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ABSTRACT Radar and communication system (RadComm) spectrum sharing has received considerable
attention from the research community in recent years. This paper considers the distributed radars present
in the surveillance region with multiple in-band wireless communication transmitters (IWCTs). A new
measurement model is proposed by considering both radar returns and returns due to IWCTs. The tracking
performance is evaluated using the global nearest neighbor (GNN) tracker with an extended Kalman
filter (EKF) for the received measurement set. A single radar case is considered, where near geometry
scenario (IWCTs are placed near the radar and target) and far-geometry scenario (IWCTs are placed far from
the radar and target) are considered to evaluate the tracking performance. It is observed that a large number of
tracks are resulted due to IWCTs, and identifying the actual target track is ambiguous in a single radar case.
Therefore, in the second case, multiple radars are placed to investigate the problem comprehensively. The
track-to-track association (T2TA) is performed to identify the true target track on multiple tracks produced
owing to the presence of IWCTs and the resulting tracks from all radars pertaining to the true targets. Once
the true target tracks from each radar are identified, using the T2TA, the track-to-track fusion (T2TF) is
carried out to improve the estimates of the true target. The simulation results are quantified with position root
mean square error (PRMSE). The posterior Cramer–Rao lower bounds (PCRLBs) quantifying the achievable
estimation accuracies are also presented. The simulation results reveal that the association and fusion of
tracks from multiple radars identify the true target track with good accuracy and overcome the inability to
determine the true track, as in the case of a single radar. Further, the results disclose that, as the number of
radars increases, the T2TA and fusion improved the PRMSE.

INDEX TERMS Communication system, in-band interference, radar system, spectrum sharing, target
tracking, association, fusion.

I. INTRODUCTION
The available spectrum is becoming congested [1] owing to
rapid growth in the usage of wireless devices [2]. Because
of this, wireless users’ accommodation and providing good
quality of service, as per their requirements, are becoming
extremely difficult. As a result, the radar and communication
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system (RadComm) spectrum sharing has been paying atten-
tion over the past years [3]. Sharing the underutilized,
permanently allocated, and a large amount of available
radar bandwidth with the communication systems serves the
wireless user demands and improves the effective utiliza-
tion of the spectrum [4]. The RadComm spectrum shar-
ing research is broadly categorized into two sub-topics:
radar-communication coexistence (RCC) and dual-functional
radar-communication (DFRC) system design. In RCC, the
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radar and communication systems work independently in a
cooperative/ non-cooperative manner within the same fre-
quency band. As these systems operate in the same frequency
band, they cause interference to each other. On the other
hand, in DRFC systems, a single system possesses both radar
and communication system functionalities. Since radar and
communication are accommodated within the same system,
interference occurs. The first category of research aims to
develop efficient interference management techniques so that
the two systems can operate without undue interference.
Alternatively, DFRC techniques focus on designing joint sys-
tems that simultaneously perform wireless communication
and remote sensing. This benefits both sensing and signal-
ing operations via real-time cooperation, de-congests the RF
environment, and allows a single hardware platform for both
functionalities.

A. RELATED WORKS
A comprehensive survey of radar and communication system
spectrum sharing is provided in [3], [5], and [6]. The effect of
interference in RCC, from a communication system perspec-
tive, is presented in [7]. Besides, in [8] it is assumed that the
radar and communication system are located apart; the target
time delay parameter is estimated by designing the optimal
waveform for the radar system, with a constraint on Cramér–
Rao Bound (CRB). Also, it is demonstrated that using addi-
tional constraints like transmitted power and subcarrier power
ratio (SPR) while designing the optimized radar waveform
reduces delay ambiguities. Further, [9] and [10] discuss using
a single radar waveform that can embed the communication
symbols for communication purposes and vice-versa. Espe-
cially in [10], a novel continuous phase modulation (CPM)
based information-bearing waveform is proposed, without
degrading the spectral characteristics, for improving radar
target detection and maintaining high power with constant
envelope constraint for long-range target visibility. In another
communication, the single-input single-output (SISO) and
multi-inputmulti-output (MIMO)-based architectures, for the
joint RadComm, have been investigated [11]. The system
design in [11] is based on the maximization of signal-to-
interference-plus-noise ratio (SINR) at the radar receiver.
Further, in [11], by maintaining the achieved SINR at the
radar receiver, the maximization of communication rate con-
straint is additionally imposed for communication purposes.
Authors in [12] have derived the novel estimation and infor-
mation rate bounds for a DFRC system, and its performance
is evaluated using the derived bounds. Besides, the exten-
sion of joint performance bounds with clutter is presented
in [13]. In addition, the same performance bounds have been
extended for the case of frequency-modulated continuous-
wave (FMCW) radar [14]. Further, in the recent contribu-
tion [15], a joint RadComm is considered, where overall
bandwidth is shared among the radar and communication
system in an independent coexistence, and a partial band
coexistence manner is presented.

Moreover, in [15], the performance is analyzed in terms
of mutual information (MI) and communication data rate.
Furthermore, the statistical model for in-band wireless
communication interference and its effect on the adaptive
threshold-based detector at the radar receiver is analyzed
in [16]. The results in [16] show that interference follows
non-Gaussian statistics, and the detection of targets using a
cell averaging detector provides inadequate performance in
identifying the target and demands for alternative and effi-
cient detection schemes. A novel whitening filter followed by
matched filter detector is proposed to detect the radar targets
in the presence of in-band communication interference [17].
The DFRC system design for automotive applications has
been studied in [18], [19]. The joint transmit waveform design
and receiver design for the DFRC system are studied in [20].
In contrast to other works, in [20], the radar performance
is optimized without knowing a predetermined radar beam
pattern. In [21], the performance of the DFRC systems is
analyzed in terms of radar mutual information (RMI) and
communication data rate (CDR) for radar and communica-
tion systems. The analysis assumes that the DFRC system
transmits/receives the radar and communication signals on
the isolated bands (isolation-based scheme) and the same
band (sharing-based scheme). Further, in [21] for an isolated-
based scheme, the RMI/CDR maximization of the DFRC
system is solved independently with the constraint on opti-
mal power allocation solutions. At the same time, the joint
maximization of RMI/CDR for the DFRC system is solved
for a sharing-based scheme [21]. An ultra-wideband chaotic
radar with wireless synchronization command is proposed
in [22] for target localization and tracking. In [23], consid-
ering the RadComm spectrum sharing in a cooperative and
non-cooperative manner, a thorough literature survey and
future research directions are presented. The above literature
review reveals that RadComm spectrum sharing works pri-
marily focused on detection, waveform design perspective,
and deriving the bounds point of view.

