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ABSTRACT Radiography is one of the most widely used imaging techniques in the world. Since its
inception, it has continued to evolve, leading to the development of intelligent and automated radiography
systems that are able to perceive parts of their environment and respond accordingly. However, such systems
do not provide a complete view of the examination space and are therefore unable to detect multiple objects
and fully ensure the safety of patients, staff and equipment during the execution of the movement. In this
paper, we present a system architecture based on ROS (Robot Operating System) to solve these challenges
and integrate an autonomous X-ray device. The architecture retrieves point clouds from range sensors placed
at specific locations in the examination room. By integrating different subsystems, the architecture merges
the data from the different sensors to map the space. It also implements downsampling and clustering
methods to identify objects and later distinguish obstacles. A subsystem generates bounding boxes based
on the detected obstacles and feeds them to a motion planning framework (MoveIt!) to enable collision
avoidance during motion execution. At the same time, a subsystem implements a deep neural network
model (PointNet) to classify the detected obstacles. Finally, the developed system architecture provided
promising results after being deployed in a Gazebo simulated examination space and on a use case test
platform.

INDEX TERMS 3D depth camera, motion planning, obstacle detection, object recognition radiography
systems, robot operating system.

I. INTRODUCTION
Diagnostic imaging devices play a central role in modern
healthcare. Almost all patient pathways rely on an effective
and efficient radiography system to improve patient experi-
ence and outcomes [1]. Moreover, the integration of robotic
assistance in medicine has revolutionised the healthcare sec-
tor and enabled the transition from human-controlled to fully
autonomous medical imaging systems [2]. The increasing
number of autonomous X-ray systems and the rising demand
for X-ray examinations have increased the workload of
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medical staff. In addition, we are currently dealing with a
worldwide shortage of radiographers, specialists and diag-
nostic radiologists [1], [3]–[5]. Both situations previously
described have led to high levels of stress and burnout among
diagnostic imaging staff [6]. Technologies are needed to
address these problems in healthcare.

Automation is not a trend followed only by imaging
devices. According to current trends and challenges in health-
care, medical technology is moving towards automation due
to the need to simplify overly complex services, procedures,
devices, and equipment, and to prioritize safety in healthcare.
Moreover, the recent availability of affordable and robust
range sensors has led to a great leap in the implementation
of this technology in autonomous devices [7], [8].

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 29903

https://orcid.org/0000-0002-5341-1474
https://orcid.org/0000-0002-8624-0800
https://orcid.org/0000-0001-7367-7889
https://orcid.org/0000-0002-9635-4297


M. Mahmeen et al.: Collision Avoidance Route Planning for Autonomous Medical Devices Using Multiple Depth Cameras

Collisions are a major problem in shared human-robot
workspaces [9], such as X-ray examination rooms. These
rooms consist of static and moving elements (medical equip-
ment, patients and medical staff). In such environments,
the multidirectional movements of an X-ray machine pose
the risk of collisions. In particular, safety is compromised
when the device collides with a patient, as this can result
in damage to the X-ray device, injury to the patient, and
interruption of the workflow. The responsibility for general
safety in X-ray examination rooms lies with the medical
staff. Consequently, this additional workload (when there is a
shortage of radiographers and radiographer assistants) results
in a suboptimal clinical workflow that increases treatment
times and costs [10].

An example of the previously described points is
the GU60A fully automated X-ray U-arm developed by
Samsung, which usesmultiple sensors for automatic position-
ing and collision avoidance.) [11]. Other examples include
camera-based collision avoidance systems for C-arm X-ray
machines [12], [13] or patents proposing collision avoidance
systems (e.g., floor-mounted) for radiography using soft lim-
its, transducers, and proximity sensors [14], [15].

