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ABSTRACT Automatic speech recognition (ASR) is one of the most demanding tasks in natural language
processing owing to its complexity. Recently, deep learning approaches have been deployed for this task
and have been proven to outperform traditional machine learning approaches such as Artificial Neural
Network (ANN). In particular, deep-learning methods such as long short-term memory (LSTM) have
achieved improved ASR performance. However, this method is limited to processing continuous input
streams. Traditional LSTM requires four (4) linear layers (multilayer perceptron (MLP) layer) per cell with a
large memory bandwidth for each sequence time step. LSTM cannot accommodate the many computational
units required for processing continuous input streams because the system does not have sufficient memory
bandwidth to feed the computational units. In this study, an enhanced deep learning LSTM recurrent neural
network (RNN) model was proposed to resolve this shortcoming. In the proposed model, the RNN is
incorporated as a ‘‘forget gate’’ to thememory block to allow the resetting of cell states at the beginning of the
sub-sequences. This enables the system to process continuous input streams efficiently without necessarily
increasing the required bandwidths. In the proposed model, the standard architecture of the LSTM network
is modified to effectively use the model parameters. Some CNN-based and sequential models were used on
the same dataset, and the models were compared with the proposed model. LSTM-RNN outperformed the
other deep learning models with an accuracy of 99.36% on the well-established public benchmark spoken
English digit dataset.

INDEX TERMS Automatic speech recognition, deep supervised learning, recurrent neural network, spoken
English digit dataset.

I. INTRODUCTION
Speech comprises a sequence of uttered sounds, which
are also known as phonemes. Speech is used to transmit
information from one speaker to the other. When the signal
from speech is converted into a meaningful message or text,
it is called Automatic Speech Recognition (ASR) [1]. The
recognition of isolated spoken digits has proven to be a
challenging task in ASR owing to its complexity.

A. BACKGROUND
Deep learning is an emerging technology that is regarded as
auspicious direction for attaining a height in artificial intelli-
gence [2]. At present, deep learning has been deployed in a
wide range of domains, including bioinformatics, computer
vision, machine translation, dialogue systems, and natural
language processing. One area that has been transplanted by
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this technology is ASR [3]. In recent times, deep learning
has been deployed for ASR [4]–[6], speech recognition
systems [7], [8], speech enhancement problems [9]–[11] and
has outperformed traditional machine learning approaches
such as artificial neural networks (ANN).

Although ANNs can categorize small acoustic-phonetic
units such as separate phonemes, they cannot model
long-term dependencies in acoustic signals [12]. However,
deep neural networks (DNNs) provide restricted temporal
modeling of the acoustic frames. However, they cannot
deal with data that have longer-term dependencies. Feed-
forward neural networks can be expanded for an effective
classification. To achieve this, it will require feeding the
signals that were fed back into the network from previous
time steps. Such networks with recurrent interconnections are
called recurrent neural networks (RNNs) [13], [14]. RNNs
are restricted because they look back in time for roughly ten
time-steps [15].
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The connections in RNNs are cyclic, which makes them a
dynamic mechanism for modeling sequence data [16]. Thus,
RNNs use a dynamic contextual window against a static
fixed-size window over sequences. Unfortunately, RNNs
are difficult to train using gradient-based back propagation
through time (BPTT) [17] and are not likely to demonstrate
the full power of recurrent models. This is because of the
well-known vanishing and exploding gradient problems [18].

One way to improve the training of RNNs is to use an opti-
mization algorithm with higher-order approximations [19].
However, it is normally at the cost of remarkably increased
computational costs, which makes the approach unattractive
for language modeling which requires an enormous amount
of training data [20]. Hochreiter and Schmidhuber [21]
proposed the long short-term memory (LSTM) architec-
ture as a solution to resolve this challenge. LSTMs are
specifically designed to avoid the long-term dependency
problem. Remembering information for long periods is
their default practice. LSTMs have many advantages over
conventional feed-forward neural networks and the RNN.
This is because of their ability to remember patterns for long
durations.

LSTM is a type of recurrent neural network with a strong
ability to learn and predict sequential data. Sequence predic-
tion is a long-standing problem. With recent advancements
in the field of data science, it is found that for practically
all sequence prediction problems, LSTM has been observed
as the most successful approach [22]. The core idea behind
LSTMs is the cell state and its gates. The cell state conveys
the relevant information to the sequence chain.