Target tracking is an essential requirement, where one
or more sensors are employed to estimate the time-varying
kinematics of targets within the given surveillance region.
The measurements are from diverse sources such as the
targets of interest, clutter, etc. The main objective of tar-
get tracking is to partition the received measurements and
form tracks for the targets of interest by estimating param-
eters like position, velocity, acceleration, turn, intensity, etc.
Target tracking typically contains filtering, data association,
and track management. The Kalman filter (KF) provides an
optimal estimate under the considerations of linearity and
Gaussian distribution [24].Whereas, converted Kalman filter,
extended Kalman filter (EKF), cubature Kalman filter (CKF),
unscented Kalman filter (UKF), and particle Kalman filter
(PKF), Interactive multiple models (IMM), etc.. [25] are
widely used to address the non-linearity. While it comes to
the data association, nearest neighbor (NN) and global nearest
neighbor (GNN) are traditional associations methods, which
use a single measurement out of all available measurements

31956 VOLUME 10, 2022



G. Srinath et al.: Tracking of Radar Targets With In-Band Wireless Communication Interference in RadComm Spectrum Sharing

falling within the validation gate [26]. In contrast, the Proba-
bilistic Data Association (PDA) method applies the weighted
sum of all the measurements within the validation gate [27].
The optimal approach for target tracking was demonstrated
using aMultiple hypothesis tracker (MHT) under the assump-
tion of propagating all the hypotheses into tracks [28]. The
logic-based track maintenance and quality-based track main-
tenance are popularly used for track management [29].

The target tracking can be performed by using sin-
gle/multiple sensors either in centralized or distributed con-
figurations [25]. In distributed target tracking, track-to-track
association (T2TA) is an important block to distinguish and
assign the tuples corresponding to the targets [30]. The tuples
of tracks reported by the T2TA module are fused to attain the
global estimates. Generally, Track-to-tack fusion (T2TF) is
classified into correlation free and correlation-based fusion
approaches [31]. The correlation-based fusion technique
requires the exact cross covariances among the local tracks
of the same target. Hence, a large amount of information
exchange is required between the fusion center (FC) and
the local trackers, which makes this method realizable for
practical scenarios [32]. Theoretically, information matrix
fusion (IMF) or centralized tracking provides an optimal
estimate/fused track [25]. The correlation-free fusion-based
algorithms work independently of cross covariances, which
allow the fusion to be performed at any local tracker without
the participation of the fusion center. The ellipsoidal intersect
(EI) [33], covariance intersect (CI) [34], sampling covariance
intersect (SCI) [35] etc., comes under the correlation free
fusion methods. Besides, these three methods provide the
fused estimate by approximating the intersection region of
individual ellipsoids. Among them, the EI, CI works better
for two sensor-based fusion. On the other hand, the SCI has
more flexibility to fuse the data from more sensors.

Based on the above critical literature review, in RadComm
spectrum sharing systems, the target tracking-based contri-
butions are hardly reported. There are insignificant research
works that focus on target tracking and data fusion. There-
fore, there is a need to conduct research in this direction,
which motivates the proposed research investigation. As tar-
get tracking is an essential aspect for estimating the target
dynamics, this paper considers the effect of in-band wireless
communication interference on target tracking in RadComm
spectrum sharing. A new measurement model is proposed
for multiple radars surrounded by the multiple IWCTs sce-
nario. This new measurement model considers all the mea-
surements evolved due to radar, IWCTs, and false alarms.
This paper proposes to use distributed radars, with the local
tracker, by considering all the available measurements and
performing target tracking using the Extended Kalman filter
and Global nearest neighbor (GNN) association. The work
suggests considering all the local tracks evolved from all
sensors and performing an S-D assignment-based track-to-
track association (T2TA) to identify the tracks associatedwith
the radar targets rather than falsified target evolved due to the
presence of IWCTs. Once the actual tracks are separated from

all the grown tracks using T2TA, the track-to-track fusion
(T2TF) is performed to achieve the global tracks. Here, the
correlation-free fusion algorithms (ellipsoidal intersect (EI),
covariance intersect (CI), and sampling covariance intersect
(SCI)) is used for fusion. The key contributions of the paper
are

1) A new measurement model is proposed for multiple
radars surrounded by the multiple IWCTs scenario and
performed distributed tracking.

2) An S-D assignment-based track-to-track association
(T2TA) is formulated to identify the actual target
tracks.

3) The track-to-track fusion (T2TF) is performed to
improve the tracking performance.

The rest of the paper is organized as follows. Section II
outlines the problem formulation. In Section III, the measure-
ment model and the target tracking algorithm considered for
the analysis is presented. Track to track association and fusion
are incorporated in Section IV. The PCRLB calculations
are presented in Section V. The results and discussion are
provided in Section VI. Finally, the concluding remarks are
given Section VII.

II. PROBLEM FORMULATION
A RadComm spectrum sharing scenario is considered,
where N mono-static radars are present over a surveillance
region to detect the radar targets and are surrounded by M
in-band wireless communication transmitters (IWCTs). The
radar static locations are {xrn}

N
n=1 and IWCTs locations are

{xcm}
M
m=1, as shown in Figure 1. Because of the in-band oper-

ation of IWCTs, the radar system receives the target echoes
from both the mono-static emission and in-band transmitter
emission. Also, it receives direct path signals from wireless
transmitters. We refer to these two directions of signal recep-
tion as surveillance channels and reference channels. In Fig-
ure 1, the thick lines and dotted lines indicate surveillance
and reference channels, respectively. Therefore, the received
signal at the nth radar receiver, for a given target surrounded
by M IWCTs, is given by

snr (t) =



N∑
n=1

srn (t)+
M∑
m=1

srcm (t)+ n(t) = srsurn (t)

M∑
m=1

srcdm (t)+ n(t) = srrefn (t).

