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ABSTRACT Explaining complex algorithms and models has recently received growing attention in various
domains to support informed decisions. Ranking functions are widely used for almost every form of human
activity to enable effective decision-making processes. Hence, explaining ranking indicators and their
importance are essential properties to enhance performance. Local explanation techniques have recently
become a prominent way to interpret individual predictions of machine learning models. However, there
has been limited investigation into explaining competitive rankings. This work proposes a hierarchical
ranking explanation framework to capture local explanations for competitive rankings by defining a proper
neighborhood construction approach. We explore various explanation techniques to identify the local
contribution of ranking indicators based on the position of an instance in the ranking as well as the size of the
neighborhood around the instance of interest. We evaluate the generated explanations for the Times Higher
Education university ranking dataset as a benchmark of competitive ranking. The results reveal insights for a
wide range of instances in the ranking list and indicate the importance of local explanations for competitive
rankings.

INDEX TERMS Competitive ranking, feature importance, local explanation.

I. INTRODUCTION
Rankings provide clear-cut guidelines to illustrate compara-
tive data for different stakeholders. University ranking, for
instance, benefits prospective students to select the best
option for their academic studies, encourages university-
university/industry collaborations, and supports strategic
plannings for resource improvement, funding opportunity
enhancement, and educational capacity building. Rankings
are usually based on a score function that weights specific
attributes to reflect the characteristics of an entity in a list.
Generally, a ranking among a set of entities is obtained based
on the performance evaluation. The performance is assessed
by various credentials (i.e., attributes) that mainly reflect
institution success in different ways towards delivering goals
and alignments with the mission. The weights in the score
function reflect the influence of attributes on the ranking
score. These weights are assigned by either human experts or
learned by algorithms. Although in the former, the influence
of these attributes on the ranking is defined a priori, they
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tend to be different for each entity in the ranking list. Hence,
inspecting entity-based explanation of ranking attributes is
critical for performance improvement decision-making. For
example, the scoring mechanism used by U.S. News for uni-
versity ranking is a linear function designed by consultation
with human experts in different fields [1]. However, in the
latter case, a linear regressionmodel can learn a weight vector
that transforms themulti-dimensional attribute set into a score
that translates to a ranking score.

Ranking can be used to evaluate an entity in a non-
competitive (e.g., loan applications) or in a competitive envi-
ronment (e.g., university ranking). In the former, there is
no inherent competition among entities, while in the latter,
entities compete to receive a rank (or a score) in every eval-
uation cycle. In a non-competitive environment, the rank-
ing shows the qualifications of each entity in the list. For
example, TripAdvisor ranks hotels in a region based on
the quality of their service (for example, best hotels in
Los Angeles, California [2]). Hotels are not in direct com-
petition to improve their score; instead, they employ rank-
ing information to serve their customers. In a competitive
case, on the other hand, the ranking is used to provide
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administrative insights to improve the performance indica-
tors, enhance the competitive advantage, and gain a better
score in the subsequent evaluation term. As an example,
Times Higher Education ranks universities each year consid-
ering various attributes such as graduation and retention rates,
social mobility, undergraduate academic reputation, faculty
resources, and financial resources [3]. University adminis-
trators take such ranking information into account for the
institution’s strategic planning to compete for a better place
next year.

In the competitive ranking setting, although the calculated
performance weighted scores and the ranking among the
entities are informative in general, they do not explain the
latent factor of underlying competition involved in changing
the ranking of the entities. The latent competition effects
are particularly important since they change the attributes’
importance for different entities and impact the institutional
decisions for the next evaluation period. Furthermore, com-
petition for ranks tends to be localized, where gain or loss
of ranks occurs within a few ranking positions at a time [4].
In other words, an entity’s main competition is with its
immediate opponents in the ranking list, where a change of
position in the ranking for an entity may happen based on
the effectiveness of its efforts for the evaluation cycle within
a small interval of the ranking list. Consequently, the global
feature importance administrated by the ranking providers,
or obtained from a global model constructed on the entire
list of entities, is not faithful to act based on. In this paper,
we aim to investigate the local importance of attributes for
competitive rankings.

Explainability of algorithmic decision-making, especially
machine learning models, has recently been a field of focus
and high demand [5]. The goal of an explanation is to jus-
tify the outcome of black-box or complex algorithms. Local
explanation models have emerged as a popular means to
understand individual predictions of classification models.
A variety of model-agnostic local explanation approaches
have been developed for machine learning (ML) tasks
[6]–[11]. Most of them aim to provide an instance-wise
explanation of the model’s output as either a subset of input
features or a weighted distribution of feature importance.
Despite extensive local explanation research in ML, particu-
larly for classification settings, few studies have investigated
this subject for ranking tasks.

Existing work in ranking explanations is mainly in a non-
competitive environment (e.g., information retrieval [12],
document ranking [13], recommender systems [14], [15],
etc.). Consequently, local explanation research for rankings
relies heavily on random sampling for a locality construc-
tion [4], [16]. However, this approach is not valid for competi-
tive rankings since the competition occurs in the proximity of
each entity. The random sampling approaches generate out-
of-proximity synthetic samples that might not even exist or
be feasible to happen [10]; or they consider different entities
from different positions on the ranking list for a specific
neighborhood construction [17], [18].

In this paper, we propose a hierarchical ranking
explainability framework to identify local explanations for
competitive rankings by constructing proper neighborhoods
with different sizes around each entity to identify entity-
based explanations of rankings. The main intuition behind
this approach is that if the importance of one attribute changes
significantly for an entity from its immediate neighborhood
to distant neighborhoods, it should be considered as a cru-
cial attribute in the entity’s rank. Our proposed approach
includes two major steps of neighborhood construction and
feature importance calculation. We construct neighborhoods
in a deterministic manner considering sets of entities within
the proximity of the entity of interest with different sizes.
We then reflect the significance of the attributes for perfor-
mance improvement within each neighborhood by exploring
Explainable Artificial Intelligence (EAI) techniques [7], [19],
including model-based methods as well as model-agnostic
approaches. We investigate the performance of each of EAI
techniques in identifying local impacts of ranking indicators
and demonstrate that Shapley Value [20] is a reliable explana-
tion technique for this matter. As a major competitive ranking
setting, we consider university rankings as a benchmark in
this paper to elaborate on how a global ranking fails to provide
actionable insights for decisionmakers.

The rest of the paper is organized as follows: First, we dis-
cuss existing work in ranking explanations in competitive and
non-competitive settings as well as the explainable univer-
sity ranking literature in § II. Next, we present an overview
on the EAI techniques and discuss their pros and cons in
§ III. In § IV, we elaborate on our proposed neighbor-
hood construction process and present a general framework
for local explanation of entities in competitive rankings.
§ V provides a comprehensive case study description of
university ranking which is the primary problem of interest in
this paper. We demonstrate the necessity of the local expla-
nation for university ranking through a preliminary analysis
using correlation technique as well as Principal Component
Analysis (PCA). Next, we demonstrate the results comparing
various methods based on our proposed hierarchical ranking
explainability framework in § VI. Concluding remarks and
future works are outlined in § VII.