On the other hand, despite the research and implementation
of collision avoidance in X-ray systems, the imaging device
is not provided with the full extent of the examination space.
In other words, the range and field of view of the sensors
implemented in a device limit the possibilities of collision
avoidance. In addition, as mentioned earlier, several groups
have already begun to develop and implement automations
for U-arm, C-arm, and floor-mounted radiography systems.
Some of these approaches are seeking applications in var-
ious medical devices (e.g., radiation therapy, radiography,
computed tomography) [16]. However, the development, test-
ing, and implementation of a collision avoidance system
for ceiling-mounted radiography equipment remains largely
unexplored.

Moreover, the implementation of object recognition in
autonomous radiography systems is still unexplored. In con-
trast, other fields have already taken steps to integrate object
recognition into autonomous systems, such as implement-
ing object recognition and obstacle avoidance for intelligent
factory automation [17].

The integration of object detection and recognition into
X-ray imaging devices allows the classification of the dif-
ferent objects in the space to react and interact accordingly
when the X-ray device is near them. A use case for this tech-
nology in X-ray equipment would be to distinguish between
patients and other obstacles. In the first case, the imaging
device should get as close as possible to the region of interest
(ROI). In contrast, in the second case, the systemwould avoid
approaching it.

Currently, 3D cameras are becoming increasingly avail-
able and affordable [18]. Moreover, these range sensors are
gradually becoming a relevant research area, as they provide
reliable and accurate depth information for localising or char-
acterising objects in 3D space [19]. Range sensing is crucial

for the development of autonomous systems, as it provides
the necessary primary range input to avoid collisions with
obstacles [7]. Moreover, the output provided by this type of
sensors can also be used for object recognition [20]–[22].

Based on the current trends in healthcare, the state of the
art, the challenges and the pain points mentioned earlier.
We envisioned the development of a system architecture for
integrating fully autonomous ceiling-mounted X-ray devices
that incorporates obstacle detection, object recognition, and
path planning using three-dimensional data retrieved from
depth sensors. The key contributions of our work are as
follows:
• We have developed an obstacle detection, object recog-
nition, and motion planning system for ceiling-mounted
radiography devices to automate radiography proce-
dures and reduce the workload of diagnostic imaging
personnel.

• We implemented a sensor fusion based on an arrange-
ment of depth sensors to provide an architecture with a
close-to-full-view perception of the examination room

• We integrated a simulation and use case testing platform
for the examination room to evaluate the performance of
the architecture.

As mentioned above the system consisted of four sub-
architectures, each responsible for a specific task: Merging
sensors data, obstacle detection, object recognition and route
planning. The result was a system capable of recognising
objects in an environment based on multisensory data and
understanding which objects they are, paving the way for
the development of ceiling-mounted X-ray machines with a
higher level of cognition.

The main framework for developing the architecture was
the Robot Operating System (ROS) [23], as it provided us
with a robust, multilingual, and open-source platform for
developing complex robotic systems [24]. Furthermore, the
integration of libraries and frameworks such as the Point
Cloud Library (PCL) [25], the OpenMotion Planning Library
(OMPL) [26], TensorFlow (T.F.) ([27] andMoveIt! [28] were
crucial for the elaboration of the subsystems. To test the
integrated architecture and verify its functionality, we also
used a simulation in Gazebo Simulator [29] and a technology
use- case testing platform.

Our approach differs from existing approaches in 3
respects. First, as mentioned earlier, most of the work cur-
rently lies with the physician, who must either move the
X-ray machine manually or ensure that there are no obsta-
cles in the room in order to take advantage of automatic
movement. Our approach, on the other hand, introduces per-
ception into the radiography system to ensure that a target
position can be reached automatically and without collisions,
reducing the physician’s workload. Second, we have shown
some approaches that integrate collision avoidance into X-ray
devices. However, previous works do not propose and execute
alternative routes to reach a target position when an obstacle
is encountered. Therefore, medical personnel must either
remove the obstacle from the route or manually move the
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X-ray device to the target position. In contrast, our archi-
tecture periodically updates the map of the room to detect
when new objects have appeared or disappeared, and later
identifies, executes, and updates routes to reach a target
position. Third, our architecture provides a nearly complete
view of the examination room, allowing path planning and
obstacle detection to reach almost any location in the exami-
nation room. In contrast, recent works that have implemented
obstacle detection usually provide only a limited view of the
examination space.