(1)

Here srn (t) is the target return from nth radar, srcm (t) is the
target echo from the mth surrounding communication system
transmitter. In addition, srcdm (t) is the direct path signal from
the surrounding mth IWCT and n(t) is the receiver noise.
Further, srsurn (t), srrefn (t) are the received signals received
through surveillance and reference channel of the nth radar,
respectively.

For simplicity, assume one radar and one in-band transmit-
ter in a clean environment (unity target detection probability,
zero false alarms). The received signal is processed with
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FIGURE 1. System model illustrating RadComm spectrum sharing
scenario.

FIGURE 2. Reduced system model with single in-band transmitter and the
corresponding correlator output.

matched filter-based receiver [36]. The correlator output at
the receiver depicts peaks at τr and τc, as shown in Figure 2b.
It is because of the fact that the radar receiver correlates
the received signals with its own transmitted signal and the
direct path reference signals received from IWCTs. The τr
is the delay due to radar only return, and the corresponding
range is given by cτr

2 . In contrast, τc is due to communication
signal return. However, the radar assumes it as its own return
(because of inadequate knowledge about the presence of
IWCTs), and the corresponding range is calculated as cτc

2 .
Here, c is the speed of light in free space. The corresponding
geometry is depicted in Figure 2a. Hence, the presence of a
single target and a single in-band transmitter in a given region
results in twomeasurements at the radar receiver. As shown in
Figure 2a, if R1 is the distance from radar (xr ) to a target (x),
R2 is the distance between the in-band wireless transmitter
(xc) to target (x), the τr and τc is given by

τr =
2R1
c

and

τc =
(R1 + R2)

c
, (2)

respectively. It is assumed that radar also receives the bearing
information, apart from the range information. However, the
bearing information is the same for both cases. Since the
direction of arrival of target returns are in the same direction.

Even though a single target is present in this scenario,
the radar receives multiple measurements owing to IWCTs.
Hence, there is a need to distinguish true target measurements
from all the evolved measurements. This paper proposes to
analyze the target tracking performance for the above-stated
problem.

III. TARGET TRACKING
This section briefly discusses the measurement model, state
model, and GNN tracker for evaluating tracking performance
in RadComm spectrum sharing scenario. The radars work in
distributed configuration and estimate the target kinematics
using a local tracker. This section presents the tracking of nth

radar. However, the subscript n has been removed for better
reading and deriving the generalized mathematical model.

A. MEASUREMENT MODEL
The measurement set received by the radar n at time k is

Z(k) = {zi(k)}
qk
i=1 . (3)

The measurement set obtained at k th time instant contains
qk measurements, in which nk measurements corresponds to
mono-static radar, mk measurements corresponds to IWCT,
and ek false alarms. i.e., qk = nk + mk + ek . In the given
surveillance, the presence of {xtl }

L
l=1 true targets, and {x

c
m}

M
m=1

IWCTs result in L+L×M measurements at each radar. The
measurement model is given by

zi(k) = h(X (k))+ wi(k), (4)

where X (·) represents the state vector of the target at scan k ,
h(·) is a non-linear function to map the state space in polar to
the Cartesian state.

The measurements not only pertain to the target originated
but also the false alarms. These false alarms are independent
and follow Poisson distribution, given by

P(e) = exp (−E)
(E)e

e!
, (5)

where E is the number of cells under consideration over a
volume V . The spatial density of false alarm is given by

λ =
E
V
. (6)

The probability of having qk measurements in a given volume
V is

p(qk ) =

{
(1− pD)P(0); qk = 0,
(1− pD)P(qk )+ pDP(qk − 1); qk > 0,

(7)

where pD is the target probability detection.
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The measurements that originate at nth mono-static radar,
due to the presence of L targets, and M surrounding IWCTs,
is represented as

Z(k)=



[
Rln +N (0, σ 2

r )
θ +N (0, σ 2

θ )

]
;

l = 1, · · · L;
radar return[

Rln + R
l
m +N (0, σ 2

r )
θ +N (0, σ 2

θ )

]
;

l = 1, · · · L,
m = 1. · · ·M;

due to in-band Tx
ek ; false alarms

(8)

Here, Rln is the Euclidean distance between radar location xrn
and target location xtl , and is given by

Rln =
√
(xrn − x

t
l )
2 + (yrn − y

t
l )
2. (9)

Similarly, the Rlm is the Euclidean distance between the target
xtl and in-band wireless transmitter xcm, is given by

Rlm =
√
(xcm − x

t
l )
2 + (ycm − y

t
l )
2. (10)

Here, θ is the same for radar and in-band returns. Since the
direction of arrival of target returns are in the same direction.
It is given by

θ = arctan
(
yrn − y

t
l

xrn − x
t
l

)
. (11)

The noise components in range and azimuth are mutually
independent and follow white Gaussian distribution with
mean zero and standard deviation σr and σθ , respectively. The
stacked vector of range and azimuth measurement noises is
w(k) and its measurement noise covariance is given by

R(k) = E{w(k)w(k)′}, (12)

where E represents the expectation operator, [.]′ represents
the transpose operation.

B. STATE MODEL
The state transition model follows additive white Gaussian
noise [24] and is given by

X (k + 1) = F(k)X (k)+ v(k), (13)

Here, X (k) is the four dimensional state vector constructed
by stacking the position and velocity of the target as
[x(k), ẋ(k), y(k), ẏ(k)]′, v(k) is a zero-mean white Gaussian
process noise vector and its covariance matrix is

Q(k) = E[v(k)v(k)′]. (14)

The F(k) represents the state transition matrix; for the con-
stant velocity (CV) model, the state transition is given by

F(k) =


1 ts 0 0
0 1 0 0
0 0 1 ts
0 0 0 1

, (15)

where ts is a sampling time.