II. RELATED WORK
In this section, we review the literature for explainable rank-
ing in non-competitive and competitive settings. Considering
the university ranking as a benchmark of the competitive
ranking, we also present studies that mainly focus on explain-
ing the rankings generated for universities by different rank
providers.

A. NON-COMPETITIVE RANKING
The exponential growth of the web has resulted in a mas-
sive number of web pages and information overload. Thus,
webpage and document ranking methods are being used
to sort and recommend corresponding information for any
web inquiries effectively [21]–[23]. Few of recent works
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employed advanced ML techniques such as Generalized
Additive Models to provide global explanations for rank-
ings [24]. Such mechanisms are considered non-competitive
ranking since web pages or documents are not necessarily in
direct competition to boost their rankings for cyclic evalua-
tions. While most of the literature in the field of information
retrieval, as well as the webpage and document ranking,
is focused on generating effective global rankings, a few
studies presented frameworks for local interpretation of such
rankings [25]–[28].

Recommendation systems are widely being used to help
solve personal information overload problems. Such systems
leverage user performance metrics and ratings to rank the
objects of interest and offer the most relevant ones as a
recommendation [29], [30]. Movies/TV series ranking and
recommendations are examples of such systems where user
data is being utilized to identify similarities of interest, find
the most relevant content, and recommend it to the target
user [31], [32]. Movies/TV series ranking is categorized as
non-competitive. The result of such ranking varies for each
user, and the producers neither have access to the results nor
can use it to gain a better rank later.

Ranking methods also can be used in financial settings
such as the stock market and banking. Studies about the stock
ranking problem aim to assign a rating to each stock within
a portfolio based on several features involved to construct
a portfolio with the highest profitability [33], [34]. Risk
evaluation in the banking systems is important for strategic
planning of the uncertain future. Gathering information on
systemic risk factors and generating a reliable systemic risk
ranking for supervision purposes can be helpful in decision-
making [35]. However, the literature of local explanations of
such rankings is scarce.

Rankings are also commonly used in other applications
such as student admissions, organ donation-receiving, and
job applications, where the ranking helps the administrators
make the best decision considering their limited resources.
In these applications, the competitors do not have access to
the information for improving their rank in the list. As an
example, Gale et al. [4] studied explainable and transparent
ranking for high school admissions. They simplified complex
ranking processes to explain the expected behaviors of rank-
ing processes based on the design of the ranking function.
To assist decisionmakers in understanding the impact of their
actions on the ranking, it is critical to develop interpretable,
explainable, transparent, and fair rankings.

B. COMPETITIVE RANKING
In a competitive setting, entities attempt to use past ranking
information to improve their performance based on the most
critical criteria for cyclic evaluations. Various sports produce
ranking lists for their teams and players. Such information
can help the administrators or the players try to achieve
a better ranking in the future. Explaining the important
factors affecting the ranking is crucial in this setting. For
example, Macmillan and Smith [36] investigated the FIFA’s

international soccer rankings for sample selection bias using
Ordinary Least Squares (OLS) models in a global ranking
setting. They introduced new attributes to capture the effect of
history and population in the regression model using a larger
size for their sample.

Some service industries take ranking seriously and offer
high-quality service to their customers. Rank providers
encourage competition in this case by providing an up-to-
date ranking for customers to choose the best services in
the market. Montanari et al. [37] studied the problem of
ranking nursing homes based on their capability to serve their
residents. They employed a latent Markov model to define
a performance index for each nursing home and proposed
two ranking procedures: a) solely based on the performance
indicator, b) considering the uncertainty due to its estimation
in a multiple comparison perspective. Results based on a case
study show the robustness of rankings obtained with respect
to different model specification.

Rankings related to education have been used for a long
time, where students use the information to select the best
schools, and the administrators use it to attract the best stu-
dents. The literature on local explanations of competitive
ranking is scarce. However, a few studies in the literature of
education ranking merely focus on the global explanation of
the rankings. Yang et al. [38] developed a web-based applica-
tion called ‘‘nutritional label’’ to present the ranking facts for
benchmarks, including computer science departments’ rank-
ing, criminal risk assessment, and financial services. These
facts are composed of a set of visual widgets that show the
result of a linear model for a global ranking based on fairness,
stability, and transparency.

Jajo and Harrison [39] studied the development of an index
to measure universities’ performance over several ranking
systems. The partial least squares path modeling (PLS-PM)
technique was employed to develop such an index by intro-
ducing a latent variable tomeasure a university’s performance
in a variety of ranking systems. Multiple scenarios were
considered to explore the impact of variable changes for a
specific university in any ranking system using the proposed
performance index. McAleer et al. [40] evaluated the effects
of the number of full-time-equivalent students (i.e., size) and
the percentage of international students (i.e., internationaliza-
tion) on academic rankings for private and public universities
by developing linear regression models. The Times Higher
Education World University Rankings dataset was used to
illustrate the positive relationship between the size and inter-
nationalization for Japanese universities in 2017 and 2018.

The state-of-the-art approaches on university ranking
merely focus on learning the ranking functions and evaluating
different ranking systems using machine learning techniques.
Frenken et al. [41] used a regression analysis to assess uni-
versities’ research performance and the influence of struc-
tural variables (e.g., location) on the performance differences
among universities. Tabassum et al. [42] specifically stud-
ied the correlation of university ranking indicators focus-
ing on identifying the influential features using an outlier
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detection approach. Mikryukov et al. [43] utilized Principal
Component Analysis (PCA) to identify the significant fac-
tors, latent variables, and the correlations between the latent
and the basic variables. Also, score-based performance is
critically evaluated for university rankings using PCA in [44].
Gale et al. [45] modeled the lagged rank as an independent
variable to account for the stickiness of ranking using the logit
technique.

C. SUMMARY OF CONTRIBUTIONS
Most of the existing related work is in non-competitive rank-
ing settings in which the ranked entities do not change their
attributes in the future to enhance their ranking. For example,
in [4], the top-k entities are returned using a ranking func-
tion (i.e., a weighted function with attributes). The authors
proposed a metric to assess the contribution of attributes on
the final ranking outcome, which directly depends on the
value of k . Particularly, the metric works to return the top-
k queries based on the importance of attributes involved in
ranking. Hence, the proposed framework cannot be applied
to every entity listed in a fixed ranking, such as university
ranking. However, in a university ranking (or any competi-
tive ranking) setting, we need to explain the importance of
attributes for different entities given their position on the
ranking list. We do not necessarily want to focus on top-k
entities. Even if we do, for k = 200 (full list of universities),
the returned importance by their proposed metric is global,
not local, as the approach considers all universities. For
example, there is no way to find out what features are more
important for a university ranked 53 using their approach.
As another example in non-competitive settings, the EXTRA
algorithm is designed in [14] for recommender systems and is
based on user-item interactions. However, in our setting (i.e.,
competitive ranking of entities) there is no item to bematched
with entities. Hence, the algorithm is not applicable in such
settings.

