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ABSTRACT Wireless local area network (WLAN)-based localization is key for advanced indoor Internet-of-
Things and embedded sensor applications. To further improve the accuracy of indoor localization, attention
has been focused on WLAN-based indoor localization using channel-state information (CSI) in addition to
the existing information provided by received signal strength (RSS). For easy and low cost installation of
wireless sensing, wireless sensing based on standardized protocols and commercial WLAN devices, such as
IEEE 802.11ac and IEEE 802.11ax, is necessary. There are few papers demonstrating AoA estimation results
by using commercial WLAN devices based on CSI. Therefore, we propose a practical method for estimating
the AoA to solve four problems: 1) compressed CSI, which cannot be used for AoA estimation directly, 2) the
antenna wireline, in which the phase changes depending on the length of the wireline, 3) the antenna spacing,
in which the distance between antennas places a restriction on AoA estimation, and 4) antenna individuality,
in which the antennas used in actual MIMO communication have different characteristics. We implemented
the proposed method on IEEE 802.11ac devices and evaluated it in a lecture room and shield tent. The results
indicate that the proposed method can estimate AoA with an average error of 9.1◦ and reduce the estimation
error by 85.4 % compared with a straightforward approach.

INDEX TERMS Wireless sensing, angle-of-arrival estimation, IEEE 802.11ac, IEEE 802.11ax,
compressed CSI.

I. INTRODUCTION
Wireless localization is a key technique for several impor-
tant indoor Internet-of-Things (IoT) and embedded sensor
applications such as navigation [1]–[4], location-aware ser-
vices [5]–[7], and human–computer interaction [8]–[10].
The global positioning system [11] has become a stan-
dard technology for outdoor localization. However, indoor
localization faces several challenges, and numerous stud-
ies have been conducted using technologies such as
WLAN [12]–[20], RFID [21]–[24], Bluetooth [7], [25], [26],
IEEE 802.15.4 [27]–[29], millimeter-wave [30], aircraft sig-
nals [31], ultrawideband [32], and backscatter signals [33].

The associate editor coordinating the review of this manuscript and

approving it for publication was Kashif Saleem .

We focus on the WLAN-based estimation of the angle
of arrival (AoA), which is a key piece of information
of WLAN-based indoor localization, because it allows the
existing WLAN infrastructure to acquire the AoA of
WLAN packets. ArrayTrack is the first system to con-
sider AoA derivation in the WLAN infrastructure and
a proof-of-concept test was demonstrated using the Rice
WARP FPGA platform [34]. Several WLAN-based wire-
less localization techniques [14], [15], [17]–[20] have
been developed using channel state information (CSI)
on IEEE 802.11n [35] with the CSI tool [36], [37].
In particular, Ubicarse [14], SpotFi [15], Chronos [17],
MonoLoco [18], and UAT [19] can successfully acquire
the AoA from the CSI tool for wireless localization. For
example, Chronos [17] performs decimeter-level localization

49128 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-6107-1513
https://orcid.org/0000-0002-5617-155X
https://orcid.org/0000-0002-6960-0122
https://orcid.org/0000-0002-3227-9048
https://orcid.org/0000-0002-1625-5521
https://orcid.org/0000-0001-8062-3301


T. Fukushima et al.: Feasibility Study of Practical AoA Estimation Using Compressed CSI

by combining the AoA and time of flight of wireless
signals.

The method of this paper advances WLAN-based AoA
estimation a step further toward wide deployment as it allows
commercial WLAN devices such as IEEE 802.11ac and
IEEE 802.11ax to realize highly accurate AoA estimation.
WLAN-based AoA estimation in previous studies was based
on IEEE 802.11n (WLAN 4), CSI tool, Intel 5300 WLAN
cards, Atheros chipsets, and WARP. To deploy WLAN-based
localization in real environments, we must address how
commercial WLAN devices such as IEEE 802.11ac
(WLAN 5) and IEEE 802.11ax (WLAN 6) can yield AoA
data.

To achieve AoA estimation on commercial IEEE 802.11ac
and IEEE 802.11ax devices, we must solve the following four
problems.

1) Compressed CSI problem: The AoA estimation system
has to recover phase information from the CSI com-
pression format standardized in IEEE 802.11ac and
IEEE 802.11ax.

2) Antenna wireline problem: The phase changes depend-
ing on the length of the wireline between each antenna
and the analog-to-digital (AD) converter.

3) Antenna spacing problem: It is desirable that the dis-
tance between adjacent antennas be λ/2 where λ is
the wavelength of radio waves. However, the dis-
tance in several commercial WLAN devices is larger
than λ/2 to improve the multiple-input multiple-output
(MIMO) performance because of the need for a low
spatial correlation among antennas.

4) Antenna individuality problem: It is desirable that the
characteristics of the signals received by each antenna
be the same. However, the antennas used in actual
MIMO communication have different characteristics
due to the effects of housing, circuit boards, and instal-
lation environments.