C. FILTERING
The filter involves three main steps, namely predictions, gain
calculation, and updation. The predicted state and covariance
are given by

X̂ (k + 1|k) = FX̂ (k|k) and (16)

P(k + 1|k) = FP(k|k)F ′ + Q(k), (17)

respectively. The measurement prediction is represented as

ẑ(k + 1) = HX̂ (k + 1|k). (18)

Here,H is a linearized form ofmeasurement transitionmatrix
and is given by

H ≈


∂r
∂x

∂r
∂ ẋ

∂r
∂y

∂r
∂ ẏ

∂θ

∂x
∂θ

∂ ẋ
∂θ

∂y
∂θ

∂ ẏ

 . (19)

The innovation is given by

γ = z(k + 1)− ẑ(k + 1|k), (20)

where ẑ(k+1|k) is determined by the data associationmodule.
The Kalman gain K is computed as

K (k + 1) = P(k + 1/k)H (k + 1)′[
H (k + 1)P(k + 1/k)H (k + 1)′ + R

]−1
, (21)

where R is the measurement covariance matrix.
The updated state and covariance are given by

X̂ (k + 1|k + 1) = X̂ (k + 1|k)+ K (k + 1)γ (k + 1) (22)

and

P(k + 1|k + 1)=P(k + 1|k)−K (k + 1)H (k+1)K ′(k + 1)

(23)

respectively.

D. DATA ASSOCIATION
The data association makes the decisions of associating the
obtained measurements at k to the established tracks at k−1,
and to update the track at k . GNN is a 2D assignment that
matches the qk measurement list to the predicted Tk−1 tracks
list by formulating the global optimization problem. The opti-
mization minimizes the overall cost (C) of the measurement-
to-track as

C =
qk∑
i=0

Tk−1∑
t=0

a(i, t)c(i, t) (24)

subjected to
qk∑
i=0

a(i, t)c(i, t) = 1, t = 1, 2, · · · Tk−1

Tk−1∑
t=0

a(i, t)c(i, t) = 1, i = 1, 2, · · · qk
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The a(i, t) is a binary assignment variable such that

a(i, t) =

{
1; measurement i associated with target t
0; otherwise

(25)

Here, all the measurements are indexed in i, and all the tracks
are indexed in t to form a 2D matrix. Whereas, c is the cost
associated with measurement-to-track; which is equal to the
distance between predicted measurement HX̂ (k + 1|k) and
measurement zi(k + 1). The above optimization is solved
using munkres algorithm [37].

E. TRACK MANAGEMENT
Total available tracks are classified into tentative tracks and
confirmed tracks. Tentative tracks are the ones that have fewer
measurements associated than the required number of mea-
surements over a specified time limit. In contrast, confirmed
tracks are the tentative tracks that receive more associated
measurements and are promoted to be confirmed ones. Also,
if an inadequate number of measurements are associated with
the tentative track within the specified time, the tentative
tracks are deleted. For track maintenance, the logic-based
rule [29] is used, given by

1) For track initialization: out of the last Ninit measure-
ment frames, if at leastMinit measurements are associ-
ated together, then form a track and mark it tentative;
otherwise, do nothing.

2) For a tentative track: out of the last Ntent measurement
frames, if at least Mtent measurements are associated
to the track, then promote it as confirmed; otherwise,
delete the track.

3) For a confirmed track: out of the last Nconf measure-
ment frames, if at least Mconf measurements are asso-
ciated to the track, then do nothing; otherwise, delete it.

IV. TRACK TO TRACK ASSOCIATION AND FUSION
The presence of IWCTs produces more tracks at the radar
receiver, even though a single target is present in the surveil-
lance region. To determine the actual track originated from a
target, it is required to consider more than one radar present
in the same surveillance region. Once the tracks are received
from all radars, track-to-track association and fusion of tracks
are required to identify the true track precisely. Accordingly,
this section presents the track-to-track association and track
fusion concepts for the generalized scenario, whereN number
of radars are looking for a target in a surveillance region
surrounded byM IWCTs.

A. TRACK-TO-TRACK ASSOCIATION (T2TA)
The N radars have their own number of tracks in the
form of target estimate x̂ξii having their errors are dis-
tributed as zero-mean Gaussian with covariance Pξii . The i =
1, 2, . . . ,N , represents radar number and ξi = 0, 1, 2, . . . ,Ti
represents number of tracks that the each radar generates.
To find out the tracks corresponds to the same target, it is

required to perform the likelihood ratio test, given by

χ (H1
ξ1,ξ2,...,ξN

: H0
ξ1,ξ2,...,ξN

) =
3(H1

ξ1,ξ2,...,ξN
)

3(H0
ξ1,ξ2,...,ξN

)
, (26)

where 3(H1
ξ1,ξ2,...,ξN

) represents the likelihood hypothesis of
tracks having the common origin, 3(H0

ξ1,ξ2,...,ξN
) represents

the likelihood hypothesis of tracks having the different origin.
Calculating the likelihood hypothesis of tracks having a

common origin is as follows

3(H1
ξ1,ξ2,...,ξN

) = p(x̂ξNN , . . . , x̂
ξ1
1 |H

1
ξ1,ξ2,...,ξN

). (27)

The (27) can also be written conditioned on the track estimate
of the first radar, given by

3(H1
ξ1,ξ2,...,ξN

) = p(x̂ξNN , . . . , x̂
ξ2
2 |H

1, x̂ξ11 )p(x̂ξ11 |H
1). (28)

The p(x̂ξ11 |H
1) is independent of H1

ξ1,ξ2,...,ξN
, hence it can

be relaxed. Also, it is assumed to be a uniform distribution,
which is a valid assumption in the case of a lack of informa-
tion. i.e.,

p(x̂ξ11 |H
1
ξ1,ξ2,...,ξN

) = p(x̂ξ11 ) =
1
C
. (29)

Substituting (29) into (28) results

3(H1
ξ1,ξ2,...,ξN

) =
1
C
p(x̂ξNN , . . . , x̂

ξ2
2 |H

1, x̂ξ11 ). (30)

Consider the two radar (i, j) case that has two tracks (ξi, ξj) as
common target origin. Under the Gaussian assumption, if the
tracks x̂ξii , x̂

ξj
j at radar i, and radar j result from the same target,

the likelihood function of the two tracks is given by [30]

3(Hξi,ξj )=
1
C
N (x̂ξii −x̂

ξj
j ; 0,P

ξi
i + P

ξj
j − P

ξi,ξj
i,j − (P

ξi,ξj
i,j )′),

(31)

whereN (x; x̄,P) represents Gaussian distribution of variable
x with mean and covariance as x̄, P, respectively.
Similar to (31), the generalized likelihood function of all

the common tracks (zero error tracks) ξ1, ξ2, . . . , ξN for all
N radars is defined as