B. DEEP LEARNING BASED METHODS FOR AUTOMATIC
SPEECH RECOGNITION
1) RECURRENT NEURAL NETWORK
Sak et al.’s [16] work was found to have introduced the first
implementation of LSTM networks on a large-vocabulary
Google voice search speech recognition task. They pre-
sented an LSTM RNN model architecture that makes use
of the model parameter more advantageous for training
acoustic models for large-vocabulary tasks. They trained and
compared LSTM, RNN, and DNN models using different
numbers of parameters and configurations. The results of
their experiment show that LSTM models converge quickly
and perform best when applied to moderately small-sized
frameworks.

Geiger et al. [23], proposed an LSTM RNN in a hybrid
acoustic modeling structure for robust speech recognition
in an environment affected by noise and reverberation.
The experiment was conducted using the database of the
medium-vocabulary recognition track of the 2nd CHiME
speech separation and recognition challenge. The authors
compared state prediction networks with networks that
predict phonemes using LSTM networks. The result showed
that with LSTMs, state prediction is better than networks
predicting phonemes.

Recently, there has been a remarkable improvement in
RNN-HMM hybrid systems with deep bidirectional (DB)
LSTM-based acoustic models for CD phonetic units, states
for the LSTM output space and distributed training methods
to perform large-scale modeling [24].

2) GATED RECURRENT UNITS (GRU)
Modified gated recurrent units (GRU), known as light-gated
recurrent units (Li-GRU), were proposed in [25] for auto-
matic speech recognition across various tasks, features,
conditions, and paradigms. The experiment was conducted
using TIMIT, DIRHA-English, CHiME, and TED-talk
speech recognition corpus in various subsections. The
proposed method outperformed the standard GRU in terms of
recognition and computational performance and significantly
reduced the per-epoch training time by 30% compared to the
standard GRU.

Feng et al. [26] proposed a projected minimal gated recur-
rent unit (PmGRU) an improved version of the mGRUIP
with context module (mGRUIP-Ctx) for speech recognition
acoustic model on five different ASR tasks. The proposed
model showed a significant reduction in the word error
rate (WER) compared to the WER of mGRUIP-Ctx.

3) END-TO-END SPEECH RECOGNITION
Graves et al.’s [7] showed that end-to-end training methods
such as connectionist temporal classification (CTC) can be
used to train RNNs for sequence-labelling tasks on the TIMIT
corpus, where the input-output alignment is not known. They
suggested that combining these methods with LSTM RNN
architecture is likely to yield state-of-the-art results.

Hannun et al. [27] used of a 5-layer RNN with a bidirec-
tional recurrent layer trained with CTC loss and a language
model to credibly fix the phonetic transcriptions. The results
of this approach exceeded the best results on the switchboard
dataset.

Li [28] provided a detailed overview of E2E models and
feasible technologies that makes E2E models outperform
hybrid models in the industrial world.

4) DEEP BELIEF NETWORK
Mohamed et al. [29] conducted the first successful experi-
ment using a hybrid DNN-hidden makov model (HMM)
with an acoustic model based on deep belief network (DBN)
on the TIMIT dataset. His results outperformed those
of previous studies using the same dataset. Over the
years, other researchers have used restricted BoltzMann
machines (RBMs) and DBNs techniques to explore and
demonstrate the results of using them in speech recognition
tasks. [30]–[33].

5) CONVOLUTIONAL NEURAL NETWORK
Abdel-Hamid et al.’s [34] work using CNN outperformed
previously published results used in the hybrid NN-HMM
model. Their experimental results showed a remarkable
improvement in the recognition performance using local
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filtering and max-pooling and achieved over a 10% relative
error reduction on the core TIMIT test sets compared to
constant neural networks (NNs) with the same number of
hidden layers and weights. Abdel-Hamid et al.’s work in [35]
also, investigated convolution over the time and frequency
axes simultaneously.

Sainath et al.’s [36] investigated themost suitable approach
for making CNNs a more capable model for large-vocabulary
continuous speech recognition (LVCSR tasks) than DNNs.
They also investigated the actions of NN features extracted
from CNNs on a variety of LVCSR tasks, which were
compared with DNNs and GMMs. The results of their exper-
iment shows 13-30% and 4-12% relative improvement over
GMMs and DNNs respectively, on the 400-hr broadcast news
and 300-hr switchboard task. In addition, an experimental
investigation of CNN-based acousticmodels for low-resource
languages has proven that CNNs are better than DBNs in
terms of robustness and improved generality [37].