To solve the discussed challenge, we followed the Inno-
vation Think Tank (ITT) methodology developed and first
applied by Haider [30] at Siemens Healthineers in 2005. This
methodology is suitable and supports innovation activities
for product development considering the interdependencies
of stakeholders throughout the product lifecycle.

The ITT methodology addresses acquiring project man-
date, pain point and workflow analysis, stakeholder engage-
ment, creation of decision proposition. To visualize and
validate the technological solution in a simulated customer
environment, we used the ITT Use Case Testing Platform
(ITT-UCTP) for 1) use case creation including the customer
environment and medical device, 2) proof of concept
testing, and 3) validation with stakeholders. ITT-UCTP
accelerates product development cycles and knowledge
reuse.

In the following section (II), we elaborate on how we
created each subsystem and the role that the previously men-
tioned frameworks, software tools, and libraries played in
the development and testing of these systems. In addition,
Section III presents the integrated architecture and evaluates
the functionality of the architecture in scenarios that approx-
imate an actual X-ray examination room.

Finally, section IV describes the conclusions, the scope
of development of such a system, and the future steps and
approaches needed to implement this technology in ceiling-
mounted X-ray device.

II. MATERIALS AND METHODS
For the development of a system architecture four main
components had to be considered leading to an auto-
matic ceiling-mounted X-ray machine based on multisensory
data and capable of understanding and responding to its
environment:

A. Merging depth sensor data (Point clouds)
B. Detecting obstacles
C. Recognising objects
D. Motion planning

Based on these points, we divided the system into sub-
systems, each of which could perform one of these tasks.
The subsystems consisted of a network of ROS nodes that
received a specific input and provided a valuable output to
the following subsystem(s). This section provides a detailed
description of each subsystem.

FIGURE 1. Architectural diagram of the point cloud merging subsystem.
This subsystem continuously retrieves point clouds and local poses from
four sensors to later position these point clouds in a world coordinate
system and merge the four-point clouds into a single cloud. The merged
point clouds are then retrieved by the obstacle detection subsystem.

A. POINT CLOUD MERGING SUBSYSTEM
As mentioned earlier, the proposed system would use multi-
sensory information as its primary input. More specifically,
it would use various point clouds (Figure 1). These provide
three-dimensional data representing sampled surfaces in an
environment [25] and enable the development of robust solu-
tions for computer vision and automation tasks.

Depth sensors publish information with respect to their
own coordinate system. Therefore, it is complicated to estab-
lish relationships and commonalities between data provided
by different sensors is complicated without implementing a
global coordinate system. Moreover, continuous individual
processing of point clouds output from different sensors is
computationally intensive and increases the latency of a sys-
tem. Therefore, it was necessary to establish a world coordi-
nate system in which the positions of the sensors are defined,
and which allows correct alignment of the point cloud data
from the different sensors. The successful alignment of the
point cloud thus enabled a complete visualisation of the
environment.

The ROS package ‘‘TF’’ allowed the creation of the global
coordinate system and the definition of the position of the
coordinate systems of the sensors in the global coordi-
nate system by implementing position transformation nodes.
These nodes require the parent frame (global coordinate sys-
tem), child frames (coordinate system of depth sensors), and
position and orientation of child frames in the global frame
to perform the transformation.

To reduce the required computational power and latency of
the proposed system, we merged the different point clouds,
which resulted in processing only one point cloud containing
the information from the different sensors.