3(H1
ξ1,ξ2,...,ξN

) =
1
C
N (x̂; 0,P). (32)

Here

x̂ =
[
x̃21, x̃31, . . . , x̃N1

]′
, (33)

where x̃ij represents the difference of the estimates resulted
from the same target at ith and jth radar, given by

x̃ij = x̂ξii − x̂
ξj
j . (34)

The diagonal elements of P are represented as

Pi−1,i−1=E[x̃i1x̃′i1|H
1
ξ1,ξ2,...,ξN

],

=Pξ11 + P
ξi
i − P

ξ1,ξi
1,i − (Pξ1,ξi1,i )′ i = 2, . . . ,N

(35)

where x̃ij is defined in (34).
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Off-diagonal elements of P are given by

Pi−1,j−1=E[x̃i1x̃′j1|H
1
ξ1,ξ2,...,ξN

],

=Pξ11 − P
ξ1,ξj
1,j − (Pξ1,ξi1,i )′ + P

ξi,ξj
i,j , i, j=2, . . . ,N

(36)

Similar to (32), the likelihood hypothesis of tracks having dif-
ferent origins follows the same procedure as above, specified
as

3(H0
ξ1,ξ2,...,ξN

) = p(x̂ξNN , . . . , x̂
ξ2
2 |H

0, x̂ξ11 )p(x̂ξ11 |H
0)

=

N∏
i=2

p(x̂ξii |H
0, x̂ξ11 )p(x̂ξ11 |H

0) (37)

Similar to (29), the p(x̂ξ11 |H
0
ξ1,ξ2,...,ξN

) is assumed as diffuse
prior, given by

p(x̂ξ11 |H
0
ξ1,ξ2,...,ξN

) = p(x̂ξ11 ) =
1
C
, (38)

whereas, p(x̂ξNN , . . . , x̂
ξ2
2 |H

0, x̂ξ11 ) is assumed to follow Pois-
son distribution in the state space with a spatial density λ.
Therefore, substituting (38) into (37) yields

3(H0
ξ1,ξ2,...,ξN

) =
1
C
λN−1. (39)

Finally, from (26), (32), (39), the likelihood ratio test is given
by

χ (H1
ξ1,ξ2,...,ξN

: H0
ξ1,ξ2,...,ξN

) =
N (x̂; 0,P)
λN−1

, (40)

For T2TA, define the track-to-track assignment algorithm of
assigning the ξi tracks that result from N radars representing
the same target. For this, the binary assignment variable is
defined as

ψξ1,ξ2,...,ξN =


1; tracks ξ1, ξ2, . . . , ξN from same

target
0; from different target

(41)

The multidimensional (S-D) track-to-track assignment algo-
rithm of finding the most likely hypothesis is the result of the
constrained optimization problem given below

min
ψξ1,ξ2,...,ξN

T1∑
ξ1=0

T2∑
ξ2=0

. . .

TN∑
ξN=0

cξ1,ξ2,...,ξNψξ1,ξ2,...,ξN (42)

subject to

T2∑
ξ2=0

. . .

TN∑
ξN=0

ψξ1,ξ2,...,ξN = 1, ξ1 = 1, 2, . . . ,T1

T1∑
ξ1=0

T3∑
ξ3=0

. . .

TN∑
ξN=0

ψξ1,ξ2,ξ3,...,ξN = 1, ξ2 = 1, 2, . . . ,T2

...
T1∑
ξ1=0

. . .

TN−1∑
ξN−1=0

ψξ1,...,ξN−1,ξN = 1, ξN = 1, 2, . . . ,TN

(43)

and

ψξ1,...,ξN ∈ {0, 1},

ξ1 = 0, 1, . . . ,T1,
...

ξN = 0, 1, . . . ,TN (44)

The cost function cξ1,ξ2,...,ξN in (42) can be calculated as

cξ1,ξ2,...,ξN = − lnχ (H1
: H0). (45)

where χ (H1
: H0) is the likelihood ratio, given in (40).

B. CORRELATION FREE FUSION
This subsection considers the covariance intersection (CI)
method for track-to-track fusion (T2TF). As it is a memo-
ryless algorithm, cross-covariance among the local tracks is
not utilized. Two algorithms are considered in the CI method;
one is the original CI algorithm, and the other is sampling CI
(SCI). The SCI is also considered; because as the number of
tracks that need to be fused increases, the original CI becomes
computationally demanding.

1) ORIGINAL COVARIANCE INTERSECTION (CI) ALGORITHM
Suppose the T2TA algorithm reveals TN independent tracks
of N radars representing the same target, which needs to be
fused, the approximate CI of those N non-Gaussian uncer-
tainties is given by [35]

P−1CI = ωT1P
−1
T1
+ ωT2P

−1
T2
+ . . .+ ωTNP

−1
TN , (46)

where

0 ≤ ωTi ≤ 1 and
N∑

Ti=1

ωTi = 1. (47)

The fused state estimate is represented as

P−1CI x̂CI =ωT1P
−1
T1

x̂T1+ωT2P
−1
T2

x̂T2 + . . .+ ωTNP
−1
TN x̂TN .

(48)

For the above (48), a closed form solution for lower dimen-
sional matrix is presented in [38].

2) SAMPLING COVARIANCE INTERSECTION (SCI)
ALGORITHM
The fused estimate in the case of SCI method of fusing the TN
independent tracks of N radars representing the same target
is given by [35]

P−10 =

N∑
Ti=1

P−1Ti , (49)

x̂SCI = P0

 N∑
Ti=1

P−1Ti x̂Ti

 . (50)
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To prevent the covariance is optimistic, the following proce-
dure is used to adjust the size of the covariance matrix. Gen-
erate the S number of random samples xj = N (0,P0), j =
1, . . . , S. Next find the rmax and rmin using

rmax = max
j=1,2,...,S

x′jP
−1
0 xj

max
Ti=1,2,...,N

x̂′TiP
−1
Ti x̂Ti

, (51)

rmin = min
j=1,2,...,S

x′jP
−1
0 xj

max
Ti=1,2,...,N

x̂′TiP
−1
Ti x̂Ti

. (52)

Finally, set the fused covariance SCI as

PSCI =
P0

urmin + (1− u)rmax
, u ∈ [0, 1], (53)

where u is used to adjust the performance of the SCI
algorithm [35].

