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ABSTRACT An accurate localization of the brain anatomical structure for correct and reliable diagnostic
strategies is of great concern in many bio-medical applications. Towards this end, manual or semi-automated
delineation methods used are found to be time consuming. Herein, to address this problem, we present
an enhanced model for automated segmentation of two neighboring small structures of the brain in the
Hippocampus region i.e., anterior and posterior. Our aim is to improve the segmentation performance,
where the proposed architecture captures contextual information in encoding path and enables precise
localization by utilizing the decoding path in a symmetric way. In particular, our proposed methodology
enhances the original U-Net architecture with 3-dimensional (3D) data processing and employs spatial elastic
deformation. Further, we evaluated the segmentation performance using recursive U-Net for comparison.
The effectiveness of different optimization strategies are evaluated on a publicly available data comprising
of 3D magnetic resonance imaging volumes from mono-modal hippocampus region. Our experimental
results demonstrate the robustness of the proposed model by using patch-based augmentation technique
for hippocampal segmentation.

INDEX TERMS Augmentation, deep learning, localization, magnetic resonance imaging,
segmentation, U-net.

I. INTRODUCTION
A small archi-cortical brain structure, that manages
short-term anecdotal and critical memory while depositing
it into the long term memory, is known as hippocampus.
The hippocampus region is also responsible for vocal-based
and musical emotions as it forms a part of the temporal
limbic system. Hence, in plain interpretation of voices and
musical emotions, the amygdala is particularly involved and
enables the hippocampus to process even more complex
information. Further, it contributes towards decoding het-
erogeneous emotions related to music, thereby creating an
alliance between memory and contextual information [1].
The human hippocampus can be termed as a folded com-
ponent of archi-cortex tissue, which is continuous with the
neo-cortex [2]. The human brain consists of two hippocampi
regions- shaped like seahorses- commonly termed as left-
and right-hippocampi. They are also termed as anterior and
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posterior hippocampus sub-fields. From an imaging per-
spective, the region shows very little contrast on structural
magnetic resonance imagingMRI) scans, due to the existence
of nearby anatomical structures such as the thalamus, cau-
date nucleus, and amygdala. These structures have similar
intensity levels in MRI scans to those for the hippocampus
region [3].

In neuroimaging, segmentation of the hippocampus region
plays a vital role in an early prognosis of certain brain
related abnormalities. The gray matter tissue of the temporal
cortex- hippocampus, is known to be primarily effected in
the very initial stages of Alzheimer’s disease (AD). This
could further transform to cognitive decline with increasing
age. In particular, for diagnosis of AD, the segmentation of
hippocampus region is significant and is the most affected
part of the human brain. To this end, a noticeable reduction in
the hippocampal volume (HV) is a marker for AD diagnosis.
There are other specific abnormalities that initially appear in
the pre-clinical stages of AD in the hippocampus region such
as tau pathology or β-amyloidand [4]. Such significant loss in
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the volume of hippocampus region during the developmental
phases of AD corresponds to mental cerebral and emotional
decline [5]. During cognitive tests correlates were found
binding short-term memory (STM) loss to AD [8]. Accord-
ing to a recent study, the accuracy of hippocampal volume-
try via differential diagnostic techniques in normal subjects
and MCI/AD patients is improved to a greater extent by
normalizing the hippocampus volume with total intracranial
volume (TIV) [9].

For the past few years, medical image analysis contributes
to one of the popular and active research field in machine
learning domain [10]. There is a fair chance that it will be the
area where patients might comfortably interact with a com-
pletely functioning, practical artificial intelligence systems
in the near future [11]. Artificial intelligence (AI) provides
great opportunities to assist radiologist in diagnosing and
streamlining complicated patterns within images, interpreting
physiological characteristics into genetics as well as predict-
ing clinical treatment results and developing strategies for
prognostic planning [12]. The data obtained using structural
brain MRI could contribute to various medical applications
when analyzed using deep learning methods. Particularly,
convolutional neural networks (CNNs) have shown remark-
ably robust results in the segmentation of brain tissues,
tumors, and lesions [13].With the help of a single CNN-based
model being extensively trained, different tissues in MR
brain images can be segmented. This could be extended to
other regions such as the skeletal muscle in chest MRIs, and
the blood circulatory arteries in cardiac computed tomogra-
phy (CT) angiogram. Therefore, CNN based models have
performed robustly in tissue classification, and visualisation
of physical structures of the human body [14]. One of the
peculiarities of CNN-based deep learning models is to pro-
vide an overall solution that requires nominal feature extrac-
tionwith greater generalization and explainability [16]. These
are also capable of performing object oriented classification
by determining those features that characterize entire image
objects unlike conventional classification techniques.