Details on the aforementioned four problems are provided
in Section III.
To solve these four problems, this paper proposes the

first AoA estimation method for IEEE 802.11ac and IEEE
802.11ax WLAN devices. The compressed CSI problem is
solved by restoring the right singular matrix, which contains
relative phase information among antennas, from compressed
CSI. The antenna wireline problem is solved by calibrating
the right singular matrix based on the right singular matrix
for an AoA of zero degrees. The antenna spacing problem
is solved by using a heuristic algorithm that estimates the
number of times the phase is rotated by the AoA and dis-
tances between adjacent antennas that are larger than λ/2.
The antenna individuality problem is solved by using another
heuristic algorithm that selects a combination of antennas to
reduce the AoA estimation error. Our solutions are detailed
in Section IV. We evaluate the accuracy of the proposed
method in a lecture room and shield tent. Compared with a
straightforward approach, the proposed method reduced the
AoA estimation error by 85.4 %.

The main contributions of the paper are as follows:
• We propose an AoA estimation method that is not for
any specific Wi-Fi devices. The proposed method may
be used not only IEEE 802.11n and IEEE 802.11ac but
also for IEEE 802.11ax.

• The problems in achieving AoA estimation on IEEE
802.11ac and IEEE 802.11ax devices are identified.
In particular, the antenna spacing problem is considered,
wherein the antenna spacing of the access point exceeds
half the wavelength of the radio wave for MIMO com-
munication. In contrast, most previous studies assumed
an antenna spacing of λ/2.

• In this study, the experimental settings include packet
capture software and commodity IEEE 802.11ac
devices, whereas previous studies employed CSI tool,
Intel 5300 WLAN cards, Atheros chipsets, and WARP.

• The experimental evaluation shows that the proposed
method can operate in actual environments. The aver-
age error of the method is approximately 10.18◦,
whereas that of the straightforward approach is approxi-
mately 62.6◦ in a lecture room. The average calculation
time of the proposed method is approximately 0.6 s.

The rest of this paper is organized as follows. Section III
introduces compressed CSI in IEEE 802.11ac and IEEE
802.11ax devices and identifies the problems created by using
commercial WLAN devices for AoA estimation. Section IV
describes the solutions based on the proposed method for the
problems identified in Section III. Section V evaluates the
performance of the proposed method in both a shield tent and
a lecture room. Section II discusses related work, and finally,
Section VI concludes this paper.

II. RELATED WORK
This paper is related to wireless sensing and AoA estimation.

A. WIRELESS SENSING
Studies on wireless sensing can be classified into three
categories:

1) Direct use of a physical layer signal
2) Use of raw CSI
3) Use of compressed CSI following IEEE 802.11ac
Many studies on wireless sensing through the direct use of

a physical layer signal have explored the many possibilities
of wireless sensing, such as for device localization [38],
[39], device-free user localization [40]–[42], device proxim-
ity detection [43], emotion recognition [44], gesture recogni-
tion [45], hidden electronics detection [46], human detection
through walls [47]–[49], in-body device localization [50],
respiratory monitoring [51], [52], heart rate monitoring [51],
RF imaging, [48], [53], [54], and touch sensing [55]. For
example, Vital-Radio [51] successfully tracked the breathing
and heart rates of multiple users simultaneously even when
the users were 8 m away from the wireless sensing device.
However, the abovemethods have a deployment cost problem
due to the need for special wireless devices such as USRP and
millimeter-wave (mmWave) transceivers.
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The use of raw CSI advances the possibility of actual
implementation. The studies using raw CSI include device
localization [14], [15], [17]–[19], activity recognition [56],
[57], device-free user localization [58]–[60], device motion
tracking [9], device-free motion tracking [61]–[63], gesture
recognition [64], [65], human dynamics monitoring [66],
keystroke recognition [67], material sensing [68], respira-
tory monitoring [52], object state change detection [69], and
soil sensing [70]. For example, IntuWition [68] achieved
an accuracy of 95 % in classifying copper, aluminum, ply-
wood, birch, and humans. However, as the raw CSI is
extracted through the use of highly specific hardware such
as Intel 5300 NICs, Atheros chipsets, and WARP, raw-
CSI-based wireless sensing methods cannot be implemented
on other wireless LAN cards even if the card supports
IEEE 802.11n.

The proposed method is classified as wireless sensing
using compressed CSI. As described in III-B, compressed
CSI is already applied in commercial IEEE 802.11ac and
IEEE 802.11ax devices. Studies on compressed-CSI-based
wireless sensing have recently begun. They include position
estimation [71] and object detection [72].

B. AOA ESTIMATION
AoA estimation has been studied for military radars since
the 1950s. In recent years, several studies on AoA esti-
mation have examined its use in various applications such
as beamforming to improve the performance of mobile
communications and indoor localization. For example,
ArrayTrack [12], Ubicarse [14], ToneTrack [16], SpotFi [15],
Chronos [17], MonoLoco [18], UAT [19], and LocAP [20]
have been employed for indoor localization, the authors
of [73], [74] improved the throughput by using beamforming
in massive MIMO for mmWave, and BreathTrack [75] has
been employed for the tracking of human breath.