C. PROPOSED MODEL
A modified LSTM RNN model was proposed in this work
to perform sequence prediction that will make use of deep
supervised learning on the benchmark spoken English digit
dataset. The effectiveness of the model will be estimated with
respect to training and validation accuracy, and the results
will be compared with other studies that used deep learning
models for various speech recognition tasks. In addition, the
classification performance of the model was evaluated to
obtain the average score for precision, recall, f1-score using
a confusion matrix. The choice of LSTM RNN is based on
the fact that LSTM consists of a standard RNN built up with
‘‘memory units’’, that specializes in transferring long-term
information, also with a set of ‘‘gating’’ units that allows
memory units to carefully interrelate with the normal RNN
hidden state [19].

Several studies have been conducted using LSTM RNN.
LSTM has achieved virtually all thrilling results based on
RNNs. Thus, it has become the centre of deep learning in
ASR systems [38]. LSTMs have been used extensively in
speech recognition tasks because of their powerful learning
ability [7], [16], [23], [39], [40], [25], [41], but this is the first
time LSTM RNN will be used on the spoken English digit
speech recognition dataset.

The contributions of this paper can be summarized as
follows;

1) This study reviews existing deep learning methods
for sequential data and highlights the limitations
of traditional LSTM in processing continuous input
streams.

2) A recurrent neural network (RNN) is incorporated as a
forget gate to the memory block to allow resetting of
the cell states at the beginning of the subsequences.

II. RELATED WORK
Graves et al. [7] showed that end-to-end training methods
like CTC can be used to train RNNs for sequence labelling

tasks on the TIMIT corpus. Merging these methods with
LSTM RNN architecture will likely yield state-of-the-art
results. In this study, the standard LSTM RNN training
method was used to obtain a 99.36% accuracy for the
sequence prediction speech recognition task.

Sak et al. [16] work, was found to have introduced the
first implementation of LSTM networks on the Google
voice search speech recognition task. Their proposed model
architecture improved the use of model parameters while
training acoustic models. The model trained and compared
LSTM, RNN, and DNN models with various numbers of
parameters and configurations. The results show that the
LSTM model was the fastest to converge and performed best
when applied to a moderately small-sized sized framework.

Geiger et al. [23], proposed an LSTM RNN in a hybrid
acoustic modelling structure for robust speech recognition
in an environment affected by noise and reverberation.
The experiment was conducted using the database of the
2nd CHIME medium-vocabulary recognition track. The
authors compared state prediction networks and networks
that predict phonemes using LSTM networks. The results of
their experiment showed that with the use of LSTMs in a
hybrid or double-stream system, the state prediction network
is superior to the network prediction phonemes.

He and Droppo [40] proposed a generalized LSTM
known as the (G)LSTM-DNN. The strength of the proposed
model was first analyzed using a normal 80-hour LVCSR
task AMI and then applied to the 2000-hour Switchboard
data set. The results of their experiment showed that the
proposed (G)LSTM-DNN performs better with more layers
and achieved a relative word error rate reduction of 8.2% on
the 2000-hour Switchboard data set. One issue discussed in
their work is that the model’s performance comes at the cost
of a large number of parameters, and it is noteworthy to find
a system that will save the parameters while maintaining its
modeling power.

Tachioka and Ishii [39], proposed LSTM RNN for Band-
width Extension (BWE) on the TIMIT phoneme recognition
task. The proposed LSTM RNN-based BWE was compared
to standard gaussianmixturemodel (GMM)-basedBWE. The
results of the experiment showed that LSTM RNN-based
BWE was more powerful than the GMM-based BWE.
In addition, they added that for ASR purposes, it is better to
predict MFCC features directly than to predict Mel-cepstrum
features. The model used in this study has used the MFCC
features for its prediction.