Inmany biomedical image segmentation tasks, localization
is required to be included in the desired output as well i.e.,
assigning each voxel to a label class. One of the challenges
faced is accessing labelled training images in a large quantity.
In usual clinical practice, however, either delineation is still
done manually by subjective analysis or via some underlying
electromedical devices. However, there are many factors that
contribute towards this gap between scientific research devel-
opment and its practical applicability in the clinical routines.
This is because of the complications in implementing these
methods for practical use. While computer aided diagno-
sis (CAD) based models are dependant primarily on precise
parameter calibration, that is essential in various medical
applications. On the other hand, the facility of maintaining
different atlases and its registration itself is usually not avail-
able to healthcare professionals. Hence, these models can-
not be practically utilized to complex clinical applications.
Moreover, earlier developed technique of multiple atlases

took considerable time in segmenting a single image. To this
end, there is a recent focus in research to achieve minimal
computation time while performing these segmentation [17].
An accurate performance evaluation of automated methods in
application of hippocampus segmentation still poses another
obstacle for its practical implementation. In most cases ample
number of validation volumes are not used for comparing
with a reference segmentation. This is due to the difficulty and
time consuming process of obtaining manual segmentation
for a large set of volumes. Hence, only limited scientific
algorithms have so far been tested on a few bio-medical
equipment as well for different acquisition scenarios [18].

A. OUR CONTRIBUTIONS
Herein, we focus on hippocampi segmentation of brain
MRIs, where our developed deep learning network has been
derived from the famous U-Net architecture proposed by
Ronneberger et al. (a standard benchmark algorithm in med-
ical segmentation domain) [19]. Moreover, a comparison of
different training strategies has also been performed to pre-
cisely locate and segment the actual regions of interest by
classifying each voxel in an MR image as non-hippocampus
(background or surrounding), left hippocampus, or right hip-
pocampus. We utilized object-based approach to annotate
each image pixels with class labels. Our framework includes
patch-based segmentation along with dense data augmenta-
tion technique, so that during training phase the input images
could easily be visualized on multiple scales [16]. Hence
we resolve the issue of over-fitting and lower the error rate
thereby enhancing the performance of our proposed model.
Our main contributions are:

• We present a complete in house framework (built in
pytorch) for extensive data augmentation including mir-
roring, cropping, and spatial elastic transformation to the
input data and make it compatible to the proposed deep
network model.

• We train our models from scratch with optimization
strategy for robustness, using combination of weighted
multi-class dice loss and cross entropy loss formula-
tion. Further, we used overlap tile method for test data
segmentation and evaluation using six different quality
metrics for each hippocampus sub-region.

• A significant performance was achieved in terms
of accuracy, precision, and recall in hippocampus
segmentation.

B. RELATED WORK
An automated segmentation of hippocampus region has
gained a lot of significance in scientific and research commu-
nity. In this regard, different approaches have been proposed
and can be categorized in: atlas-based [20], machine learning-
based [21], active-contour models [22], [23], and deep
learning frameworks.Some of the popular deep learning algo-
rithms include deep Boltzmann machines, CNNs, stacked
auto-encoders, and deep neural networks. [24]. Atlas-based
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FIGURE 1. The overall sequence of our proposed methodology for hippocampus segmentation.