Two types of AoA estimation exist: those that use the
received signal strength indicator (RSSI) and those that
use phase. RSSI-based AoA estimation utilizes multiple
RX antennas: the AoA is estimated by calculating the RSSI
differences among the antennas. For example, ALRD [76]
estimates the AoA using the fact that the difference in RSSI
between antennas increases as the AoA increases from 0◦.
However, it is difficult to improve the accuracy of AoA
estimation using RSSI when the influence of multipath prop-
agation is large, as is true in indoor environments.

Phase-based AoA estimation uses the phase difference
acquired by multiple antennas as described in Section II-B.
Phase-based AoA estimation assumes that the distance
between a TX antenna and an RX antenna is infinity, and
all RX antennas in the same array have the same the AoA.
Most of the existing studies on AoA estimation [14], [15],
[17]–[20], [77]–[80] assume that the antenna arrays are lin-
ear, equally spaced, and that the distance between adjacent
antennas is less than or equal to λ/2. Various methods have
been proposed for estimating the AoA using phase, such
as minimum variance distortionless response, MUSIC, and

the estimation of signal parameters via rotational invariance
techniques. However, this previous research is only avail-
able for 802.11n. These methods cannot be uses on com-
mercial WLAN devices directly. Even if these methods are
used, the compressed CSI, antenna wireline, antenna spacing,
and antenna individuality problems described in Section III
need to be addressed when using commercially available
IEEE 802.11ac devices to estimate AoA.

Figure 1 illustrates the basis of AoA estimation using radio
waves, where M is the number of antennas, θ is the AoA,
and d is the antenna spacing. In Figure 1, all antennas form
a uniform linear array with an equal spacing of d between
adjacent antennas. When a radio wave transmitted from a
TX antenna is received by multiple RX antennas, the path
of the radio wave differs at the RX antenna depending on
the AoA. As the phase observed at each RX antenna depends
on the path length, the AoA can be estimated using the phase
difference among the RX antennas.

If the TX antenna is sufficiently far from the RX antennas,
we can assume that all the RX antennas receive the radio
waves transmitted from the TX antenna at the same AoA.
If all AoAs are equal, the phase difference between
RX antenna i and RX antenna 1 can be expressed as follows.

hi = 2π f
d(i− 1)sin(θ)

c
(1)

where hi is the phase difference between RX antennas i
and 1 (i = 2, 3, · · · ,M ), f is the frequency of the radio wave,
c is the speed of light, and d(i − 1) sin(θ) is the radio path
difference yielded by the distance d(i− 1) between antenna i
and antenna 1.

The CSI matrix at an arbitrary subcarrier can be expressed
as follows when CSI is used in MIMO transmission in
WLAN communication.

CSI =


csi1,1 csi1,2 · · · csi1,N
csi2,1 csi2,2 · · · csi2,N
...

. . .
...

csiM ,1 csiM ,2 · · · csiM ,N

 (2)

whereM is the number of RX antennas, and N is the number
of TX antennas. CSI∗,1, which is the CSI from the 1st TX
antenna toM RX antennas, is expressed as:

CSI∗,1 =


csi1,1
csi2,1
...

csiM ,1

 =


a1ej2+j2π f
0·dsin(θ)

c

a2ej2+j2π f
1·dsin(θ)

c

...

aMej2+j2π f
(M−1)·dsin(θ)

c

 (3)

where2 is the phase of RX antenna 1 and am is the amplitude
of RX antenna m. h̃i, which is the observed phase difference
between RX antenna 1 and RX antenna i, is expressed as
follows.

h̃i = arg
(
csii,1
csi1,1

)
(4)
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FIGURE 1. Basis of AoA estimation. Antenna array consists of
M antennas, θ is AoA, and d is antenna spacing.

From Equation (1) and Equation (4), we can estimate θ using
the phase difference among the RX antennas, as d , f , and
c are known.

III. BACKGROUND AND PROBLEM IDENTIFICATION
A. CHALLENGES FOR AOA ESTIMATION USING IEEE
802.11AC AND IEEE 802.11AX WLAN DEVICES
The following four problems must be solved for the practical
deployment of AoA estimation on IEEE 802.11ac and IEEE
802.11ax WLAN devices.

1) Compressed CSI problem
2) Antenna wireline problem
3) Antenna spacing problem
4) Antenna individuality problem

B. COMPRESSED CSI PROBLEM
It is generally known that the amount of CSI (frequency and
antenna domains) for the transmit beamforming is extremely
large. In IEEE 802.11ac, some compression techniques are
specified to reduce the amount of CSI feedback [81]. Com-
pressed CSI is a CSI feedback method specified in IEEE
802.11ac [81]. Two types of CSI feedback methods exist:
implicit feedback and explicit feedback. Compressed CSI is
classified as an explicit feedback method and it cannot be
employed for AoA estimation directly because it contains
only compressed information. Note that the CSI assumed
in this paper has a center frequency offset and sampling
frequency offset corrected by the preamble signals specified
in WLAN.

Figure 2 shows the frame sequence for acquiring com-
pressed CSI. The frame sequence is a type of WLAN com-
munication between an access point and a user device. First,
the access point transmits a null data packet announce-
ment (NDPA) frame and a null data packet (NDP) frame to the
user device. Second, the user device calculates compressed
CSI from the NDP. Finally, the user device transmits com-
pressed CSI to the access point.