The authors proposed an LSTM-RNN for deep sentence
embedding [42]. Here, the RNN is used to accept each
word in a sentence sequentially and then map alongside
the contextual information into a latent space in a recurrent
form. Furthermore, LSTM cells were incorporated into the
RNN model (LSTM-RNN) to address the weakness of
the RNN in learning long-term memory. As a result of the
non-availability of labeled data, user click-through data were
used and the model was trained in a weakly supervised form.
The proposed LSTMRNN used in this work for the sequence
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FIGURE 1. The standard LSTM RNN architecture [46].

prediction of the spoken English data, however, was, trained
using a strong deep supervised network that helped obtain
optimal accuracy.

One of the RNN models, gated recurrent units (GRUs),
was revised, and a simpler architecture was proposed
in [25] for automatic speech recognition across various tasks,
features, conditions and paradigms. The experiment was
conducted using TIMIT, the DIRHA-English, CHiME, and
TED-talk speech recognition corpus, in various subsections.
The proposed method has outperformed the standard GRU
in terms of recognition and computational performance
and significantly reduced the per epoch training by 30%
compared to the standard GRU.

WAZIR and CHUAH [41] proposed an Arabic digits
speech recognition model using an RNN with LSTM cells.
Their model exhibited an overall accuracy of 94.00% for
model training and 69.00% for the model testing. When
the standard LSTM was implemented in the spoken English
digit speech recognition task, the overall accuracy of 99.36%
was achieved for model training, as demonstrated in this
work.

III. METHODS AND TECHNIQUES
A. THE STANDARD LSTM ARCHITECTURE
The main structure of LSTM consists of unique segments
known as ‘‘memory blocks’’ in the hidden layer. The first
type of LSTM block consists of cells and the input and output
gates. The standard structure of LSTM has a limitation,
which was addressed for the first time in [43] through the
establishment of a ‘‘forget gate’’ that will empower LSTM to
adjust its state. The ‘‘forget gate’’ ft resets the cell variable
leading to the ‘forgetting’ of the stored input ct , whereas
the input and output gates manage the reading of inputs

from the feature vector, xt , and writing of output to ht ,
respectively [21].

The gates regulate the action of the memory block whereas
the ‘‘forget gate’’ weighs the information inside the cells,
such that anytime previous information becomes unimportant
for some cells, it will reset the state of the different
cells. ‘‘Forget gates’’ also enables continual prediction [44],
by making cells forget their previous state, thereby restricting
biases in prediction.

The computation operation within an LSTM block is as
follows: Input values can only be conserved in the cell state
if the input gate allows them. Its input value of it and
the expected value of the memory cells, C̃t , at time step,
t , is calculated as follows:

it = σ (Wi.[ht−1, xt ]+ bi) (1)

C̃t = tanh(Wc[ht−1, xt ]+ bc) (2)

W [ht−1, xt ] and b represent the weight matrices and bias,
respectively. The forget gate controls the weight of the state
cell unit, and the value of the forget gate is computed as:

ft = σ (Wf .[ht−1, xt + bf ) (3)

By this process, the new state of the memory cell is being
updated as

C̃t = it .C̃t + ft . ˜Ct−1 (4)

Given a new state memory cell, the output value of the gate
is computed as

ot = σ (Wx .[ht−1xXt ]+ bo) (5)

The final output value of the cell can then be explained as

ht = ot ∗ tanh(ct ) (6)
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FIGURE 2. Proposed LSTM RNN architecture.

σ , g and h are point-wise nonlinear activation functions,
and i, f , o and c are the input, forget, output gate and the
cell activation vectors, respectively. All features of the LSTM
network architecture can be trained using the sigmoid(φ) and
tanh activation functions.

With this structure in place, the network can store inputs
for a long period, thus utilizing a trained number of extended
temporal situations [23]. Additionally, the recent LSTM
architecture accommodates ‘‘peephole connections’’ from
its internal cells, which learns the accurate timing of the
output [45]. The standard LSTM Structure is illustrated in
Figure 1.

B. THE PROPOSED LSTM ARCHITECTURE
The proposedmodel avoids the problem of processing contin-
uous input streams that are not segmented into subsequences.
This means that streams that are not theoretically subdivided
into smaller units are easily processed by the network.
The proposed model in turn integrates RNN as a ‘‘forget
gate’’ to the memory block to permit cell states to be
reset at the beginning of sub-sequences. There is a need to
reset the network’s internal state to prevent the cell state
from growing indefinitely, which may eventually cause the
network to break. The memory blocks use their memory
cells to store the network’s temporal state, and distinctive
multiplicative units known as gates to control information
flow. The proposed model architecture effectively use model

parameters by modifying the standard LSTM architecture.
This modification in the LSTM architecture causes changes
in the computational cost because of the increase in the
computational resources as a result of adding an RNN as
a forget gate. Figure 2 shows the proposed LSTM RNN
memory block.

