on changing the required maximum transmitter power
is investigated. Finally, we validate the ASR under factors
affecting channel gain (such as the vertical distance between
the UE and the IRS, as well as the path loss exponent of the
T–U link).

Fig. 5 shows the convergence property on the ASR
according to the number of iterations under our proposed
scheme with an IRS. We observed that the ASR increased
rapidly and reached an optimal solution between the first
and the third iteration. Fig. 5 also shows the improvement
of the ASR when the IRS’s reflecting surfaces increases in
number. That is the result of using and optimizing the IRS’s
phase shifts, contributing to the enhancement of the received
signal at the UE and the weakening of the received signal at
Eave’ when the number of IRS reflecting surfaces increases.
To see this clearly, in Fig. 6 we checked the ASR from
different schemes based on the number of IRS elements, M ,
when the requirements of the UE’s harvested energy and
the transmitter’s power are fixed at e = −54 dBW and
Pmax = 100 W, respectively.

Fig. 6 shows that the ASR increased significantly when the
number of IRS reflecting elements increased. Specifically,
the proposed IRS scheme improved the ASR from 18.01%
to 38.91% when increasing the IRS reflecting elements
from 10 to 30. This is because as the IRS reflecting
elements increase in number, the signals from the IRS
become dominant at the UE and degrade for the Eave’.
Fig. 6 also shows that the proposed scheme outperforms
the random phase shifts scheme and the scheme without
an IRS, which results from using and optimizing the IRS
phase shifts. By optimizing the phase shifts, the signals
reflected by the IRS can be optimized and combined with
the signals directly from the T–U and T–E links to enhance
or degrade the signals obtained at the UE and the Eave’,
respectively, thus contributing to strengthening the system
secrecy rate to a higher degree, compared to not using the
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FIGURE 6. The ASR of the different schemes according to the number of
reflecting elements, M, when the required minimum harvested energy is
e = −54 dBW and the required maximum transmit power
is Pmax = 100 W.

FIGURE 7. The ASR of the different schemes according to the required
maximum transmit power when the number of reflecting elements is
M = 30 and the required minimum harvested energy is e = −54 dBW.

IRS. The performance of the random phase shifts scheme is
less efficient than the proposed scheme, but it is better than
the optimization scheme without an IRS, because the random
phase shifts scheme reuses the optimal transmit power and
PS factor from the optimization scheme without the IRS,
along with random phase shifts, to calculate the secrecy rate.
A note on random phase shift: although the ASR also tends
to increase when the number of reflecting elements increases,
in random phase shifts that are not properly optimized, the
performance can not only be worse than the optimization
scheme with an IRS but can be even worse when increasing
the number of reflecting elements, for example, when M =
10 and M = 15, as shown in Fig. 6. The equal PS–factor
scheme provides the lowest ASR because it can only achieve
the optimal secrecy rate based on the optimal transmit power
while the PS factor is fixed at θ = 0.5. Note that when
the number of reflecting elements increases, the ASR from
optimization scheme without an IRS remains unchanged,
since the IRS is not used.

FIGURE 8. The vertical distance between the UE and the IRS, dv , and the
locations of the UEs (star symbols) on the x − y plane.

In Fig. 7, we consider the effect of the required maximum
transmit power at the transmitter on the ASR of the schemes.
In this case, the required maximum transmit power is
based on the values Pmax ∈ {60, 70, 80, 90, 100} W, while
the required minimum harvested energy is fixed at e =
−54 dBW, and the number of reflecting elements is 30.
As observed in Fig. 7, again, the optimization scheme
with the IRS achieves the highest ASR, while the equal
PS–factor scheme achieves the lowest ASR. In addition,
although the required maximum transmit power increases,
in our scenario, due to the impact of noise and channel
gain, the achievable rate at the UE changes relatively little.
Therefore, Fig. 7 shows that the ASR increases very little.
For the slight increase in terms of ASR according to the
required maximum transmit power, it is not necessary to
use too much power. Therefore, in operation, we can choose
the appropriate transmit power to ensure performance and
not consume too many resources. Fig. 7 also shows that the
ASR would be improved by reducing circuit noise at the UE.
Reducing processing noise at theUE is completely achievable
as science and technology develop more and more.