Compressed CSI is calculated using singular value decom-
position (SVD) and a Givens rotation on the CSI matrix [35].
The SVD of CSI is expressed as:

CSI = USVH (5)

FIGURE 2. Frame sequence of compressed CSI. User device calculates
compressed CSI using NDP frame from access point.

where U is a left singular matrix, S is a diagonal matrix with
singular values of CSI, andV is a right singular matrix. Com-
pressed CSI is the angle information φ,ψ , which corresponds
to V compressed using a Givens rotation. We can acquire as
many as V subcarriers.

The following equation represents the relationship between
matrix V and angle information φ, ψ calculated through a
Givens rotation.

V =


min(N ,M−1)∏

k=1

Dk

M∏
l=k+1

GT
l,k (ψk,k )

 ĨM×N (6)

Dk is a diagonal matrix expressed as follows:

Dk =



Ik−1 0 0 · · · 0
0 ejφk,k 0 · · · 0

0 0
. . . 0 0

...
... 0 ejφM−1,k 0

0 0 0 0 1

 (7)

Gl,k (ψ) is a Givens rotation matrix expressed as

Gl,k =


Ik−1 0 0 0 0
0 cos(ψ) 0 sin(ψ) 0
0 0 Il−k−1 0 0
0 −sin(ψ) 0 cos(ψ) 0
0 0 0 0 IM−1


(8)

where Ik−1 is a (k−1)× (k−1) identity matrix, and ĨM×N is
an identity matrix in which zeros are inserted as the missing
elements if N 6= M .
An example of data reduction by compressed CSI is

as follows. Let us assume that there are 4 TX antennas,
2 RX antennas, and 52 subcarriers. To extract the CSI,
first input the obtained compressed value of the CSI into
Equations (7) and (8). Next, the CSI is restored by inputting
the calculated value into Equation 6. To extract the CSI,
first input the obtained compressed value of the CSI into
Equations (7) and (8). Next, the CSI is restored by inputting
the calculated value into Equation (6).
To investigate the amount of data reduction, this study

compares the data size of compressed CSI with that of the
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CSI matrix. CSI consists of signal amplitude and phase infor-
mation. The signal to noise ratio (SNR) is given as 8 bits
per RX antenna. The CSI information specified by IEEE
802.11ac contains the amplitude and I/Q signals per subcar-
rier. The amplitude is 3 bits. The I/Q signals are multiplied by
the number of TX antennas and the number of RX antennas,
and each I signal and Q signal is 8 bits. Therefore, the total
data size of the CSI matrix is 8 × 2 + (3 + 8 × 2 ×
4 × 2) × 52 = 6838 bits.
Compressed CSI is composed of the SNR and angle infor-

mation. The SNR is 8 bits per RX antenna. When the trans-
mitter has four antennas and the receiver has two antennas, the
angle information is 5 φ and 5ψ . The number of quantization
bits of φ and ψ differs between the single-user (SU) and
multi-user (MU) feedback types. For SU type feedback, the
numbers of quantization bits of φ and ψ are (4, 2) or (6, 4).
From the above conditions, the total data size of compressed
CSI is 8× 2+ (6× 5+ 4× 5)× 52 = 2616 bits. Thus, com-
pressed CSI compresses the data size to approximately 40 %
compared with the original CSI matrix. The importance of
compressed CSI will increase with the increase in the number
of antennas expected in future wireless communication.

Figure 3 shows simulation results of quantization error.
We simulated the effect of quantization error on AoA esti-
mation accuracy. For IEEE 802.11ac, the representation bits
of φ and ψ are (4,2), (6,4), (7,5), and (9,7) [81]. Note that
802.11ax is able to obtain more detailed information than
802.11n, such as expanding the types of bandwidth and the
number of antennas. The quantization error of phase dif-
ference between antennas is about 11.3 degrees when the
representation bits of φ and ψ are (4,2) bits. Similarly, it is
about 2.8, 1.4, 0.35 degrees, respectively. The AoA estima-
tion error is almost the same as the above phase difference
error. We cannot ignore the effect of quantization error, but
its effect is relatively smaller than what this paper will show
in Section III.

C. ANTENNA WIRELINE PROBLEM
The phases of CSI observed at the RX antennas should follow
Equation (3). However, each phase changes depending on
the length of the wireline from each RX antenna to the
AD converter. Therefore, CSI′∗,n, which reflects the effects
of the length of the wireline between the antenna and the
AD converter in Equation (3), is determined as:

CSI′∗,n =


a1ej2+j2π f

0·dsin(θ)
c +jτ1

a2ej2+j2π f
1·dsin(θ)

c +jτ2

...

aMej2+j2π f
(M−1)·dsin(θ)

c +jτM

 (9)

where τm (m = 1, 2, . . . ,M ) is the phase change dependent
on wireline length.

D. ANTENNA SPACING PROBLEM
When a phase is obtained from a radio wave, the correct
value of the phase difference can be obtained only when

FIGURE 3. Simulation results for quantization error.