registration techniques have gained a significant level of
popularity. First, various atlas-based images are registered
to the unknown image, usually in a non-linear fashion. The
manual segmentation masks are then transformed which fur-
ther produces individual output segmentation against each
of the used atlases. Once individual segmentation results
are obtained, the final output is selected by concatenating a
number of fusion algorithms [25], such as majority or average
voting [26], use of global [27] or local weights [28], joint
label fusion [29], and accuracy maps [30]. The active contour
model (ACM) strategy evolves itself according to the intensi-
ties of the input images. The clear edge boundaries mainly
affect the overall performance of the segmented object.
To generate efficient segmentation results, ACMsmostly rely
on prior information related to the shape of the structure for
better evaluation of the contours [31]. In [23], the model used
principal component analysis (PCA) for analysing shapes of
both the hippocampus and the neighboring structures along
with utilizing atlases being manually segmented. A fusion
of multiple atlases based framework with ACM was pre-
sented and called 3D optimal local maps (OLMs) [32]. It was
developed with enhanced multi-atlas concepts at voxel level,
which locally controls the impact of each energy term of
a hybrid ACM. In comparison to these conventional meth-
ods, different ML techniques for segmentation have been
adopted [33], [34]. Usually in these methods, hand-crafted
features were extracted from each training sample to make
a training data. Further, classifiers were optimized towards
generating the desired segmentationmasks. In these methods,
dictionaries and classifiers are learned simultaneously from a
set of brain atlases, which can then be used for the recon-
struction and segmentation of an unseen target image. The
segmentation accuracy of such methods could be improved
if more complicated classifiers are learned rather than linear
classifiers [35]. Due to the rapidly increasing evolution in
deep learning (DL) techniques for medical image analysis,
convolutional neural networks are becoming a methodology

of choice [36] for tasks such as the segmentation of brain
tissue [37], tumor [38] and lesions [39] anatomical struc-
ture segmentation for striatum [40], and for caudate and
thalamus [41], [42]. Deep CNN-based sub-cortical nuclei of
brain segmentation (including the hippocampus) has been
also proposed by [43] and [44]. Additionally, CNNs have also
shown remarkable performance for brain extraction [45] and
full brain segmentation [46], [47].

It should be noted that for certain specific segmenta-
tion problems, various software platforms are available. For
instance, for brain segmentation some examples include
‘volBrain’ by NITRC (Neuro Imaging Tools and Research
Collaboratory) [48] and 3D Slicer [49]. However, it has not
been possible so far to achieve the reported high levels of
segmentation accuracy in actual clinical practice. Further,
variations in the anatomical definitions as well as proto-
col specific issues could not be comprehensively addressed.
In other words, we argue that such automatic methods may
perform efficiently on user specific data, but may vary from
that of the software algorithm developer on the basis of
ground truth definitions. Moreover, recent automatic seg-
mentation techniques incorporate expert prior knowledge of
lesion appearance, anatomical shape, and other sophisticated
high level features as model parameters. These methods are
based on specific datasets that vary from the actual radiology
imaging data acquired from various hospitals [50].

II. PROPOSED METHODOLOGY
While in MR images, the exact localization of hippocam-
pal structure is a critical and crucial task for correct diag-
nosis or treatment plannings. Moreover, human dependent
or semi-automatic hippocampus region segmentation in 3D
images is exhaustive and such methods have low repro-
ducibility in clinical routines. Although, deep learning-based
algorithms for automated segmentation have proven to be
quite efficient and robust in the medical field [51], but
there is still room for extensively evaluating its performance
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on hippocampi segmentation tasks. Due to the very low
intensity contrast of hippocampi structures with respect to
the surrounding regions of the brain, the implementation of
such frameworks is still a challenging task [18]. Towards
this, we propose a deep learning-based method (shown in
Figure 1), with details in the following subsections.

A. DATA PRE-PROCESSING
The pre-processing steps included data normalization,
padding, and splitting. A cropped image representing the
hippocampal brain region was used. Towards this, a bounding
box was created over the region of interest (ROI) training
volumes and its corresponding labels respectively. The two
vector matrices were merged to form the cropped images and
their labels, which were then fed to the next step of data
normalization. We independently normalized each volume
modality of the cropped image region by subtracting themean
and divided with its standard deviation.

B. DATA AUGMENTATION
In our proposed approach, we used random patches from the
input images for training the deep learning models. The data
were setup by extracting random patches from volumetric
images and corresponding pixel label data. The patch-based
technique was particularly useful in hardware systems where
there is memory constraints while performing dense train-
ing from scratch with arbitrarily large volumetric images.
In every pair of MR volumes and labels during training, we
specified a patch size of 4× 4 pixels, a mini-batch size of 64,
and 16 patches per image from randomly positioned patches.
Afterwards, data augmentation technique was applied, which
comprised of transformations including mirroring and spatial
transform. Hence, for each input, two transformed images
were generated. All augmentation operations were applied
on-the-fly with our own in-house built framework. We aug-
mented the training and validation images by applying the
transform operation to the random patches. In particular,
we used random rotation and reflection for the input data to
enable robust training. Further, we cropped the corresponding
2D random patches as per network size requirement.