V. POSTERIOR CRAMER-RAO LOWER BOUND (PCRLB)
In this section, to compare the simulation performance of
the proposed framework, the Posterior Cramer-Rao Lower
Bound (PCRLB) is considered. The PCRLB is the theoretical
lower bound, which quantifies the estimation accuracy [25].
Let X̂k+1 be the estimate of the state vector Xk+1 conditioned
on measurement set z1:k+1. The PCRLB [39] on the covari-
ance Pk+1 is the inverse of the Fisher information matrix
(FIM) Jk+1, given by

Pk+1 , E
[(
X̂k+1 − Xk+1

) (
X̂k+1 − Xk+1

)′]
≥ J−1k+1.

(54)

The FIM Jk+1 can be evaluated recursively by

Jk+1 = D22
k − D

21
K (Jk + D11

k )−1D12
k , (55)

where

D11
k = F ′kQ

−1
k Fk ,

D12
k = D21

k = −F
′
kQ
−1
k ,

D22
k = Q−1k + Jz,k+1. (56)

Here, Jz,k+1 corresponds to measurement contribution, given
by (for brevity, subscript k + 1 for X is omitted here):

Jz,k+1 = b(pD, λV , g)
{
[OXh(X )]′ R

−1
k+1 [OXh(X )]

}
, (57)

where, b(.) is the information reduction factor (IRF), account-
ing for the reduction of information due to false alarms
and the measurements due to IWCTs in the available
measurements. Which is a scalar quantity, depends on detec-
tion probability (pD), false alarm density (λ), volume of the
surveillance region (V ), and gated volume (g). The expansion
and the numerical evaluation of IRF is presented in [40]–[42].
The value of IRF b(.) is approximately equal to pD. The

OXh(X ) in (57) is the Jacobian matrix, given by

OXh(X ) =


(x tl − x

r
n)

Rln
0

(ytl − y
r
n)

Rln
0

−(ytl − y
r
n)

(Rln)2
0

(x tl − x
r
n)

(Rln)2
0

 , (58)

where Rln is defined in (9).
Using matrix inversion Lemma, using (56), the FIM recur-

sion (55) can deduce to

Jk+1 =
[
Qk + FkJ

−1
k F ′k

]−1
+ Jz,k+1. (59)

The initial value of FIM J0 = (P0)−1.
In this paper, multiple radars (N ) are used to identify

the true target, and the information is fused to get a better
estimate. So, to compare the estimation accuracy of the fused
estimate, there is a need to calculate the fused FIM over the
multiple radars. Therefore, the fused PCRLB follows (54)
by replacing J with summation of all the FIMs from all the
radars, given by

E
[(
X̂k+1 − Xk+1

) (
X̂k+1 − Xk+1

)′]
≥

{
N∑
i=1

J ik+1

}−1
,

(60)

where J (.)k+1 for each radar is given in (59). Further, in this
paper, the PRMSE is used as quantifying metric; the square
root is applied over the positional terms of PCRLB given
in (60). Furthermore, in this paper, PCRLB corresponds to
square root PCRLB of the positional terms unless specified.

VI. RESULTS AND DISCUSSION
The results and discussion are presented in this section. A sin-
gle radar case and multiple radar cases are considered to
illustrate the ambiguity of target tracking in the presence of
IWCTs and to mitigate its effect.

A. SINGLE RADAR CASE
In this case, a single radar, single target, and multiple IWCTs
are considered to exemplify the problem of target tracking.

1) SCENARIO GENERATION
The simulation scenario considered is that the radar and
IWCTs are assumed to be static in a given surveillance region
of 12000 × 12000 with a maximum range at which radar
can detect the targets is 12000m. First, the simulations are
considered for the case of existence of a single radar present
at the origin [0, 0]′ and four in-band static transmitters; their
locations are presented in TABLE 1 (near-geometry refers to
nearby IWCTs to radar, and far-geometry refers to IWCTs are
located far from radar). Only a single target is considered with
constant velocity (CV) model; the initial state of the target is

X (0) = [x, ẋ, y, ẏ]′

= [1000, 30, 1000, 0]′ (61)
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TABLE 1. In-band wireless communication transmitters location for
single radar case.

FIGURE 3. Scenario generation for a single radar case, where the circle
indicates radar location, squares represent in-band transmitters (red
color for far-geometry and blue color for the near-geometry scenario),
and the black line replicates the target trajectory.

The target protuberance in both position and velocity com-
ponents is modeled as process noise, follows additive white
Gaussian pdf, and is considered as

v= [N (0, 0.052),N (0, 0.022),N (0, 0.052),N (0, 0.022)]′,

(62)

here, N (µ, σ 2) represents Gaussian pdf with mean µ and
standard deviation σ .
The target starts at 1s and ends at 100s. The sampling time

of the radar is 1s. On the other hand, the radar receives the
range and azimuth measurements and are corrupted with the
additive Gaussian noise, and the measurement noise vector is
given by

w = [N (0, 102 m),N (0, 0.032 rad)]′ (63)

2) TRACKER
The EKF framework is used in the tracker; the tunable param-
eters like process noise covariance and the measurement
noise covariance in (17) and (21) are tuned to

Q = diag([0.052 0.022 0.052 0.022]) (64)

R = diag([102 0.032]) (65)

For track initialization, single point track initialization
method [43] is used with maximum velocity, Vmax = 30 m/s.

FIGURE 4. Tracking in state space for near-geometry scenario.

AGNN association-based EKF with a CV model is deployed
in the tracking framework. A gating technique is used to val-
idate the measurements, which follows a chi-square distribu-
tion χ2

d (1− tp), where d is the degree of freedom and tp is the
tail probability. Here, the logic-based track maintenance [44]
is opted to confirm or delete the tracks. Once the tracks
are initialized, based on the number of measurements being
assigned in the given frames, the tracks are either confirmed
or deleted. The track confirmation is based on 7/10 logic, and
track termination/deletion is based on 4/10 logic.