In the university ranking settings (also competitive rank-
ing) there are two most relevant papers in the literature by
Gale et al. [45] and Johnes [44]. In [45], although they con-
sidered the local explanation of the ranking, the focus of the
paper is to include the lagged rank as an independent variable
to account for the stickiness of the ranking. They do not
provide insights into the local importance of attributes for
different entities ranked in the list. In [44], they use state-of-
the-art techniques to reveal the problems of ranking scores
provided by different agencies such as the US NEWS and
Times Higher Education (as we also show in § V). This
existing work mainly identifies groups of important attributes
which are composite indices of original attributes. As a result,
they provide the global impact of the attributes on the ranking
and disregard the local behavior of entities.

Our proposed framework aims to show the local impor-
tance of attributes for each entity based on their location
in the ranking list and their corresponding neighborhoods
to provide a better entity-based insight into the competi-
tive ranking. To the best of the authors’ knowledge, there

is no existing work with the focus of explaining the local
impact of attributes given the position in the ranking for
competitive settings. This as well as the scarcity of the rel-
evant literature make it impossible to compare the output of
our research with any baseline.

III. FEATURE IMPORTANCE METHODS
Feature selection and importance calculation have a long
history in machine learning literature. Feature selection is a
pre-processing step that includes eliminating non-informative
and redundant information from the data. Feature selection
enhances learning algorithms, increases predictive accuracy,
and reduces the complexity of the results. Many studies have
proposed effective and efficient methods for feature selec-
tion, as a pre-processing technique for dimensionality reduc-
tion, preserving informative attributes in high-dimensional
data [46]–[48]. Feature selection techniques have also been
used for explanation to justify modeling outcomes [49].

To explain ranking functions with latent variables and
estimate their direct relationship with the attributes, a handful
of studies exist in the literature as described in § II.

A. INTERPRETABLE MODELS
1) LINEAR REGRESSION (LR)
LRmodels are used to identify the dependence of a regression
target (Y ) on various independent features (Xi). The weighted
sum of the features calculates the predicted outcome as Y =
β0+ β1X1+ . . .+ βpXp+ ε, where βi represents the learned
feature weight, β0 is the intercept, and ε refers to the error
in making the prediction. An advantage of linear regression
models is their linearity which makes the model easy to
interpret. Since the effect of features is additive, it is possible
to separate them and then describe each. Assume using a
linear regression model as an interpretable model. Then, the
features that receive the highest weights are the explanations
of themodel outcome (i.e., the ones that contributemost to the
outcome). It is possible tomeasure the importance of a feature
in a linear regression model by calculating the absolute value
of its t-statistic. The t-statistic is the estimated weight scaled
with its standard error [50] as in equation (1):

t
β̂j
=

β̂j

SE(β̂j)
. (1)

Equation (1) shows a direct relationship between the fea-
ture weight and its importance. It indicates that the more
variance the estimated weight has, the less important the asso-
ciated feature is. Linear regression used as an interpretable
model cannot capture the nonlinearity and often fails to iden-
tify the interactions between features by oversimplifying the
relationships. As an example of using linear regression for
ranking, Refenes et al. [33] studied the stock ranking prob-
lem, where the goal is to assign a rating to each stock within a
portfolio based on several features involved. Neural network
performance was compared with multiple linear regression,
and it has been shown that it yielded a better in-sample and
out-of-sample fitness than the linear regression model.
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2) PARTIAL LEAST SQUARE (PLS)
PLS is a dimension reduction method, which first identifies
a new set of features Z1, . . . ,ZM (i.e., latent variables) that
are linear combinations of the original features shown in
equation (2):

Zm =
p∑
j=1

φjmXj. (2)

PLS then uses these newly created features to fit a lin-
ear model using least squares as the loss function. Unlike
other dimension reduction techniques, PLS identifies these
new latent variables considering the relationship with the
response, Y , as well as the original features, Xis, and there-
fore, does a better job explaining the response. The latent
variables of the PLS are the directions in a projected lower-
dimensional space, where the variation of the data in the
original space and with regard to the response are explained.

PLS sequentially identifies the latent variables Z0 by fitting
a linear regression on Y and X . The weights of the orig-
inal features in the linear combination of equation (2) are
the coefficients of the fitted linear regression. The variable
with the largest weight is the most important in Z0. From
the second iteration of the PLS algorithm, we need to first
decorrelate the latent variables, Zj, and the original variables,
Xj, by regressing the latter on the former and computing
the residuals, which indicates the unexplained portion of
the variation. The orthogonalized data will then be used to
construct the next latent variable Z1. This process continues
until the predetermined number of latent variables, m, are
constructed. The original variables need to be standardized
before applying PLS to avoid bias in projection to lower-
dimensional space. Variable Importance in Projection (VIP)
scores [51], [52] are defined for each X variable, j, as the sum,
over the latent variables (LV), of its PLS-weight value (φj)
weighted by the percentage of explained Y variance (SSY )
by each specific LV, according to equation (3):

w2
j =

M∑
m=1

φ2jm
SSYm × p
SSTot ×M

, (3)

where M is the number of latent variables of the PLS model
and p the number of X variables. When the number of obser-
vations is much smaller than the number of variables in the
data set, PLS regression is the most suitable technique to
analyze them. The main drawback of PLS is that it assumes a
linear relationship between features and the response, which
is not necessarily the case. We shall elaborate on the univer-
sity ranking use case in a subsequent section and demonstrate
that the relationship between features and ranking is not linear
in most cases. In addition, PLS derives the latent variables,
which are unexplainable, and uses the VIP equation to cal-
culate feature importance. The SSY and SSTot are calculated
based on the linear regression fitted, which has the same dis-
advantage regarding the linearity assumption. Consequently,
when this assumption is violated in the data, the PLS result is
unstable [53] (i.e., this may yield a situation inwhich all of the

features are equally important, and does not help distinguish
between them).

3) DECISION TREE
The Classification and Regression Tree (CART) is a non-
parametric decision tree and nonlinear machine learning
model [54]. The CART algorithm utilizes a recursive binary
splitting approach to partition the input variable space into
smaller sub-regions. It is a classification method when the
response variable is categorical and a regression method
when the response is numerical. CART chooses binary splits
for regression predictive modeling problems by minimizing
the sum of the squared error (SSE) of the output in the result-
ing sub-regions. A greedy recursive binary splitting approach
is performed to identify an optimal splitting variable and an
optimal cut-off point that leads to the greatest possible reduc-
tion in SSE. The splitting approach continues until a stop
criterion is satisfied (e.g., maximum depth of the tree). The
final partitions when the CART algorithm stops are known as
leaves or terminal nodes. The predicted output is the average
output of the input points within each terminal node.