FIGURE 4. Example of WLAN access point.

the distance between the RX antennas is less than or equal
to λ/2 where λ is the wavelength of the radio wave. The
range of h̃i, which is the phase difference acquired from CSI,
is expressed as follows.

−π < h̃i ≤ π (10)

We can also express h̃i as shown in Equation (11) by combin-
ing Equation (1) and Equation (10).

−π < −2π f
dsin(θ)

c
≤ π (11)

Solving Equation (11) for d yields Equation (12).

−
c

2f sin(θ)
< d ≤

c
2f sin(θ )

(12)

As −1 < sin(θ ) ≤ 1, Equation (12) can be expressed as
shown in Equation (13).

−
c
2f
< d ≤

c
2f

(13)

By combining Equation (13), λ = c
f , and d > 0, we obtain

Equation (14).

0 < d ≤
λ

2
(14)
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FIGURE 5. Simulation result of phase difference and MUSIC spectrum when AoA is 30◦.

However, the distance between the antennas in commercial
WLAN devices is made larger than λ

2 to lower the spatial
correlation and thus improve the MIMO transmission perfor-
mance. Figure 4 shows an example of an access point. The
λ of 5 GHz is approximately 6 cm. The distance between the
access point antennas is larger than 3 cm. When the distance
between the RX antennas exceeds λ

2 , the phase difference
between adjacent antennas sometimes exceeds 360◦, and the
phase difference is truncated to fit between −π and π , mak-
ing it impossible to estimate AoA correctly.

For example, suppose f is 5.2 GHz, d is 4 cm, and the num-
ber of RX antennas is 4. Figure 5(a) shows the correct values
of the phase when the AoA is 30◦ and the phase of Antenna4
is 0 rad. The vertical axis is the phase and the horizontal axis
is the subcarrier index. The phase difference is approximately
2.17 rad. If the phase of Antenna4 is 0 rad, the correct phases
of Antenna3, Antenna2, and Antenna1 are approximately
2.17, 4.34, and 6.51 rad, respectively. However, as CSI is
a complex number, the acquired phase is truncated between
−π and π . Figure 5(b) shows the phase acquired from CSI.
If the phase of Antenna4 is 0 rad, the phase of Antenna3 is
approximately 2.17 rad, but the phase of Antenna2 is trun-
cated to approximately−1.92 rad, and the phase of Antenna1
is also truncated to approximately 0.26 rad. Figure 5(c) shows
a multiple signal classification (MUSIC) spectrum using the
phase of Figure 5(b). A peak appears at 30◦, but peaks also
appear at 89◦, −30◦, and −80◦.

E. ANTENNA INDIVIDUALITY PROBLEM
Antenna arrays for AoA estimation such as radars are
designed assuming that the receiving conditions of the anten-
nas are as equal as possible. However, because of the require-
ments of MIMO transmission as described in Section III-D,
each RX antenna in actualWLANdevices should be expected
to have a different receiver condition. Consequently, the
phase acquired by each RX antenna in WLAN devices may

be individually affected by housing, circuit boards, and the
installation environment. When the AoA is estimated using
RX antennas with largely different receiving conditions, the
estimated value may be significantly different from the cor-
rect value.

IV. AOA ESTIMATION ON IEEE 802.11AC AND
IEEE 802.11AX
A. OVERVIEW
To solve the four problems described in Section III, we pro-
pose a practical AoA estimation method; this paper focuses
on IEEE 802.11ac and IEEE 802.11ax WLAN devices. The
proposed method estimates AoA with the following four
procedures, which correspond to the four problems described
in Section III.
1) Convert the angle information in compressed CSI to

the right singular matrix V, which includes the relative
phase information among the antennas.

2) Calibrate the right singular matrix V using V at 0◦,
which is expected to be known before factory shipment.

3) Calibrate phases using a brute force algorithm to equal-
ize all the phase differences.

4) Select the optimal combination of antennas with kur-
tosis and the number of peaks using the MUSIC
spectrum.

B. SOLUTION FOR COMPRESSED CSI PROBLEM
To solve the compressed CSI problem described in
Section III-B, AoAac/ax restores the relative phase differ-
ence information from compressed CSI. Note that proposed
method assumes that the distance between the transmitter and
the receiver is infinity, and the angles of departure (AoD)
and AoA are equal. On the basis of the above assumptions,
the proposed method utilizes the right singular matrix V
including the relative phase information of the CSI from the
TX antennas to the RX antennas.
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First, the proposed method calculates V through the sub-
stitution of φ and ψ into Equations (6), (7), and (8). The right
singular matrix V is expressed as follows:

V =


v1,1 v1,2 · · · v1,M
v2,1 v2,2 · · · v2,M
...

. . .
...

vN ,1 v2,N · · · vN ,M

 (15)

As we assume that AoD is equal to AoA, the column vector
of right singular matrix V is regarded as the relative phase
difference from N TX antennas to M Rx antennas. To use V
for AoA estimation, the proposed method usesV∗,1, which is
the first column of V as follows based on Equation (5).