In a single radar case, near and far geometry scenarios are
examined to evaluate the tracking performance. For the near-
geometry scenario, the IWCTs are near to both the radar and
target; the simulation scenario is shown in Figure 3. After
the measurements are processed with the GNN tracker, it is
observed from Figure 4 that ten tracks are reported by the
tracker, in which two tracks are full-length tracks, and the
rest are partial tracks. Since the target is moving in the given
surveillance, the acquired measurements change over time
andmay not fit in the predefinedmodels like CV, CA, and CT.
This wrong measurement to track association leads to track
breakages and, in turn, results in track termination over time.
It is observed that track-2, track-3, and track-4 are terminated
at k = 27, k = 38, and k = 33 respectively. Whereas
track-1 is the false track that occurred throughout the sim-
ulation. Interestingly, the track due to monostatic returns is
preserved and is reported as a full track with the ID of track-5.
The unassociated measurements corresponding to terminated
tracks give birth to new tracks as track-6, track-7, track-8.
The track-6 evolved at k = 21 and continued till k = 100,
whereas track-7, track-8 are evolved at k = 26, k = 31 and
continued till k = 62, k = 59 and then terminated. They gave
birth to new tracks (track-9, track-10) that evolved at k = 53,
k = 56 and are confirmed till the end. It is noticed that
track-2 and track-6 belong to the same track. Also, track-3,
track-8, and track-9 belong to the same track. Further, track-4,
track-7, and track-10 belong to the same track and correspond
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FIGURE 5. Tracking in state space for far-geometry scenario.

to the same in-band transmitter. Sometimes, the overlapping
of tracks is due to the last five predictions of the tracks
before termination. Hence, the presence of IWCTs near both
the radar and target will result in more tracks with track
breakages.

The simulation scenario for the far-geometry case, where
IWCTs are located far from the target and radar, is depicted
in Figure 3. In this scenario, it is observed from Figure 5 that
the GNN tracker has reported five tracks. All the reported
five tracks are of full length i.e., from k = 1 to k = 100.
Among the five tracks, only track-5 is the true track; the rest
corresponds to the measurements arising from the IWCTs.
Compared to the near geometry case, the track reports and
track breakages are less. Although, in both cases, IWCTs
produce false tracks, making the tracker ambiguous to decide
which track belongs to the true target. Further, the confirmed
false tracks report that more targets are present in the given
surveillance region. It is hard to distinguish the true track
from all the available tracks. Hence, in this paper, it is pro-
posed to use the local tracks obtained from multiple radars
and resolve the ambiguous tracks.

B. MULTIPLE RADAR CASE
This subsection examines the case of distributed radars and
in-band transmitters. Initially, two radars (R1, R2) and four
IWCTs (C1, C2, C3, and C4) are considered in the surveil-
lance region. Next, this case is extended for four radars (R1,
R2, R3, R4). It is assumed that both radars and IWCTs are
static. In contrast, the target is dynamic and follows the CV
model. The locations of both radars and in-band communica-
tion transmitters are tabulated in Table 2 and are depicted in
Figure 6. Since the distributed tracking followed by fusion is
deployed, each radar provides its local tracks. The track-to-
track association is performed on the local tracks as presented
in Section IV-A. In this process, the overall optimization
provides the tuples of tracks. Among them, only one track is
quantified by performing a chi-square distribution test. Once

TABLE 2. The locations of radars and in-band wireless communication
transmitters for multiple radar case.

FIGURE 6. Scenario generation for multiple radar case.

the true track associated with each radar is known, these
quantified local tracks are fused at the fusion center to yield
a global estimate. Various correlation-free fusion algorithms
are presented in Section IV-B.

Figure 7 shows the obtained local tracks of R1 and R2
sensors in a clean environment (unity target detection prob-
ability and zero false alarm density). It is observed that even
though there exists a single target in the surveillance, multiple
tracks result at each sensor. Only two local tracks represent
the actual target tracks pertaining to sensor-1 and sensor-2.
The rest of the tracks fall apart within the surveillance due to
the additional time delay introduced by the IWCTs. Further,
if the IWCTs are co-located in the vicinity of radar, then the
false local track corresponding to IWCTs also appears near
the true trajectory locations. In this case, due to the spatial
deployment of IWCTs, it is observed that the local tracks are
spatially separated. It is worth noting that one local track from
the track set of each radar represents the true target. For the
case of low target detection probability, the above condition
of one local track from the target set becomes unrealistic.
In addition, with the T2TA, the overlapped tracks appeared
as a tuple. Even with the increase in the number of radars,
a single track from the track set represents the actual target
track, and it is easily be quantified by using T2TA.

Figures 8-10 show the PRMSE and the corresponding
achievable lower bound (PCRLB) of the fused tracks and
the associated radar tracks for two radar case by choos-
ing different pD and false alarm density. The ellipsoidal
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FIGURE 7. Illustration of local tracks pertain to R1 and R2 with unity pD
and zero false alarm density.

FIGURE 8. PRMSE of two radar case with unity pD and zero false alarm
density.

intersect (EI) [33] and CI fusion methods have been used
for a two radars case to find the fused state estimates. The
ellipsoidal method uses the mutual information-based mean
and covariance, which are derived using two initial estimates,
to calculate the final fused mean and covariance [33]. On the
other hand, CI uses trace or determinant minimization to
determine the fused covariance. This minimization becomes a
nonlinear convex optimization problem. The solution can be
found using the well-known polynomial root-finding prob-
lem, which allows closed-form solutions to find the final
fused covariance.

In particular, Figure 8 shows the PRMSE for clean envi-
ronment. Since the tracker is initialized with a one-point
initialization, with Vmax = 30 and converted measurement,
the PRMSE is very high at k = 0. During the time period
of k ∈ [1, 20], the filter settles its covariance, and it is
visualized that the PRMSE is decreasing over time. After a

FIGURE 9. PRMSE of two radar case with pD 0.9 and false alarm density
as 1 × 10−7.

FIGURE 10. PRMSE of two radar case with pD 0.8 and false alarm density
as 1 × 10−7.

certain time k = 40, the filter is settled, and settled PRMSE
values are observed. Interestingly, the fused estimate with EI
agrees with the CI method till k = 40, and its performance
begins to degrade after a few scans. This is due to the unsettled
covariance of any of the tracks. It is the main drawback of the
ellipsoidal method. The fusion with the CI method provides
improved performance compared to the EI and has less fused
PRMSE values.