Supervised learning is a learning technique that use
labelled data. For a supervised deep learning technique,
the setting comprises a set of inputs with complementary
output (xt , yt ) ∼ p. For instance, if for an input xt , the
smart agent predicts ŷ = (xt ), and then the agent will
obtain a loss value l = (yt , ŷt ). After successful training, the
agent repeatedly adjust the network parameters to obtain an
improved approximation of the output, similar to the deep
supervised approach used in this study [47].

Algorithm 1 represents the algorithm of the proposed
Model

IV. EXPERIMENTS
A. DATASET
The dataset is a well-established publicly available dataset
under Pannous, a collaboration working on improving speech
recognition [48], from the librosa library [49]. Speech data
were downloaded using an MFCC batch generator. The file
consists of a group of wav files that are in batches alongside
its related labels. The audio dataset was pre-processed using
the librosa library, Python’s library dedicated to analyzing
sounds.
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FIGURE 3. Model’s accuracy and loss for 10−3 learning rate @2000 training iterations.

Algorithm 1 Proposed Speech Recognition Model for the
LSTM-RNN Network
1: procedure ENHANCED LSTM RNN

PROCEDURE(X ,Y )
2: Input Speech (Speech X )
3: Extract Feature Map;
4: LSTM processing;
5: RNN processing - Cell’s states memory resetting;
6: LSTM processing;
7: Model training
8: Generate Prediction (MapY );
9: Perform Optimal Estimation using Adam Optimiza-

tion;
10: Output Recognized Speech
11: end procedure

The dataset used in this study consists of isolated spoken
digits. It is a tar file consisting of 15 speakers (male and
female). Each speaker utters a digit 16 times, leading to
15*16 = 240 instances for each digit. The phrases were
English numbers: 0-9. This gives us a total of, 2400 different
audio files with wav format for training the proposed
system.

The dataset was split into training and validation datasets.
Ten percent (10%) of the dataset was used for validation, and
the remaining ninety percent (90%)was used for training. The
training step output contained validation accuracy and loss as
shown in Table 1 because the validation set was introduced
as a part of the model fit function during training.

The proposed LSTM RNN network structure comprises
four network layers: an input layer, LSTM (dropout) layer,
fully connected layer and regression layer. The model was
trained using a deep-learning library known as TFLearn.

B. PROPOSED MODEL TRAINING
The learning rate and number of training iterations can
affect the accuracy and training time of the proposed model.
Therefore, both parameters were adjusted to different values
for optimal performance. Given that the learning rate should
be considered the most crucial hyperparameter, it might be
necessary to understand how to adjust it properly to achieve a
positive outcome [50]. The learning rate regulates the speed
of the network weight updates. The initial learning rate of the
model was set at 10−3.
Next is the training iteration, which was adjusted to the

initial value of = 1000 iters. Training iterations were used
to multiply the epoch size to obtain the training steps. The
training steps, with 10 epochs of batch size 64/64, ranged
from 10000 to 20000 training steps. A high accuracy was
achieved when the number of training steps was increased.

To reduce LSTM total loss on a set of training sequences,
Adam’s optimization algorithm was used to improve the
parameter of each network weight to the weight parameter
using the BPTT method [17], [51], [52]. The BPTT method,
used for learning the weight matrices of an RNN unravels
the network on time and disseminates error signals backward
through time. The major challenge with the BPTT method
is the vanishing gradient problem. However, this difficulty is
being overcome to a great extent by using LSTM cells [53].
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FIGURE 4. Model’s accuracy and loss for 10−4 learning rate @2000 training iterations.

The cross-entropy loss that used the softmax activation
function was used to train the networks. With an initial
learning rate of 10−3, the model trained quickly, but started
to overfit at some point. It was observed that the accuracy
dropped when the model overfitted. By adjusting the learning
rate to 10−4, the model was trained slowly, with an increase
in network accuracy.