V∗,1 =


v1,1
v2,1
...

vN ,1

 =

A1ej2π fl

(N−1)·dsin(θ )
c

A2ej2π fl
(N−2)·dsin(θ )

c

...

AN ej2π fl
0·dsin(θ)

c

 (16)

where An (n = 1, . . . ,N ) is the amplitude of each element
of V . The proposed method extracts hV,i, which is the phase
difference between TX antenna 1 and i (i = 2, 3, · · · ,N ),
using Equation (16) as follows:

hV,i =
vi,1
v1,1

(17)

C. SOLUTION FOR ANTENNA WIRELINE PROBLEM
To solve the antenna wireline problem described in
Section III-C, the proposed method calibrates the right sin-
gular matrix V using the offset acquired by V at 0◦ before
factory shipment. The calibration involves four steps:

1) Acquire the right singular matrix V̂ when the AoA is
0◦ before factory shipment.

2) Extract the phase from matrix V̂.
3) Use the extracted phase to calculate phase offset τN

with the average of the phase at each subcarrier.
4) Calibrate the right singular matrix V using τN during

actual AoA estimation.
Before factory shipment, the proposed method acquires a

singular matrix V̂when the AoA is 0◦, and ˆV∗,1 is formulated
as follows:

V̂∗,1 =


v̂1,1
v̂2,1
...

v̂N ,1

 =

Â1ejτN ,l

Â2ejτN−1,l
...

ÂN ejτ1,l
.

 (18)

The proposed method calculates τm as follows:

τi = arg
(
v̂i,1
v̂1,1

)
(19)

Using Equations (19) and (17), h0DC,i, which is the calibrated
phase difference, is formulated as follows.

h0DC,i = hV,i + τi (20)

D. SOLUTION FOR ANTENNA SPACING PROBLEM
To solve the antenna spacing problem described in
Section III-D, the proposed method performs phase restora-
tion and frequency adjustment as follows.

E. PHASE RESTORATION
When d > λ

2 , the phase restoration is performed using
Equation (21).

hPR,i = h0DC,i − h0DC,1 + 2πri (21)

where hPR,i is the phase after restoration, h0DC,i is the phase
before restoration, and ri is the number of phase rotations.
hPR,i is the correct phase difference including the phase rota-
tion between RX antenna 1 and RX antenna i when h0DC,i is
extracted as described in Sections IV-B and IV-C. Note that
ri is an unknown number. From Equation (1), the relationship
between hi+1 and hi is expressed by Equation (22).

hPR,i+1 = hPR,i + 2π f
dsin(θ )

c
(22)

When all the distances between adjacent antennas are
equal, we obtain Equation (23) using Equation (21) and
Equation (22).

r1, r2, · · · , rN = arg min
r1,r2,··· ,rN

N−2∑
i=1

(hPR,i+2 − hPR,i+1) (23)

(hPR,i+1 − hPR,i)

s.t. 0 ≤ |r1| ≤ |r2| ≤ · · · ≤ |rN | ≤ |rmax|

where rmax is the maximum number of phase rotations.
rmax is calculated with the non-truncated and maximum

phase difference between antenna 1 and antenna N . The
non-truncated phase difference between TX antenna 1 and
TX antenna N is given by Equation (24).

hPR,N = 2π f
(N − 1)dsin(θ )

c
(24)

Combining Equations (10), (21), and (24) yields
Equation (25).

−π < 2π f
(N − 1)dsin(θ )

c
− 2πrN ≤ π (25)

Solving Equation (25) for rN yields Equation (26).

f
(N − 1)dsin(θ )

c
−

1
2
≤ rN < f

(N − 1)dsin(θ )
c

+
1
2

(26)

When θ is 90◦, rN is equal to rmax. Therefore, Equation (26)
is expressed as Equation (27).

0 ≤ f
(N − 1)d

c
−

1
2
≤ rmax < f

(N − 1)d
c

+
1
2

(27)

As rmax is an integer, we obtain Equation (28).

rmax =

⌈
f
(N − 1)d

c
−

1
2

⌉
(28)

where
⌈
f (N−1)dc −

1
2

⌉
represents the least integer greater than

or equal to f (N−1)dc −
1
2 .
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FIGURE 6. Acquired phase and estimated spectrum when AoA is 10◦.

F. FREQUENCY ADJUSTMENT
Even if the phase restoration is performed as described above
before AoA estimation, MUSIC treats the phase difference
internally as a complex number and truncates the phase dif-
ference between −π and π again. To solve the re-truncation
problem, the proposed method adjusts the frequency so that
rmax = 0 using Equation (29).

hFA,i =
fadjust
fraw

hPR,i (29)

where hFA,i is the adjusted phase, hPR,i is the phase restored
using Equation (21), fraw is the frequency at which the com-
pressed CSI is sent, and fadjust is the frequency to adjust the
phase in order to truncate the phase difference between −π
and π . By combining rmax = 0 and Equation (28), fadjust is
calculated using Equation (30).

fadjust =
c

2(N − 1)d
(30)