Let dv denote the vertical distance between the UE and
the IRS, and consider UEs at the following locations: wU

1 =

[0, 1]T ,wU
2 = [0, 3]T ,wU

3 = [0, 5]T , and wU
4 = [0, 7]T

m, as shown in Fig. 8. This also means that the vertical
distance between the UE and the IRS is considered based on
dv ∈ {1, 3, 5, 7} m.
Fig. 9 shows the ASR of different schemes when changing

the vertical distance dv between the UE and the IRS.
As observed in Fig. 9, with regard to schemes that do not
use an IRS (i.e., the optimization scheme without an IRS and
the equal PS–factor scheme), the best ASR is achieved when
the UE is closest to the transmitter (i.e., when dv = 5 m).
Conversely, the ASR decreases if the UE is farther away
from the transmitter (i.e., when dv = 1, 3, and 7 m). This
is understandable since the channel is modeled according to
the Rayleigh model, and as a result, the greater the distance
between the transmitter and the UE, the more the channel
is attenuated. Therefore, the signal received at the UE is
reduced, and the secrecy rate decreases. One thing to note is
that when the distance between the transmitter and the UE
is equal (when dv = 3 m and dv = 7 m), channel gain,
hTU at dv = 3 m and dv = 7 m is the same owing to the
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FIGURE 9. The ASR of the different schemes according to the vertical
distance between the UE and the IRS dv when required minimum
harvested energy is e = −54 dBW, required maximum transmit power is
Pmax = 100 W, and the number of reflecting elements is M = 30.

Rayleigh fading channel model, as seen in (1), so the ASR
gives the same result at dv = 3m and dv = 7m. Regarding the
optimization scheme with an IRS, the best ASR is achieved at
dv = 3 m. This shows that the closer the UE is to the IRS, the
more the reflected signal from the IRS is enhanced, resulting
in a stronger signal at the UE. However, as mentioned above,
the signal strength at the UE also depends on it being a direct
signal from the transmitter, which shows that when the UE
is farther from the transmitter, the direct signal from the T–U
link decreases. Therefore, when the UE is close to the IRS at
a certain distance (for example, at dv = 1 m from the result
in Fig. 9), the combination of the T–U link’s direct signal and
the I–U link’s reflected signal is no longer optimal, resulting
in the ASR decreasing at dv = 1 m.
Fig. 10 shows the ASR of the different schemes according

to the path loss exponent of the T–U link, αTU . Usually,
the path loss exponent has a range between 1.5 and 5 [51],
so we considered path loss exponent values from 1.5 to 3.
In general, the ASR tends to decrease as the path loss
exponent increases, and is even less than 0 when the path
loss exponent is high (αTU = 3) for a low-performance
scheme like the equal PS–factor scheme. This is caused by
a decrease in the T–U channel gain as the path loss exponent
increases accordingly. As a result, the signal received at the
UE also decreases, leading to a decrease in the secrecy rate.
Fig. 10 also shows that with the help of the IRS, the ASR
of the optimization scheme with an IRS decreases more
slowly than the other schemes. Again, the proposed scheme
with an IRS outperforms the other schemes. It is noteworthy
that, when the pathloss exponent is small (e.g., the path loss
exponent is 1.5), the difference in the channel gain value,
hU , between the scheme without an IRS and scheme with
an IRS is insignificant under other conditions unchanged.
Therefore, the secrecy rate between these two schemes may
be approximately, or even the secrecy rate of the proposed
scheme may be smaller than that of the scheme without
an IRS. In addition, the secrecy rate of the random phase

FIGURE 10. The ASR of the different schemes according to the path loss
exponent of the T–U link, αTU , when required minimum harvested energy
is e = −54 dBW, required maximum transmit power is Pmax = 100 W, and
the number of reflecting elements is M = 30.