C. DEEP LEARNING MODELS
For segmentation we employed deep learning-based frame-
works. First we used the proposed modified U-Net architec-
ture as shown in Figure 2. We further used a recursive U-Net
(Rec-UNet) model [52] to compare and validate the results.
The training configuration included setting up the hyper
parameters and optimizer settings as well as selection of the
loss function. The Rec-UNet model comprised of two cas-
caded stages. In the first stage, a dense-UNet model was used
to obtain the initial segmentation results. In the second stage,
the resultant segmentation masks of the first stage have been
used as prior knowledge by incorporating skip-connection
blocks in the sub-module of the existing basic UNet model to
obtain more accurate segmentation results. This implemen-
tation is done in a recursive way. It is therefore very easy to

configure the number of down-sampling steps. Also the type
of normalization can be passed as a parameter as instance
normalization. A dense Rec-UNet block consists of ‘n’ con-
secutive convolution layers, the cascaded block and transition
layers for segmentation in MR images of the same resolution,
each followed by a batch normalization (BN), rectified linear
unit (ReLU), and dropout layers. The succeeding convolution
layer takes the feature maps of all the previous layers as input.
Our proposed modified UNet model follows the original
encoder-decoder style UNet model [19], where layers such as
convolution, up-convolution, and pooling (kernel size 2 × 2
and a stride of 1) are used. We also incorporated the skip
connection for better outcomes. The filter sizes and layer
configuration is shown in Figure 2.

D. HIPPOCAMPUS SEGMENTATION
We performed test prediction on the segmented sequential
batches and combined them to a hippocampal segmentation.
The output against each testing MR images was compared
with their corresponding ground truth images. For getting
the final segmentation mask, the mean likelihood against
each pixel has been computed from the values obtained at
the output of softmax layer. The output predicted masks are
stored separately against each network i.e., for U-Net and
Recursive-UNet outputs.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATASET
We used a total of 263 3D mono modal MRI volumes of hip-
pocampus head and body from the publicly available dataset
of Medical Segmentation Decathlon competition MSD [53].
These 3D MRIs consist of axial IS (InterSpace) scans with
a dimension of 34 × 47 × 40 respectively, with an image
spacing of 1mm in each dimension. The structural data was
acquired using an MPRAGE T1-weighted sequence with the
following acquisition parameters: TI = 860ms TR = 8.0ms
and TE = 3.7 ms, on a Philips Achieva scanner. The MSD
challenge was organized by a number of teams and among
several data contributors, the hippocampus data has been
donated by Vanderbilt University for conceptual design and
metrics committee. The data have been annotated and veri-
fied by human experts of their respective fields required for
precise clinical use.

The segmentation result of our network after comparing
with the ground truth labels has been calculated in terms
of these evaluation metrics: mean dice score, accuracy, IOU
index (Jaccard), positive predictive value (PPV), sensitiv-
ity, and specificity against foreground (non-hippocampus
region), anterior hippocampus (left) and posterior hippocam-
pus (right) and presented in Table 1. The performance of the
resulting output segmentation mask has been evaluated by
these quality metrics as described in [54].

B. TRAINING OUR DL MODELS
The network training has been performed in a sliding win-
dow procedure that predicts each pixel class label to provide
a local region (patch) around that pixel. The network gets
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FIGURE 2. The overall sequence of our proposed methodology for hippocampus segmentation.

localized and the training data patches are much larger than
the number of training images. The localization accuracy
and the use of context has an inverse relationship. A higher
number of patches need to process more max-pooling layers,
thereby reducing the localization accuracy. On the other hand,
for smaller patches, the network relaxes to process for little
contextual data. However, right selection of both trade-offs
i.e., localization and context leads to even better results when
used at the same time.