G. SOLUTION FOR ANTENNA INDIVIDUALITY PROBLEM
To solve the antenna individuality problem described in
Section III-E, the proposed method runs a heuristic algo-
rithm to select the combination of antennas that achieves
precise AoA estimation. Algorithm 1 shows the proposed
antenna selection algorithm. H is a set of calibrated
phases as described in Section IV-D, N is the number of
TX antennas, s (∈ S) is the MUSIC spectrum, and ŝ is
the spectrum yielded by the best antenna combination. The
function ‘‘combinations(H, i)’’ returns a set of combina-
tions of i phases from H, and it corresponds to nchoosek()
in MATLAB and itertools.combination() in Python. The
function ‘‘findpeaks(s)’’ returns the number of peaks in
MUSIC spectrum s and corresponds to findpeaks() in
MATLAB and scipy.signal.argrelmax() in Python. The
function ‘‘kurtosis(s)’’ returns the kurtosis of MUSIC

spectrum s and corresponds to kurtosis() in MATLAB and
scipy.stats.kurtosis() in Python. First, Algorithm 1 uses the
number of peaks in the MUSIC spectrum for the antenna
selection. The presence of multiple peaks indicates that the
AoA estimation error is large. When there is only one peak
in the MUSIC spectrum, Algorithm 1 uses the kurtosis of the
MUSIC spectrum for antenna selection.

Figure 6 shows an example of antenna selection.
Figure 6(a) is the observed phase of the right singular
matrixV for an AoA of 10◦. AoA estimation using the phases
of Antenna3 and Antenna4 is more accurate than that gained
by using the phases of four antennas. Figure 6(b) is the
MUSIC spectrum estimated using the phase of all antennas,
and Figure 6(c) is the MUSIC spectrum estimated using
the phase of four antennas. The kurtosis of the spectrum in
Figure 6(b) and Figure 6(c) is approximately 3.8 and 4.4,
respectively.

V. EVALUATION
A. EVALUATION SETTINGS
Figures 7, 8, 9, and 10 show the evaluation environments:
a lecture room and a shield tent. AP in Figure 7 and Fig-
ure 9 represents an access point, and PC represents a user
device. In the shield tent, the access point and user device
were surrounded by radio wave absorbers. The distance
between the access point and the user device was 2.5 m. The
access point was an NTT EA-7HW04AP1ES, which supports
IEEE 802.11ac, and the user device was a Panasonic Let’s
note CF-SZ6. There were no obstacles between the access
point and the user device.

Table 1 shows the evaluation parameters. The radio fre-
quency was 5.2 GHz, the number of antennas at the access
point was 4, the antenna spacing of the access point was 4 cm,
the number of user device antennas was 2, and the antenna
spacing of the user device was 36.0 cm. The evaluated
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Algorithm 1 Antenna Selection Algorithm

1: H =
{
hPR,1, hPR,2, · · · , hPR,N

}
2: N ← the number of TX antennas
3: S← ∅
4: pmin←∞

5: kmax←−∞

6: for i = 1, 2, · · · ,N do
7: C = combinations(H, i)
8: for each Hselected ∈ C do
9: s = music(Hselected)

10: S← S ∪ {s}
11: end for each
12: end for
13: for each s ∈ S do
14: if p = findpeaks(s) ≤ pmin then
15: pmin = p
16: if k = kurtosis(s) > kmax then
17: kmax = k
18: ŝ = s
19: end if
20: end if
21: end for each
22: return ŝ

FIGURE 7. Layout in shield tent.

AoA was varied from −80◦ to 80◦ in steps of 10◦ using a
turntable. The number of trials of AoA estimation at each
AoAwas 100.We used 52 subcarriers and the generalMUSIC
algorithm to calculate the MUSIC spectrum.

To evaluate the effect of each solution presented in
Section IV for the proposed method, we implemented and
evaluated four methods using Python:

1) V: AoA estimation using the MUSIC algorithm and the
right singular matrix V restored from the compressed
CSI described in Section IV-B.

2) V+0DC: AoA estimation adding 0◦ calibration (0DC),
which is described in Section IV-C, to the aboveV. 0DC
is a phase calibration method.

3) V+0DC+PRFA: AoA estimation adding phase
restoration and frequency adjustment (PRFA), which
are described in Section IV-D, to the above V+0DC.

FIGURE 8. Photograph of shield tent.

FIGURE 9. Layout in lecture room.

TABLE 1. Evaluation parameters.

4) Proposed: This is the proposed approach. AoA estima-
tion adding antenna selection (AS), which is described
in Section IV-G, to the above V+0DC+PRFA.

AoA was estimated on a MacBook Pro Mid 2017
(MPXT2J/A).

B. ACCURACY
Figures 11 and 12 show the average AoA estimation errors
in the shield tent and lecture room, respectively. The vertical
axis is the average AoA estimation error at each angle, and
the horizontal axis is the ground truth of the AoA.