shift scheme in our work is calculated based on the optimal
transmit power and PS factor of the scheme without an IRS
and the random phase shifts vector. Therefore, the secrecy
rate of the random phase shift scheme may be greater than
that of the scheme with an IRS when the path loss exponent is
small. Fortunately, the path loss exponent is generally greater
than 2 for obstructions to the propagation of the energy of
an electromagnetic wave [51]. Thus, Fig. 10 shows that the
proposed scheme provides an acceptable performance when
an appropriate path loss exponent value is used (e.g., path loss
exponent values such as 2 and 2.5 in common transmission
environments).

C. THE DL-BASED APPROACH TO COMPUTATION TIME
PERFORMANCE
We further inspect the approximation of theDL scheme on the
ASR according to the required minimum harvested energy.
In addition, system performance in terms of computation
time under the different schemes is evaluated in this
section.

After finding a solution via CVX is complete, the CVX tool
can summarize the result into the cvx_status string variable.
The CVX solver has several status levels, like solved,
unbounded, infeasible, or even failed, and many others [46].
Therefore, although the CVX solver can effectively solve
the convex optimization problem, the problem may still
reach an infeasible solution where the CVX solver cannot
find the optimal solution to the optimization problem (i.e.,
the cvx_status is not solved). As a result, although a large
amount of channel gain in related communication links is
generated, the optimal solution may not be found for a
certain channel gain. Furthermore, in this paper, the CVX
tool was executed in each of the iterations in the FPP–SCA
iterative approach where the solution converges to an optimal
value after a number of iterations. Hence, it is very time-
consuming to generate huge amounts of samples for training
data. Therefore, in this paper, to benefit from the efficiency
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FIGURE 11. The ASR of DL schemes according to the required minimum
harvested energy when the required maximum transmit power is
Pmax = 100 W, and the number of reflecting elements is M = 10.

of the DL approach, we try to generate about 1000 samples
from feasible solutions of the proposed algorithm for training
data, with about 100 samples for running data.

Fig. 11 shows the average secrecy rate (ASR) of the
DL-based approach according to the required minimum
harvested energy when required maximum transmit power
is Pmax = 100 W and the number of reflecting elements
is M = 10. Here, we observe ASR for the different
training data structures as well as for cases where all the
channels (DL AC) and partial channels (DL PC) are utilized
respectively. From Fig. 11, we observed the following things.
First, the ASR decreases slightly as the required minimum
harvested energy increases. This is because as the required
minimum harvested energy is increased, the PS factor should
be reduced to ensure more harvesting energy, as shown in the
constraint (11b). Subsequently, a decrease of PS factor causes
the UE’s achievable rate to be decreased, which results in a
decrease in the ASR.

Second, DL AC Type 1 and DL AC Type 3 provide near
optimal value of ASR, compared to the AOmethod. However,
DL AC Type 1 gives better performance than DL AC Type 3
since DL AC Type 3 uses one DNN for estimating transmit
power P̂∗ and PS factor θ̂∗ while DL AC Type 1 uses two
DNNs. It is noteworthy that optimal value of the phase shift
should be calculated in the case of DL AC Type 1 and DL AC
Type 3.

Third, DL AC Type 2, DL AC Type 4, and DL AC Type 5
where transmit power P̂∗ and PS factor θ̂∗, and phase shift
q̂∗ are estimated by DNN, provide less performance than DL
AC Type 1 and DL AC Type 3. Among DL AC Type 2,
DL AC Type 4, and DL AC Type 5, the DL AC Type 2
provides the best performance since it utilizes three DNNs
for estimating transmit power P̂∗ and PS factor θ̂∗, and phase
shift q̂∗, respectively. However, the performances of all DL
AC Type 2, DL AC Type 4, and DL AC Type 5 are better than
those of the optimization scheme without an IRS and random
phase shifts.