The proposed model was implemented on a multi-core
central processing unit (CPU) on a single machine instead of
a graphics processing unit (GPU). The choice of using a CPU
is made because CPUs are relatively simple to implement
and easy to debug. It also allows for easy distributed
implementation on a large cluster of machines [54].

The computational graphs of the model’s output were
visualized using a TensorBoard. It is a visualization extension
created by the TensorFlow team to decrease the complexity
of neural networks. Time-dependent scalar statistics that vary
over time and variations in accuracy and loss performance are
visualized in Figures 3 and 4 for 2000 iterations at learning
rates of 10−3 and 10−4, respectively.
Other deep learning models such as ResNet-18,

ResNet-34, DenseNet-121, DenseNet-169, and VGG-16
were used to train the model. The output of the training
showing loss and accuracy curves and the bar chart
comparing the performances of the deep learningmodels with
the proposed model are shown in Figures 5, 6, respectively.

C. RESULTS AND DISCUSSIONS
The result of the model’s training has shown that good
hyperparameters such as the learning rate, help to manage

TABLE 1. The result for learning rates tuning and its corresponding
accuracy.

TABLE 2. Comparing the proposed model accuracy with other deep
learning models on the same dataset.

a large set of experiments for hyperparameter tuning. This
shows that increasing the learning rate leads to fast network
training, whereas reducing the learning rate leads to an
accurate prediction of the network. Hence, it represents the
trade-offs between time and accuracy. Optimum accuracy is
possible when the learning rate is reduced and the number of
training steps increases.

From the performance results of network training in the
proposed model, it is necessary to state that RNNs are at
the centre of recent ASR systems. Specifically, LSTM RNN
have shown exciting results in numerous speech recognition
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FIGURE 5. Loss and accuracy curves for ResNet-18, ResNet-34, DenseNet-121, DenseNet-169, and VGG-16.

jobs, owing to their capability to represent long-term and
short-term dependencies in sequences [55].

The model showed 99.36% accuracy and 100.00% vali-
dation accuracy with the least minimal loss of 0.02656 for

2000 training iterations at the learning rate of 10−4,
as represented in Table 1. This is to prove that a low learning
rate leads to a higher accuracy. Table 1 presents the results of
the learning rate tuning of the model.
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FIGURE 6. Bar chart for comparing the performances of the deep learning models with the proposed model.

TABLE 3. Comparing the proposed model accuracy with some sequential
models on the same dataset.

TABLE 4. Summary of the model’s classification report using a confusion
matrix.

TheResNet-18, ResNet-34, DenseNet-121, DenseNet-169,
and VGG-16 deep learning models were run on the same
dataset and the results were compared with the performance
of the proposed model as presented in Table 2. From
Table 2, it can be seen that DenseNet-121 and DenseNet-169
showed high accuracies of 89.67% and 87.17% respectively,
but LSTM-RNN showed the highest accuracy of 99.36%
and outperformed the other deep learning models on the
same dataset. A summary of the performance of the deep
learning models in comparison with the proposed model
is represented as a bar chart in Figure 6. LSTM exhibited
the best performance in terms of both accuracy and loss.
Sequential models such as GRU, bidirectional LSTM, simple

LSTM and RNN were also tested on the same dataset and the
performance is compared in Table 3.

To further investigate the model results, a confusion matrix
was used to evaluate classification performance. From the
model’s classification report, the average score for precision,
recall, and f1-score was derived from the classification report
and served as the performance metric for the evaluation of the
proposed model as shown in Table 4.

V. CONCLUSION
In this study, an LSTM-RNN model has been proposed
that incorporates an RNN into the LSTM network to
overcome the challenges of the traditional LSTM in pro-
cessing a continuous input stream. The proposed system
utilizes an RNN as a forget gate in the network, which
allows the resetting of the cell states at the beginning of
sub-sequences and consequently improves the performance
of the model to make effective use of network parameters.
This addresses the computational efficiency problems of
large networks for large-vocabulary speech recognition.
The proposed model is evaluated using a well-established
dataset. Some CNN-based and sequential models were
also used on the same dataset, and the performances of
the models were compared with the performance of the
proposed model. The proposed LSTM-RNN outperformed
other deep learning models with an accuracy of 99.36% on
the well-established public benchmark spoken English digit
dataset.
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