A training from scratch with up to 20 epochs per network
was performed on a single CPU (core i− 7, 6GB RAM). The
test segmentation of the MRI volume (34 × 47 × 40) took
about 50s for the 2D axial image. Table 2 presents a compari-
son of various most recent techniques of hippocampus sub-
field segmentation with our proposed scheme on the basis
of Dice Similarity Coefficient and Jaccard Index, for which
our model showed considerably better performance. The best
results against each metric are highlighted in bold.

In particular, the nested dilation network (NDN) [15],
residual blocks were nested with dilationsfor the segmen-
tation tasks using CT, MRI, and endoscopic images. The
data for the hippocampus segmentation task was taken from
MSD as in our proposed method. Cao et al. [55] employed
a 3D-Unet in multitask deep learning for joint hippocampus
segmentation and clinical score regression.The authors eval-
uated their method on 407 subjects with MRI data from base-
line Alzheimer’s Disease Neuroimaging Initiative (ADNI).
In [56], the authors proposed a combination of U-Seg-Net
and Ensemble-Net framework of 110 healthy subjects from
the ADNI. A multi-view ensemble approach that relies on
neural networks to combine multiple decision maps for hip-
pocampus segmentation was explored. In [25], segmentation
masks were generated using an ensemble of three indepen-
dent models, operating with orthogonal slices of the input
volume, while erroneous labels were subsequently corrected
by a combination of replace and refine networks. Experi-
ments were performed onMICCAI dataset, achieving a mean

Dice value of 0.88 through transfer learning from the larger
EADC-ADNI data. In comparison to these ensemble meth-
ods which are bound to be computationally expensive our
proposed method shows considerably better results for both
hippocampus regions.

C. EVALUATION PARAMETERS
In this section we are presenting evaluation metrics for vali-
dation of each phase of the proposed system. All metrics can
be used either by passing test and reference segmentations as
parameters or by passing a confusion matrix object. The later
is useful when many metrics need to be computed, because
the relevant computations are only done once. All metrics
assume binary segmentation inputs. Confusion matrix returns
four integer values for true positives, false positives, true
negatives and false negatives. For hippocampal region local-
ization and detection we used greedy overlapping criteria of
ground truth box and predicted box, known as intersection-
over-union (IoU) or Jaccard index coefficient. The correctly
predicted box is known as true positive, else false positive,
and is computed as follows:

IoU (Jaccard) = 2×
TP

TP+ FN + FP
. (1)

For performance evaluation of segmentation phase,
we considered the dice score (Dice), Jaccard coefficient (Jc),
pixel level specificity (SP), pixel level sensitivity (SE), and
pixel level accuracy (Ac) as the evaluation measures.

Dice = 2×
2TP

FN + 2TP+ FP
, (2)

SP =
TP

TP+ FP
, (3)

SE =
TP

TP+ FN
, (4)

Accuracy =
TP+ TN

TP+ FP+ FN + TN
, (5)
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TABLE 1. Output segmentation results as performance metrics evaluated for the proposed models (Basic UNet & Recursive UNet).

FIGURE 3. Dice plot - left & right hippocampus segmentation for randomly chosen training subjects.

TABLE 2. Comparative analysis of results between the proposed model
and benchmark algorithms based on hippocampus segmentation.

where TP, TN, FP, and FN represents the number of true
positive pixels, true negative pixels, false positive pixels, and
false negative pixels, respectively.

We chose to implement both basic U-Net and Recursive
U-Net network architectures and calculated statistical param-
eters across all cross folds validation. The network performed
efficiently after being trained from 3D mono-modal axial
slices, achieving a mean dice score of 0.885±0.01, IOU
(Jaccard) of 0.796±0.02 and an accuracy of 0.996 ±0.01 as
shown in Table 1. The training loss reduced to 0.0072 and
validation loss minimizes to 0.012 at final iteration. We have
implemented and trained the network from scratch on Pytorch
1.4.0 (python 3.6) platform.