Feature importance in decision trees is calculated as the
total decrease in the variance or Gini index of a node that uses
the feature compared to the parent node. The higher the value,
the more important the feature. In particular, the importance
of each feature is calculated as the decrease in node impurity
weighted by the probability of reaching that node. The node
probability can be calculated by the number of samples that
reach the node, divided by the total number of samples. The
method of using Gini index, assuming only two child nodes
(binary tree), is as follow:

impj =
nj
n
ginij −

nj(left)
n

ginij(left) −
nj(right)
n

ginij(right), (4)

where nj is the importance of node j, n is the total number of
observations, ginij the impurity value of node j, j(right) and
j(left) indicate the left and right child nodes on j, and impj is
the importance of node j. The Gini impurity is calculated as
gini = p1(1− p1)+ p2(1− p2) where p1 and p2 are class 1,
2 probabilities. Hence, the importance for each feature on a
decision tree is then calculated as:

Wi =

∑
j impj∑

k∈allnodes impk
, (5)

where Wi is the importance of variable i and impj is the
importance of node j splitting on node i.
The sum of all features’ importance is scaled to 100 to

achieve a normalized total reduction of criteria. This criterion
indicates that the importance of each feature as a percentage
of the overall model value. Using the algorithm as an inter-
preting model can fail since small changes in the dataset can
make the tree structure unstable and result in high variance.
It does not perform well as a regression method in cases
with the continuous predicting values [50]. As an example
of PLS application in ranking, Zhu et al. [34] studied the
stock ranking problem in the North American stock market.
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They proposed a hybrid approach for ranking stocks that
combines the benefits of the decision-tree approach of CART
with the linear logistic regression model, which also offers
enhanced performance compared to either a stand-alone
CART or logistic regression. The hybrid approach overcomes
the limited sensitivity of CART to continuous variables,
where it avoids the coarse-grained response produced by
CART.

4) PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA is a widely used unsupervised method for dimension
reduction and feature selection [55]. PCA method projects
high dimensional data into low dimensional vectors, which
have uncorrelated components. PCA has certain advantages
in feature extraction, but unlike PLS, it does not consider
any information regarding the response variable. PCA seeks a
direction in feature space along which the data vary the most
and then projects the data in this direction. The projected val-
ues are the principal components. Assuming that each of the
variables has been mean normalized, the first component is
the linear combination of original features as in equation (6):

Z1 = φ11X1 + φ21X2 + · · · + φp1Xp, (6)

where φi1 are the parameters of the PCA, referred to as load-
ings of the first component. The loadings are constrained so
that their sum of squares is equal to one (i.e.,

∑p
j=1 φ

2
j1 = 1).

The loading vectors are the directions with the largest vari-
ance, which are, in fact, the ordered eigenvectors. Hence, the
parameters of the PCA components can be obtained by an
eigendecomposition. Principal components are constructed
sequentially, being uncorrelated to the previous component.
In particular, the second principal component Z2 is the linear
combination of features with the maximal variance of all
linear combinations uncorrelated to the first component.

With PCA, a biplot can be set up to represent the variables
and observations as a graph, thereby allowing the correlations
and associations to be visualized to facilitate interpretation
of the associations and variation, and consequently, aid in
the selection of attributes. The PCA biplot gives an overview
of the similarities and differences between attributes and
the interrelationships between them. Consequently, biplot
analysis is a provisioning tool to identify less important
attributes in the ranking. In this paper, we utilize biplot and
will not use PCA for feature importance calculation. Due to
the low interpretability of principal components, PCA is not
considered as an explanation technique. As an example of
using PCA in ranking, Fang et al. [35] combined five popular
systemic risk measurement rankings (i.e., SRISK, Leverage,
CoVaR, VaR and CAPM-β× MV) for 16 Chinese banks by
applying the PCA model. Their proposed framework gathers
themain information on systemic risk and generates a reliable
systemic risk ranking for supervision purposes.

B. MODEL-AGNOSTIC METHODS
A model-agnostic approach is an alternative approach for the
explanation and interpretability of machine learning models.

These methodologies treat the original model as a black-box
and extract post-hoc explanations, which involves learning
an interpretable model on the predictions of the black-box
model [56], [57], and evaluating the sensitivity of model
through perturbing input sample points [10], [58], [59].

1) LOCAL INTERPRETABLE MODEL-AGNOSTIC
EXPLANATIONS (LIME)
LIME aims to explain individual predictions of black-box
machine learning models [10]. LIME approximates complex
model functions by locally fitting linear models to random
permutations of the original training set to provide point-
wise explanations. It helps to identify and explain which
features are contributing the most to the prediction. LIME
starts with perturbing each feature in the training dataset
individually and creating a new subset of sample points.
The newly generated samples are taken from a distribution
centered at the training data and not necessarily around the
instance of interest, which can be problematic [50]. LIME
calculates a similarity score as the distance between new
sample and the original data. Considering p features, it trains
an interpretable model on the new subset of samples, which
is weighted by the similarity score. The output of this model
(i.e., features weight) explains the machine learning model’s
local behavior.

Mathematically, LIME aims to minimize a loss function
L(f , g, πx), where f , g, and πx refer to the original model,
an explanation model, and similarity kernel measuring the
proximity of a new sample z (i.e. perturbed sample point)
to x (i.e, original data point), respectively. Defining �(g) as
a measure of complexity (as opposed to interpretability) of
the explanation g, the explanation by LIME is obtained by
equation (7):

ξ (x) = argmin
g

L(f , g, πn)+�(n). (7)

Equation (7) demonstrates that samples are generated
around x and weighted by πx to approximate L(f , g, πx).
Such approximation aims to learn the local behavior of the
original model f andmeasures how close the explanation ξ (x)
is to the prediction of the original model. One way to generate
new sample points is to perturb the instance of interest by
sampling from a Normal(0, 1) distribution and applying the
inverse operation of mean-centering and scaling, based on
the means and standard deviation in the data. This results in
the total loss of the covariance structure where the samples
lie outside the space of a real dataset [60]. Another way for
sampling is to use an exponential smoothing kernel where it
takes two data instances and returns a similarity measure to
define the neighborhood. The size of such neighborhood is
defined by the size of the kernel width, which crucially affects
the performance. Smaller the size, lower the effect of farther
instances to the model output. There is not a unified way to
find the best kernel width [50].

There are a few studies that use LIME for text-based rank-
ing models explaining the relevance between a single query
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document pair [27], [61], and binary sentimental analysis as
a classification task [62]. The literature of using LIME for
competitive ranking explanation is scarce.

2) SHAPLEY ADDITIVE EXPLANATIONS
ShapleyValue (SV) originallywere introduced in the 1950s to
measure contributions of individual players to a cooperative
game [63]. A coalitional game consists of a set of N players
and a characteristic function v which maps subsets S ⊆
{1, 2, . . . ,N } to a real value v(S), satisfying v(∅) = 0. Sup-
pose we could replay the gamewith all possible combinations
of (a subset of) players and observe the resulting team score
v(S) (aka payout). We could then divide the overall payout
among the players based on their average contributed value
across all possible subteams to which they were added. This
individual payout is the player’s Shapley Value. SV payout
scheme is proven to be:
• Efficient: the Shapley Values of all players should sum
up to the total payout,

• Symmetric: the payout of two players are the same if
they add the same value in all team combinations,

• Dummy-sensitive: a player that never improves a sub-
team’s performance when it is added to the subteam
should have a Shapley Value of zero,

• Additive: in case of a combined payout (say we add two
game bonuses), the combined Shapley Values of a player
across these two games is the sum of the individual
game’s Shapley Values.