In the shield tent, the average AoA estimation errors at
all angles of V, V+0DC, V+0DC+PRFA, and the proposed
method were approximately 53.8◦, 62.0◦, 14.4◦, and 9.1◦,
respectively. In the lecture room, the average AoA estima-
tion errors at all angles of V, V+0DC, V+0DC+PRFA,
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FIGURE 10. Photograph of lecture room.

and the proposed method were approximately 58.36◦, 62.6◦,
32.0◦, and 10.18◦, respectively. From the average AoA
estimation error in the two environments, we can observe
that the proposed method achieved the highest accuracy.
Additionally, the AoA estimation in the shield tent was
more accurate than that in the lecture room. The evalua-
tion results include those obtained in different environment
results such as when AP was rotated from −80◦ to 80◦.
The proposed method remained effective for AoA estimation
even in actual environments or AP was rotated. However,
at some angles, V+0DC+PRFA was more accurate than
the proposed method. For example, at −40◦ in the lecture
room, the proposed method had an average error of approxi-
mately 7.8◦, whereas V+0DC+PRFA had an average error of
approximately 3.3◦.
Figures 13 and 14 show the average variances of the esti-

mated AoA in the shield tent and lecture room, respectively.
The vertical axis is the average variance of AoA estimation
at each angle, and the horizontal axis is the ground truth of
the AoA.

In the shield tent, the average variances at all angles of
V, V+0DC, V+0DC+PRFA, and the proposed method were
approximately 668.95, 109.25, 4.40, and 1.90, respectively.
In the lecture room, the average variances at all angles of
V, V+0DC, V+0DC+PRFA, and the proposed method were
approximately 612.52, 598.59, 331.39, and 33.42, respec-
tively. The proposed method achieved the smallest variance
among the four AoA estimation methods. Additionally, AoA
estimation in the shield tent had a lower variance than that
in the lecture room. Furthermore, there was no correlation
between the average AoA estimation error and the average
variance of the estimated AoA. For example, the average
AoA estimation error of the proposed method in the lecture
room at −20◦ was approximately 4.94◦, but the variance
of the proposed method in the lecture room at −20◦ was
approximately 193.7. In contrast, the average AoA estimation
error of the proposed method in the lecture room at 10◦ was
approximately 9.1◦, but the variance of the proposed method
in the lecture room at 10◦ was approximately 0.2. We believe
that the proposed method yielded an error offset for some
unknown reason. We think that the antenna directional and

FIGURE 11. Average AoA estimation error in shield tent.

FIGURE 12. Average AoA estimation error in lecture room.

the antenna accuracy of the devices may have affected the
AoA estimation error.

Then, we evaluated the existing AoA estimation in the
same environment. Figure 15 shows the cumulative fre-
quency (CDF) of the proposed method and SpotFi [15]. The
vertical axis is the CDF, and the horizontal axis is the AoA
estimation error. The median AoA estimation errors of the
proposed method in shield tent and lecture room were 7.0◦

and 7.2◦, respectively. The median AoA estimation errors
of SpotFi in the shield tent and lecture room were 40.5◦

and 42.0◦, respectively. From Figure 15, the previous AoA
estimation methods cannot solve the problems described in
Section III, while the proposed method can.

C. COMPUTATION TIME
Figure 16 and Figure 17 show the computation times of AoA
estimation in the shield tent and lecture room, respectively.
The vertical axis is the computation time for AoA estimation,
and the horizontal axis is the AoA ground truth. From the
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FIGURE 13. Variance of AoA estimation error in shield tent.

FIGURE 14. Variance of AoA estimation error in lecture room.

FIGURE 15. Comparison of AoA estimation.

figures, we can observe that V, V+0DC, V+0DC+PRFA,
and the proposed method calculated the AoA within 1 s,
regardless of the AoA ground truth. The average computation

FIGURE 16. Computation time in shield tent.

FIGURE 17. Computation time in lecture room.

times at all angles of V, V+0DC, V+0DC+PRFA, and the
proposed method in the shield tent were approximately 0.18,
0.24, 0.31, and 0.50 s, respectively. The average computation
times at all angles of V, V+0DC, V+0DC+PRFA, and the
proposed method in the lecture room were approximately
0.16, 0.19, 0.26, and 0.46 s, respectively. Additionally, the
highest computation cost was observed for the antenna selec-
tion algorithm described in Section IV-G. Furthermore, the
computation time of MUSIC was neither short nor stable and
depends on the propagation path.

VI. CONCLUSION
We proposed a practical method for successfully estimating
AoA from the compressed CSI specified by IEEE 802.11ac
and IEEE 802.11ax. The proposed method advances the cur-
rent research toward wide deployment because it can esti-
mate AoA using commercially available IEEE 802.11ac and
IEEE 802.11ax WLAN devices without CSI tools such as
the Atheros CSI tool, Intel 5300 NIC, or Atheros 802.11n
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chipsets. This method solves four problems with AoA esti-
mation using compressed CSI and estimates AoA with an
average error of 9.1◦. The results of this study not only
indicate that we could estimate AoA from compressed CSI
but also the possibility of expanding current CSI-tool-based
wireless sensing into wide deployment. We believe that the
use of compressed CSI will contribute to a future where
deploying WLAN access points means making a platform
that provides both communication and sensing. Our future
work will exploit the channel-state information of multiple
links and multiple antennas to improve the AoA estimation
accuracy.
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