Figure 3 represents the average of Dice Similarity Coef-
ficient (DSC) results for the left and the right hippocam-
pus regions for 5th, 10th, 15th and 20th training samples.
The results show that mean Dice scores vary with both,
the number of training subjects as well for left and right
hippocampus regions respectively. It can be observed that

with the increase in number of training samples, the DSC
scores tend to improve randomly, however, DSC variations
in left (anterior) hippocampus region is slightly at higher end
as compared to the right (posterior) hippocampus. The results
indicates that our methods using two-side hippocampus seg-
mentation strategy can achieve stable and accurate prediction.
The final qualitative segmentation results for left and right
hippocampus regions against randomly chosen input source
volumes can be seen from Figure 4. The source at (a) has
been chosen as grid of four (two pairs) both having left and
right respectively, alongwith their corresponding ground truth
labels in (b). Both implementation models i.e., basic UNet
and Recursive UNet (Rec-UNet) results can be seen with
argmax segmentation in respect of the input volumes. The
results in terms of all performance metrics for the proposed
modified UNet model slightly tends be at the higher side
as compared to recursive implementation of our model. The
noisy labels as artifacts are observed in many patients, which
presented a significant problem during the evaluation of the
segmentation. Because of such problematic slices present in
the dataset, it was difficult for the proposed method to ade-
quately handle such situations. Secondly, the segmentation of
low contrast regions in the hippocampal volumetry has been
more challenging due to close contact with the surrounding
complex tissues of brain. However, the results for both net-
work models showed considerably better performance when
compared with benchmark algorithms in terms of accuracy,
sensitivity, specificity, and dice score.
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FIGURE 4. The qualitative results of MRI hippocampus segmentation (Left+Right). (a) indicates a random input images grid, (b) is the corresponding
ground truth mask, (c) shows the output prediction on UNet and (d) indicates the corresponding Rec-UNet prediction with argmax segmentation of left
and right hippocampus regions.

D. DISCUSSION
Multiple atlas based methods perform efficiently to anatomi-
cal changes. However, the quality of image registration plays
a critical role in its overall performance. Moreover, the effec-
tive time being consumed during segmentation has a direct
relationship with registration i.e., it increases with the total
number of registrations being performed. This segmentation
strategy is based on image reconstruction, which is in contrast
to the atlas-based labeling approaches that rely on comparing
image similarities between atlases and target images. It may
take several days to learn very good representative dictionar-
ies and optimal discriminating classifiers offline. While deep
neural networks provide superior performance as compared
with conventional machine learning algorithms because of its
ability to optimally use data representation learning in respect
of various related tasks [57]. This technique of representation
learning serves to be a significant feature in CNNs. Unlike
traditional ML approaches, deep learning via CNNs resolves
data computational problems by applying data representa-
tions strategies in very simpler ways [58]. Due to reduced
hardware computational requirements and processing speed,
the use of 2D CNNs still prevails effectively in medical
research domain even applied on 3D brain image volumes
as well [51]. Recent approaches [59], [60] also contribute
towards 3D CNNs for brain image segmentation. In the
current neuro-imaging studies where large sample sizes are
required, CNN-based algorithms have proved its efficiency
and robustness [61].

Herein, we have used a modified version of U-net archi-
tecture, hence deploying deep learning for medical image
segmentation task. One of the biggest challenge in segment-
ing the hippocampus region includes the small anatomical
structure and variation in the shape of the left and right

hippocampus regions. In particular, our proposed method has
a significant performance in all major evaluation parameters
(Table 1). Further, the results are also significant when com-
pared with other methods presented in literature (Table 2).
Hence, we have shown that deep learning can be successfully
used for challenging medical image segmentation tasks.

IV. CONCLUSION
In this work, we develop a robust automated segmen-
tation method for hippocampus sub-regions in an MRI
based dataset, by using the benchmark algorithm of [19]
for bio-medical imaging segmentation task. We trained the
network from scratch using 3D mono-modal hippocampus
dataset with the technique of data augmentation, spatial
elastic deformation and a loss function chosen to be the
union of cross-entropy and weighted multi-class dice-loss
formulation. The dataset is sufficient for the evaluation of a
deep learning based approach leading to promising results.
We performed our model testing on the basis of six differ-
ent evaluation metrics, after a dense training procedure we
obtained significant results for all these metrics. In particular,
the segmentation accuracy has been very high for both ante-
rior and posterior regions. Various segmentation approaches
have been proposed for brain region including tasks such
as tissue classification or anatomical structure segmentation
of hippocampus region. In comparison our proposed method
is found to be effective in segmenting hippocampus region
which is evident from our results. In addition, our proposed
modified architecture can be utilized effectively for multiple
bio-medical image analysis tasks.
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