In machine learning applications, considering the success
of a team as an output, each player’s contribution can be con-
sidered as the feature importance. SV has been recently used
as an interpretable model-agnostic explanations to calculate
feature importance [58]. SV is an intuitive tool to under-
stand both global feature importance across all instances in
a dataset and instance-wise feature importance in black-box
machine learning models.

The general idea of SV is based on the inclusion and
exclusion of variables to calculate their individual impacts
on the prediction. This is calculated by fitting a linear model
on the full dataset but considering only a subset of features
for prediction of an instance. The subset of features are all
possible coalition subsets of features, which makes the SV
impractical predictive modeling applications with a large
number of features. The estimation methods are proposed to
reduce this computational complexity. Instead of calculating
the Shapley Values using all possible coalitions, only a subset
of these coalitions is selected in a random manner for the
calculation.

Let S be a subset of features that does not include the
feature for which we calculate the importance. Let M be the
full set of features. Given a model g(x) trained to predict
f (x), the marginal contribution of feature i to the model’s
prediction and accordingly to the score f (X ) is:

φi =
∑

S⊆Mri

|S|!(|M | − |S| − 1)!
|M |!

[g(S ∪ i)− g(S)], (8)

where S∪i is the subset that includes features in S plus feature
i and S ⊆ M r i indicates all sets S that are subsets of the full
set of featuresM , excluding feature i.
In the ranking context, SV identifies the distribution of a

model’s prediction resulting from an input feature vector over
the individual features. To the best of our knowledge no work
in the literature exists that uses SV for ranking explanations.

IV. LOCAL EXPLANATION FOR GLOBAL RANKINGS
While the explanation space itself and methods to generate
explanations are widely known in practice for classification
tasks, little has been explored on leveraging explainability
techniques for ranking tasks, and more specifically, for com-
petitive ranking. In this section, we first describe our hierar-
chical neighborhood construction idea and then describe the
utilization of EAI techniques (both model-based and model-
agnostic approaches) within each neighborhood to identify
the local impact of features.

Let N be a list of |N | = n ranked entities with a set of
attributes x =< x1, . . . , xp > indicating p ranking param-
eters and total score of f . The score is the ranking function
that is normally defined as f (x) =

∑p
i=1 wi ∗ xi, where

w1, . . . ,wp are the global weights of each attributes given
such that

∑p
i=1 wi = 1. Let (xs, f s) indicates the attribute and

the score of an entity ranked s. Hence, s � s′ implies f s ≥ f s
′

.
We assume f is a monotonic ranking function, i.e., having two
entities with equal attributes except one, ranking function, f ,
of the two entities follows the dominance direction of the
single unequal attribute.

In the competitive ranking, if two entities compare equally,
they obtain the same ranking. This will accordingly leave a
gap in the numbers that represent the ranking of the universi-
ties. If r universities receive the same ranking, then there will
be r−1 units of the gap in the ranking numbers succeeding the
last university that compared equally. This ranking strategy is
commonly used in competitions since it ensures that if two or
more participants tie for a ranking position, the positions of
all those listed worse remain unchanged [64], [65].

The global weights, wi, are defined considering all the
entities in the ranking list,N , and are also independent of the
rank of the entity. However, the competition between entities
and the performance improvement strategies occurs within
certain proximity for each entity. To investigate the local
influence of attributes on ranking, we propose a hierarchical
neighborhood-based feature importance calculation, which
is more aligned with the nature of ranking where entities
compete with their adjacent peers. Our proposed hierarchi-
cal feature selection approach partitions entities into subsets
(i.e., neighborhoods), based on their adjacency in the ranking
list. Consequently, instead of similarity-based partitioning,
we consider a subset of entities located in the same ranking
range to capture the local impact of features.

For each entity ranked s let Hs
= {Hs

1, . . . ,H
s
ks} be

the set of ks neighborhoods with the one side size of
zj,∀j = 1, . . . , ks. More specifically, each neighborhood is
constructed considering zks entities below s and zks entities
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above it;Hs
j = {(x

s−zj , f s−zj ), . . . , (xs+zj , f s+zj )}. We refer to
the first neighborhood Hs

1 as the immediate neighborhood,
where entity s is surrounded by 2 ∗ zks number of neigh-
bors. The second neighborhood, Hs

2, is called near, and the
third and largest one, Hs

3, is named far neighborhood. Note
that if the one side size of the neighborhood zj is larger
than rank s, the neighborhood includes only the ones that
do not exceed the range of the ranking, i.e., s − zj > 0
and s+ zj < |N |. The neighborhood structure is hierarchical,
meaning that each neighborhood encompasses its predeces-
sor neighborhood members as well as the new ones.

To clarify the neighborhood concept for each entity in
the ranking list, let us provide an example. Consider s = 5
and zj = 5. The immediate neighborhood, then, will be
Hs

1 = [1, 2, 3, 4, 6, 7, 8, 9, 10], which includes 10 univer-
sities surrounding the university number 5 in the list. Other
neighborhoods,Hs

j , can be constructed similarly.
The underlying distribution of the attributes impacts how

much each factor contributes to the final ranking. Even
though each feature’s global contribution in ranking is known,
different distributions of attributes in different neighborhoods
around entities of varying rank result in substantial dif-
ferences in their importance. This indicates the impact of
unknown latent attributes not explicitly considered in the
weighted sum score function for ranking.

Consequently, learning the distribution of attributes locally
better explains the rankingmechanism for decision processes.
Considering the hierarchical neighborhood construction for
each entity reveals the explicit contribution of each attribute
on the final ranking for each entity based on the local behavior
of its neighbors, rather than being misled by the whole set of
entities in the ranking. The local explanation of the attributes
results in having proportional expectations on the outcome
corresponding to a change in various attributes, i.e., derived
by a performance improvement strategy.

Let wsi(j) be the weight of attribute xi in neighborhood Hs
j .

We define Ws
j as the set of importance weights for all

attributes in neighborhoods j, ∀j = 1, . . . , ks, for entity
ranked s. To determine the weights of each attribute, xi,
∀i = 1, . . . , p in each neighborhood, ks, we utilize a variable
importance calculation technique (i.e. EAI techniques) within
each neighborhood.

The local importance of features, wsi(j) , is less biased
towards a group of entities, in which one or a subset of
features are more representative than the ones in other
groups. Therefore, it provides better explainability regard-
ing the performance of entity s. Algorithm 1, represents
the proposed neighborhood-based explanation framework.
Steps 2-5 indicate the upper side neighborhood construction,
and steps 8-12 indicate the lower-side neighborhood con-
struction. Step 11 shows the calculation of variable impor-
tance using the techniques described in § III.