FIGURE 12. The computation time comparison in running stage when the
required maximum transmit power is Pmax = 100 W and the number of
reflecting elements is M = 10.

Fourth, in practice, it is very difficult to obtain the channel
gain associated with the Eave’ {hTE ,hIE }. In the paper,
DL PC was considered as DL PC Type 1 and DL PC
Type 2. From Fig. 11, interestingly, it is observed that DL PC
achieves the similar performance to DL AC. Subsequently,
the proposed DL PC Type 1 and DL PC Type 2 have practical
applications since the channel gains from Eave’s are not
required in advance for obtaining transmit power P̂∗ and PS
factor θ̂∗, and phase shift q̂∗.
Finally, Fig. 11 also shows the secrecy rate of the proposed

scheme compared to that of the existing IRS-aided secure
transmission schemes. As observed, the proposed scheme
outperforms the IRS-SWIPT without PS scheme [24], [25]
and IRS without SWIPT scheme [18], [19]. This is due to
the influence of SWIPT as well as the PS factor. The IRS-
SWIPT without PS scheme [24], [25] does not use the PS
factor. Therefore, the secrecy rate of this scheme tends to
increase slightly as the required minimum harvested energy
increases, but it is almost negligible. It should be noted that
IRS without the SWIPT scheme [18], [19] does not use the
SWIPT system, and therefore it is not affected by the required
minimum harvested energy. As a result, the secrecy rate of
this scheme remains unchanged.

Fig. 12 shows the computation time in running stage of
Type 1, Type 2, and Type 3 DL AC schemes compared
with optimization and benchmark schemes. The optimization
scheme with an IRS takes a long time to implement even
though the number of samples of channel gain in the related
communication links is small (only 100). This is because the
AO algorithm uses an alternative method to find solutions.
The equal PS–factor scheme skips some calculations related
to the PS factor because the PS factor is fixed at θ =
0.5. Therefore, the computation time of this scheme is less
than the optimization scheme without an IRS. Along with
performance close to that of the proposed AO algorithm
as shown in Fig. 11, Type 1 and Type 3 clearly improve
computation time compared to the proposed AO algorithm
(i.e., scheme with an IRS) in Fig. 12. This is because when
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DL is applied, the optimal phase shifts can be achieved only
by using Algorithm 2. Type 2, Type 4, and Type 5 provide
low running times. However, as observed in Fig. 11, the
performance of these types is better than that of the scheme
without IRS and worse than that of the optimal scheme with
an IRS.

V. CONCLUSION
In our work, an IRS-assisted secure transmission maxi-
mization scheme for SWIPT systems with a PS scheme is
considered. We first aim to maximize the system secrecy
rate by finding the optimal transmitter power, UE PS factor,
and IRS phase shifts while satisfying the requirements of
energy harvesting at the user and transmit power at the
transmitter. For solving the optimization problem,we invoked
an AO algorithm in which an FPP-SCA iterative algorithm
and a penalty method are used to find the optimal solutions
in an alternating manner. The simulation results show
that the scheme helped by the IRS achieves a significant
improvement in terms of ASR, compared to the scheme
without an IRS. Then, we proposed a DL-based approach to
improve computation performance. The comparison results
showed that the DL-based approach not only provided
performance similar to that of the optimization algorithm
but significantly improved computation time. For future
work, our work can be extended to a multiple-antenna
transmitter and even to multiple PS users. In addition, with
the benefits of the unmanned aerial vehicles (UAV) in
significantly improving capacity, throughput and reliability,
the combination of UAVs with IRS opens promising research
directions. However, this also brings many challenges such
as channel modeling, channel estimation, and especially
new dimensions, like the UAV’s location and trajectory.
In addition, to meet the real-time processing requirements of
large-scale heterogeneous communication systems, deep Q
networks and deep deterministic policy-gradient algorithms
in deep reinforcement learning are potential solutions to solve
our problem. Even so, further studies on these combinations
are worth pursuing as one of our future works.
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