The Figure 9 and 10 shows the PRMSE of the two radar
case having false alarm density 1× 10−7 with pD as 0.9 and
0.8, respectively. It is observed from Figure 9 that the PRMSE
of the associated tracks has a higher value in comparison
with the Figure 8. It is because the decrease in pD increases
the measurement ambiguity. Since the track termination rule
follows 4/10, it indicates that a continuous track exists even
though there is an absence of measurement for three con-
secutive scans. During the unavailability of measurement in
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FIGURE 11. PRMSE of four radar case with unity pD and zero false alarm
density.

a given scan, the tracker uses the predicted estimate as an
updated estimate. The prediction state cannot withstand the
error due to the process noise, which in turn raises the PRMSE
values for these scans. In the presence of measurement ori-
gin uncertainty, the continuous track can be achieved with
degraded accuracy by increasing the track termination rule.
Even though PRMSE of the associated tracks has a noticeable
degrade with the decrease in pD, the fused estimate has less
performance degradation. Similar statements hold true for
Figure 10. Further, from Figures 8-10, it is noted that the
estimation PRMSE values are in agreement with the PCRLB
values.

Generally, the fusion of individual local estimates leads to
a better estimate. Assuming that four radars (R1, R2, R3, R4)
are present in a surveillance region, the Figures 11-13 show
the PRMSE of the four radar case for different values of pD
and pFA. The PRMSE is also quantified with PCRLB. The
locations of radars are provided in Table 2, and are depicted in
Figure 6. In contrast to two radar case, here, the SCI method
is deployed to fuse the associated tracks. Because the EI is
limited to two sources, the CI is computationally expensive
for more sources. In contrast to CI, the SCI first fuses the local
track estimates with an assumption that they are independent.
After that, the covariance size of the fused track estimate
is modified through a sampling process. The fuser weight
parameter plays a critical role in estimating the mean in
SCI. For a given unity fuser weight, the fuser is pessimistic.
Whereas, for a zero fuser weight, the fuser is optimistic.
The fuser weight of 0.5 provides the best consistency [35].
Henceforth, in this simulation, the fuser weight value is
set to 0.5.

It is observed from Figures 11-13 that, since a single
point initialization is used [45], the PRMSE for initial time
stamps is higher. Once the covariance of the filter is settled,
the PRMSE decreases with the increase in time. Further,
the PRMSE values of Figure 12 and 13 are higher when

FIGURE 12. PRMSE of four radar case with pD 0.9 and false alarm density
as 1 × 10−7.

FIGURE 13. PRMSE of four radar case with pD 0.8 and false alarm density
as 1 × 10−7.

compared to the clean environment, shown in Figure 11. The
decrease in pD increases the measurement ambiguity at the
radar, which in turn increases the PRMSE. Besides, it is worth
noting from Figures 11-13 that, the four radar fusion estimate
provides improved PRMSE compared to the two radar case
of Figures 8-10. Also, from Figures 8-13, it is noted that, the
increase in the number of radars considered for fusion further
improves the estimation PRMSE values and meets with the
fused PCRLBs.

To clearly show the efficacy of fusing the information from
multiple radars, Figure 14 shows the PRMSE of the four radar
case and two radar case for different values of pD. Further,
to clearly distinguish the difference in PRMSE, Figure 14
is plotted with X -axis on a linear scale and Y -axis on a
logarithmic scale. It is worth noting that the PRMSE of the
four radar fusion estimates is always less when compared to
two radar fusion for various values of pD. For example, for
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FIGURE 14. Comparison of PRMSE for four radar and two radar case with
varying pD.

pD = 0.9, the four radar case PRMSE is lower than the two
radar case and holds true for other values of pD. The four radar
case fusion provides a two-fold performance compared to two
radar case fusion. Therefore, the deployment of more radars
not only benefits the elimination of false tracks but also pro-
vides improved target tracking performance. Further, fusing
the information from more sensors improves the estimation
accuracy, with PRMSE values much closer to PCRLBs.

VII. CONCLUSION
This paper presents a new measurement model for the Rad-
Comm spectrum sharing scenario and evaluates the target
tracking performance. The new measurement model incor-
porates the radar returns and returns due to in-band wireless
communication transmitters (IWCTs). Due to the presence
of IWCTs, a huge number of measurements are available in
a given scan. For the obtained measurement set, the mea-
surement to track association is carried out using GNN,
whereas, for the filtering performance, EKF is considered in
the tracker. The GNN-EKF based tracker is used to evaluate
the tracking performance with metrics like false tracks, track
breakages, and PRMSE. To provide the theoretical lower
bound on the estimation accuracy, the PCRLB is considered
for the proposed framework. A single radar andmultiple radar
cases are considered in the simulation scenario. Two different
geometry frameworks are considered in a single radar case,
where IWCTs are located near and far from the target and
radar. The simulation results demonstrated that, in the pres-
ence of IWCTs, a huge number of tracks and track breakages
are reported for the near geometry case. On the other hand,
a few tracks are reported in the far geometry case. However,
both cases have reported false tracks, which creates a delu-
sion that more targets are present in the given surveillance.
Multiple radar case is employed to eliminate the false tracks
and determine the true target track. All the tracks reported by
the multiple radars are first associated to find the true target

track from each radar. Once the true target track of each radar
is identified, T2TF is performed to determine an improved
estimate of the true target track. In a RadComm spectrum
sharing, for the multiple radar case, simulation results reveal
that by performing T2TA and T2TF, the true target track can
be estimated with enhanced accuracy. It is evident from the
results that the RMSE of the target estimates agrees with
PCRLBs. This paper identifies the true track of the target
by considering the multiple radars. Further, it eliminates the
information from IWCTs in a RadComm spectrum sharing
scenario. In the future, one can develop more sophisticated
target tracking algorithms, where a single radar alone can
identify the true targets in the RadComm spectrum sharing
scenario. This work can also be extended by incorporating
the information/ measurements received from surrounding
IWCTs and improving the target estimation performance.
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