The hierarchical neighborhood construction allows us to
evaluate the local impact of features calculated by EAI pre-
cisely. The variation in feature importance from an immediate

Algorithm 1 Neighborhood-Based Explanation
Input: s
1: Hs

j = ∅;
2: for j = 1 to ks do
3: for l = 1 to zj do
4: if s− l > 0 then
5: Hs

j = (xs−l, f s−l) ∪Hs
j

6: end if
7: Hs

j = (xs, f s) ∪Hs
j

8: end for
9: for l = 2 to zj + 1 do
10: if s+ l < N then
11: Hs

j = (xs+l, f s+l) ∪Hs
j

12: end if
13: end for
14: end for
15: for j = 1 to ks do
16: Ws

j ← EAI (Hs
j , x)

17: end for
18: returnWs

neighborhood to a distant neighborhood confirms the neces-
sity of the local importance of a feature for an entity. The
sensitivity of an EAI technique is measured by the total
variation of the feature importance across ks neighborhoods
of entity s as in equation (9):

var(wsi ) = E[(wsi −
1
ks

ks∑
j=1

wsi(j) )
2], ∀i = 1, . . . , p. (9)

This is a necessary step since we do not have access to the
actual local important features to evaluate the performance of
different EAI techniques. In classification settings, a prede-
fined set of features for classification is known in advance and
are considered important features (i.e., ‘‘golden features’’).
This, however, is not a possible approach for competitive
rankings, where we do not have any control over the ranking
list.

Considering a distinguished competition in each neighbor-
hood for an entity, a method that reflects a larger variance for
feature importance across neighborhoods is a more reliable
model for local explanations.

EAI techniques are mainly designed to explain any classi-
fier. However, in this paper, we have a different setting, i.e.
ranking. In order to adopt EAI for competitive ranking, in this
paper, we consider ranking as a numerical response and seek
to identify the contribution of each feature on the response.
• Model-based Methods: Considering ranking as Y and
ranking indicators as X , we fit Linear Regression, Partial
Least Squares, and Decision Tree with each neighbor-
hoodHs to calculate the local importance of features.

• Model-agnostic Methods: To apply LIME to rank-
ing, we first need a model on which the ranking is
to be explained. The reason is that LIME is designed
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to explain a predictive model and cannot be applied
independently. In this paper, we use anMLmodel on the
ranking to map Y and X in each neighborhood first, then
apply LIME to explain the contribution and importance
of each feature. SV, however, can be adopted directly
on the ranking without requiring a model since it uses a
linearmodel in its algorithm for contribution calculation.
SV considers the rankings as the predicted values of a
black-box model (i.e. ranking function) and calculates
the feature importance through its exclusion/inclusion
process by fitting a local interpretable model. However,
the inbuilt locality of SV that is performed on the entire
dataset will not consider the localized competition. That
is why, in this paper, we use SV within each neighbor-
hood to limit the sample generation of SV to a proper
locality for competitive rankings.

V. UNIVERSITY RANKING
Various organizations provide university rankings yearly with
the sole goal of comparing each university’s resources. Uni-
versity administrations take such rankings seriously to adver-
tise their programs, prioritize their resource allocations, and
compete for a better place in the following evaluation cycle.
Making random decisions for investing in a factor such as
increasing the number of international students or allocating
more teaching resources will not necessarily improve the
entity’s rank for the next year since an adjacent university
might do the same. Also, any global ranking provided by
university ranking agencies fails to capture entities’ under-
lying competition. In addition, the nature of the competition
is different for each entity based on location in the ranking
list. For example, strategies of ranking improvement for a
university ranked five do not necessarily benefit a university
ranked 50 on the list. Therefore, the competition to improve
the rank among universities is different based on the loca-
tion and neighborhood they are located in. It is critical to
construct a model to assess the locally faithful importance
of the attributes and provide insights into the nature of the
underlying competition to assist university administrators in
developing proper strategies to improve their rankings. This
helps decisionmakers identify the best subset of actions to
take at the entity level.

Most academic rankings attempt to measure the quality
of university education and research based on the research
productivity, teaching quality, and the number of students
and faculty/staff, etc. Utilizing the Times Higher Education
ranking dataset [66], we identify the contribution of each
ranking attribute to the overall ranking. This will allow us to
get an insight into the actual importance and differentiation
across different ranking groups.

First, we performed a PCA analysis and produced a Biplot,
shown in Figure 1, to compare and identify the contribution
of different attributes to the ranking. Although biplots are
mainly a two-dimensional exploratory graph, they provide
a summarized analysis of the directions of variation in the
data, mainly the importance (i.e., loadings) of attributes and

components in one plot. To better visualize the impact of
the attributes across different ranking groups, we considered
four groups of rankings and labeled them as [1, 20], [20, 50],
[50, 100], and [100, 200]. The loadings are plotted as vectors
in the space.

FIGURE 1. Biplot of ranking indicators using PCA analysis.

As illustrated in Figure 1, the PCA result indicates that
teaching and research are the main factors for the first prin-
cipal component, which explains the largest variation in the
ranking since the two attributes have large positive loadings.
Income, international, and citations are less important to the
first component, as they are far from the horizontal axes and
are highly loaded features for the second component. Our
findings show that the top 20 universities (red dots in the
plot) tend to have higher teaching and research indicators.
Furthermore, we can observe that middle-rank universities
(blue dots) have citations and international as the critical
indicators for ranking. Lastly, for lower ranked universities,
income plays the main role in the ranking variation, and all
other factors have a lesser overall impact. In particular, these
universities are on the negative portion of the scale (i.e., lower
scores than average) related to teaching and research indi-
cators. The loadings of attributes in each component are
provided in Table 1. Relationships between features shown
in PCA-Biplot graphics can be evaluated according to the
angles between vectors. The smaller the angle between any
two traits, the more closely related they are.

Although the preliminary results based on Biplot demon-
strate that the global importance of attributes differs across
different ranking groups, it is not as precise as it should be
for more granular level decision-making.

Next, we compared the PLS result to discuss the local and
global importance of attributes more percisely under different
scenarios shown in Figure 2. Since the Times Higher Educa-
tion ranking calculation equation is a linear weighted summa-
tion of attributeswith ‘‘30%:teaching’’, ‘‘7.5%:internationa’’,
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TABLE 1. PCA loadings.

‘‘30%:research’’, ‘‘30%:citations’’, and ‘‘2.5%:income’’, the
coefficients of a linear regression approximation mapping
ranking and attributes are precisely equal. This indicates the
global impact of the attributes, which is obviously aligned
with the weights provided by the Times Higher Education
report [3].

In Figure 2, we can observe the pairs that the plot builds
using two basic figures, the histogram and the scatter plot.
The histogram on the diagonal allows us to see the distri-
bution of a single variable, while the scatter plots on the
lower triangle show the correlation between two variables.
The pair plot is used to figure out which attributes are best
for explaining the impact of each variable on the response
variable of interest, in our case of university ranking. The
pair plot demonstrates between variable correlations present
in the dataset. For example, the left-most plot in the fifth
row shows the scatter plot of ‘‘world rank’’ versus ‘‘cita-
tions’’. The color-coding of the points indicates universities
with different groups of rankings categorized as ‘‘top-20’’,
‘‘20-40’’, ‘‘40-80’’, ‘‘80-100’’, ‘‘100-150’’, and ‘‘150-200’’,
for visualization purpose. We can observe that, for some
variables, there exist some global trends with the ranking
(e.g., ‘‘research’’). However, for others, there is no global
pattern (e.g., ‘‘international’’). Looking more precisely at the
groups of ranking, we can identify some local correlations.
Focusing on a subgroup of universities in group ‘‘40-80’’
ranked between 50 to 60, Figure 2 (a) and (b) demonstrate the
local trend exists for ‘‘income’’ and ‘‘international’’ variables
versus world rank, which is in contrast with the global pattern.

Finally, we evaluated the Times Higher Education ranking
in 2020 to show the nonlinear nature of the ranks, shown in
Figure 3. Such insights can help understand the relationship
between the rank and the score for each entity. It also empha-
sizes that in a competitive ranking, several entities might
get the same rank, which can change the system’s dynamic
and the inability of some explanatory models to capture the
feature importance correctly.

Figure 3 (a) shows the nonlinear relationship between
the total score and the world rank in specific ranges such
as [40-80]. In these ranges, the universities are less sticky
in ranking and do not show a linear relationship between
their score and ranking (see the sudden changes of the slope
and the gaps). The distribution of the world ranks and the

total scores along with their central tendency are depicted in
Figure 3 (b) and (c), respectively. For these plots, the y-axis
shows the density or the normalized counts of observations
for each subset. Figure 3 (b) indicates that there are uni-
versities with the same ranks in several subsets, especially
above 100 in the ranking list. This also highlights the reason
for seeing gaps in the ranking, as in Figure 3 (a), for the
ranges such as [140-160]. Figure 3 (c) shows that the total
score distribution has a positive skew meaning that the scores
for lower-ranked universities, especially for ranges [40-80],
are very close. As we move further in the ranking list, the
scores differ significantly. This emphasizes the nonlinear
relationship between score and rank as in Figure 3 (a) for
the corresponding range. It also shows that the competition is
tight and different for the lower ranked universities compared
to the higher ranked ones.

VI. RESULTS
A. DATASET DESCRIPTION
We analyzed the Times Higher Education [66] university
ranking dataset for year 2020 to evaluate the local explana-
tion frameworks using different models as in § III including
Linear Regression (LR), Partial Least Squares (PLS), Deci-
sion Trees (CART), Shapely Value (SV), and Local Inter-
pretable Model-Agnostic Explanations (LIME). We use X1,
X2, X3, X4, and X5 teaching, international, research,
citations, and income, respectively, as the ranking deter-
minants (also called attributes). We filtered out the univer-
sities with rankings above 200 since there were labeled as
ranges instead of precise rankings. To evaluate the perfor-
mance of the proposed framework using the above methods
for all the ranges of the ranking dataset, we designed differ-
ent scenarios to consider universities with a wide range of
rankings. We categorized the scenarios into two groups of
below 101 in the ranking, namely [5, 15, 25, 45, 65, 85, 101],
and above 101, namely [110, 120, 130, 141, 149, 157, 175].
Note that in the 2020 world ranking list by the Times Higher
Education [66], no university has been ranked 100. Therefore,
we used 101st university since it is in the targeted scenario
border. Also, there is a gap in ranking for some universities
above 101. As mentioned before, in a competitive ranking
problem, some ranking spots are not necessarily filled by any
entity, while various entities have the same rank in the list.
Therefore, we had to select existing rankings with respect
to their scatter for the second scenario for our university
benchmark problem. We defined three neighborhoods with
sizes of 5, 10, and 15 as immediate,H1, near,H2, and far,H3,
neighborhoods. It should be noted that since LIME works
with random sampling, it generates different outputs in each
run, where setting a random seed does not necessarily yield
to the same output [67]. Therefore, we report the average of
30 runs for LIME in the results subsection.

For LR, CART, and PLS we utilized Scikit-learn
packages. We adapted the basic SV algorithm imple-
mented in [68]. For LIME we used python implementation
provided in [69].
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FIGURE 2. Pairs plot to show local and global importance of attributes for different rank groups.

B. RESULTS INTERPRETATION
Figure 4 provides the results of our proposed framework
using the interpretable techniques in identifying the local
explanations of the ranking for universities below 101 in
the ranking list. The heatmaps help to identify which fea-
tures are most related to the ranking within each of the H1,
H2, and H3 neighborhoods. Each heatmap has two vertical
axes, one representing the three neighborhoods and the other
representing the feature importance values. Since each tech-
nique results in a different range for the importance values,

we scaled them to be between 0 and 1 using a maxmin scaling
approach. There are also two horizontal axes: one shows the
specific instance in the ranking list (e.g., a university ranked 5
in the list of 2020 ranking is shown as Uni.5), and the other
represents the attributes X1, X2, X3, X4, and X5.
As observed in Figure 4 (a), LR is not able to distinctly

explain the local impact of the features across neighbor-
hoods in the majority of cases. Moreover, LR acknowledges
all features as equally important within each neighborhood.
As in Figure 4 (c), CART, on the other hand, emphasizes
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FIGURE 3. Characteristics of the university ranks and scores using Times 2020.

a single attribute and creates a sparse decision space within
each neighborhood, which provides a limited point of view
for the decisionmakers. As expected, CART disperses the
output, which refers to its limited sensitivity to regression
settings (ranking in our case). Consequently, the local impact
of the attributes (especially the ones that have been dropped)
is not properly reflected across neighborhoods. One can sim-
ilarly confirm the underestimation of LIME, in Figure 4 (e),
in identifying the importance of the attributes in many cases
either within or across neighborhoods. This indicates the
disadvantage of usingLIME for competitive rankings, where
the local perturbation approach of LIME generates non-
existing instances and utilizes them to calculate the feature
importance. As we can observe, both PLS, Figure 4 (b), and
SV, Figure 4 (d), are capable of capturing the local impact
of features across different neighborhoods and in most of the
considered university instances.

A closer look at the range of [40-80] in the ranking list
shows the ineffectiveness of PLS in distinguishing attribute
importance across the three neighborhoods. Therefore, PLS
does not reflect the local impact of attributes precisely. More-
over, PLS feature importance identification works similar to
the global impact since the importance of attributes becomes
less distinct in immediate and near neighborhoods. For exam-
ple, PLS identifies all attributes to be important for Uni.45
especially in the near neighborhood. As we discussed in
section V, the [40-80] range in the 2020 university ranking
list is a critical interval due to the fact that these universi-
ties are less sticky in ranking and do not follow the linear
relationship between score and ranking. This indicates that
the local importance of features for the universities in this
range significantly differs from their global importance due to
the presence of latent factors (e.g., competition). In contrast,
in the critical interval, SV in Figure 4 (d), strictly captures
the dissimilarity in the importance value of each feature and
explains the local impact of all features for different ranking
entities across the list.

For example, see Uni.45 in Figure 4 (d), where X1 and X4
(i.e., teaching and citation) are identified by SV to be the
most influential ranking factors in the immediate neighbor-
hood, H1. However, moving from the immediate H1 to the

near neighborhood H2, X3 (i.e., research) becomes the most
important attribute. For the far neighborhood, H3, X3 con-
tributes significantly to the ranking of the university. Such
information implies that if university 45 wants to improve
its ranking for the next evaluation cycle in competition with
its close competitors, spending the budget on the teaching
and citation agenda is better. Otherwise, to compete more
globally (H2 or H3), its strategic plan should be more
focused on research. Such interpretation of the outcome of
our proposed framework provides an informative guideline
for performance improvement for decisionmakers and higher-
education policymakers.

Figure 5 provides a deeper insight into the influence of
important features across defined localized neighborhoods
for universities ranked below 101. The vertical axis represents
the feature importance values. The figure has two horizontal
axes: one shows the specific instance in the ranking list, and
the other represents the attributes X1, X2, X3, X4, and X5.
The bars for each attribute for each instance indicate the
average importance (i.e. 1/3 × [(Ws

1 +Ws
2 +Ws

3)]) across
neighborhoods. The larger the bar, the higher the importance
of a feature in all neighborhoods combined. The size of the
errorbars also demonstrates the variance of feature impor-
tance values across neighborhoods on each bar in Figure 5.
In other words, each error bar shows the range of the change
of a feature importance value moving from the immediate
neighborhood,H1, to the far neighborhood,H3. Higher vari-
ance means that the value of feature importance for a specific
attribute changes dramatically in the three neighborhoods.
Note that the error bars indicate the model’s sensitivity in
feature importance calculation to the neighborhood size. As a
result, a model with a larger errorbar better depicts variations
in the importance of a feature from one neighborhood to the
next. As we can observe in Figure 5, SV has larger error bars
compared to other methods in the majority of cases.

As an example, for the university ranked 45 (i.e., Uni.45)
Figure 5 (d) shows a large variance for attribute X3 across
three neighborhoods. Referring to Figure 4, we observe
that the feature importance of X3 dramatically increases
moving from the immediate neighborhood, H1, to the far
neighborhood, H3. This is important information for the
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FIGURE 4. Heatmap of feature importance for different neighborhoods of university instances below 101.

decisionmakers of university 45, first, to determine in which
neighborhood they intend to compete for the next evaluation
cycle, and then prioritize their resource allocation to the most
important attribute based on their budget. More importantly,
the attribute with a large variation across neighborhoods plays
the key role in the competition within the neighborhood in
which the attribute has the largest importance. In cases where
the university wants to secure a rank in competition within
a larger neighborhood (H3) of universities (e.g., making

a significant jump to a lower rank), it needs to invest in
X3 more than other attributes.

For universities with rankings above 101, Figure 6 shows
the heatmaps of different interpretation techniques. The
results depicted in this figure are consistent with the obser-
vations for universities below 101 in the ranking list. LR,
CART, and LIME fail to differentiate the feature impor-
tance values across different neighborhoods of several enti-
ties. SV performs better compared to PLS. Consider, for
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FIGURE 5. Barplot of mean and variance of feature importance for different neighborhoods of university instances below 101.

example, the university ranked 157 (i.e., Uni.157). SV indi-
cates how moving from the immediate neighborhood to
the far neighborhood changes the priority of resource allo-
cation for more effective competition. In contrast, PLS
assigns relatively equal importance to the attributes across
different neighborhoods. In addition, SV clearly distin-
guishes the important attributes within each neighborhood.
For example, for Uni.157 in Figure 6 (d), X1 (i.e., teach-
ing) is identified by SV to be the most influential ranking

factor in the immediate neighborhood, H1. However, mov-
ing from the immediate H1 to the near neighborhood H2,
X3 (i.e., research) becomes important as well. For the far
neighborhood, H3, X3 contributes significantly to the rank-
ing of the university. This information helps the university
administrators to compete with targeted competitors.

Figure 7 presents the average and variance of features’
importance across neighborhoods for universities above 101.
Recall that the higher variance means that the value of
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FIGURE 6. Heatmap of feature importance for different neighborhoods of university instances above 101.

feature importance for a specific attribute changes dramati-
cally across neighborhoods. As we can observe in Figure 7,
SV still has larger error bars compared to PLS method. PLS
demonstrates similar importance of attributes across neigh-
borhoods, unlike SV that precisely distinguishes between
variables.

We initially investigated the ranking dataset provided
by Times Higher Education over two consecutive years to

identify a university that exactly follows the weights obtained
through our local explanation strategy. However, there exists
no entity with an exact match. Since the ground truth of
the local importance of attributes is not available, it is not
possible to evaluate the correctness of any strategy. To deter-
mine whether the important attributes recommended by the
proposed models are the truly important ones, we would need
to implement a real-world label collection procedure (i.e., the
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FIGURE 7. Barplot of mean and variance of feature importance for different neighborhoods of university instances above 101.

effectiveness of recommended strategy based on our provided
weights) from universities that followed our proposed out-
come to improve their ranking for the next evaluation period.

VII. CONCLUSION
In this study, we first investigated the global impact of
universities in different rank groups. We then demonstrated
that the important attributes differ for different rank groups.
Moreover, we showed that the importance of attributes does
not follow the global impact reported by the Times Higher

Education. More specifically, the local influence of attributes
depends on the rank position as well as the neighborhood
consideration. We used correlation analysis and Principal
Component Analysis for this purpose. We proposed a hier-
archical ranking explanation framework to identify the local
impact of attributes across the ranking list. Our proposed
technique considers a hierarchical neighborhood construc-
tion to reveal the impact of attributes for a given instance.
The discovery of the local impact of involved attributes in
ranking potentially reflects the latent competition influence
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on the ranking. We used the most common feature selection
techniques to identify the importance of attributes. More
importantly, we introduced leveraging explainable AI tech-
niques, including Shapely Value, as the most successful local
and pointwise explanation methodologies for a competitive
ranking explanation.

We evaluated the performance of our proposed frame-
work using the Times Higher Education dataset for year
2020 as the baseline. We considered two groups of model-
based and model-agnostic feature selection techniques along
with our proposed framework to identify the importance
of attributes in different neighborhoods. The results indi-
cate that model-based techniques fail to distinguish between
attributes’ importance within each neighborhood. Partial
Least Square and Shapely Value outperform other techniques
in reflecting the local importance of attributes across the
neighborhood hierarchy. However, Shapely Value competi-
tively demonstrates the local importance of attributes for dif-
ferent university instances, especially for those in the critical
ranking interval which are less sticky to the ranking and do
not follow the linear relationship between score and ranking.
Our findings in the experiment section advocate Shapely
Value for the local explanation of competitive rankings.

In this study, we considered the ranking as static obser-
vations and we assumed the time effect is not significant.
The framework can be applied for different rankings over
different years. However, we aim to consider the time effect
on the local importance of attributes for competitive ranking
as a future direction. Moreover, we only considered super-
categories of attributes for university ranking (i.e., research,
teaching, etc.) and did not include the pre-weighted indicators
(e.g., reputation survey, Institutional income per staff, etc. for
teaching [3]). Due to the data limitation and accessibility we
only focused on the publicly available attributes. Note that
our proposed framework can be generalized to incorporate
any size of attributes.
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