Although the implementation of the previously described
nodes aligned the different point clouds by positioning the
sensor frames relative to a common parent frame, the point
clouds were still independent of each other. It is important
to note that each depth sensor frame defines the coordinates
of the corresponding point cloud. Therefore, it was necessary
to integrate nodes that convert the point clouds to the global
frame.
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FIGURE 2. Architecture diagram of the obstacle detection subsystem. The
subsystem receives point clouds from the previous subsystem and the
position of the X-ray tube from the X-ray machine. Then, the point clouds
are downsampled, the position of the examination table in the cloud is
identified, and the cloud is repositioned to place the table at the origin of
the world coordinate system. Then, the subsystem uses the position of
the table and the position of the X-ray tube to remove objects that are
not obstacles from the cloud. Then, obstacle clusters in the form of
bounding boxes and obstacle point clouds are extracted from the
obstacle clouds. Finally, the object recognition subsystem and the motion
planning subsystem retrieve these clusters.

We then developed ROS nodes to subscribe to the point
cloud and listen to the ‘‘TF’’ transformations between the
parent and child frames. We also applied these position trans-
formations to the respective point clouds and then published
the transformed point clouds.

Once we created nodes that transformed the point clouds
into the global frame, it was possible to implement a point
cloud merging algorithm using the PCL function to concate-
nate point clouds. This node was subscribed to the translated
point clouds and used the previously mentioned function to
concatenate them into a point cloud required by the following
subsystems of the architecture.

The integration of the different nodes mentioned before
resulted in the first subsystem architecture (Fig. 1). This
first subsystem received depth information as input from
the 3D sensors and provided a composite point cloud as
output, which contained the aligned data from each of the
implemented depth sensors in the system.

B. OBSTACLE DETECTION SUBSYSTEM
Point clouds containing data from multiple sensors contain
redundant data, noise, irrelevant points, and are computa-
tionally expensive to process Figure 2. Therefore, in order
to achieve low latency, correct object identification in the
point cloud, and a reduction in the cost of processing concate-
nated point clouds, it was necessary to implement the filters
for the retrieved point clouds from the previous subsystem.
More specifically, the goal of the filters was to eliminate
noise, reduce the number of points in the cloud, and delete
redundant information to leave only the relevant points in
the cloud. According to [31], the most suitable filters to
accomplish most of the previously mentioned tasks were the
Voxel Grid filter, the Pass-Through filter, and the Radius
Outlier Removal filter.

To implement the filters described above, we created a
ROS node. The node was subscribed to the output of the
previous subsystem and applied the Voxel Grid filter to the

cloud using a class from the PCL. This filter created a 3D
grid over the retrieved cloud to later downsample the resulting
voxels based on their centroids. Subsequently, to remove
irrelevant points from the cloud, i.e., points from the walls
and floor, we used the Pass-Through filter to eliminate the
points outside certain boundary conditions, such as an inter-
val in one of the coordinate axes. We implemented this
filter three times using a class from PCL to set constraints
in the three coordinate axes and eliminate points that fall
outside a range of interest. Finally, we used the Radius Outlier
Removal class from the Point Cloud Library to remove noise
in the cloud. This filter works by specifying multiple adja-
cent points that a given point must have within a predefined
radius.

The result was a point cloud that contained only the objects
of the room. It was important to transform the cloud to set the
patient table to the origin of the global coordinate system,
since X-ray machines usually consider the position of this
object as the origin. The aforementioned implementation was
also necessary to avoid performing position transformations
between the coordinate system of the system architecture
and the coordinate system of the X-ray machine. To address
this issue, we created a new node. This node implemented
Euclidean Cluster Extraction, which allows the identification
of clusters in a point cloud. After extracting the clusters
from the down-sampled point cloud, we compared them to
the known dimensions of the table. If a cluster had similar
dimensions, we identified its coordinates and used them to
center the point cloud using a position transformation.

The result of the previous implementation was a mapped
point cloud that contained all objects located in the examina-
tion room, including the patient table and the X-ray machine
(since these are the most important components in the exami-
nation room). However, the X-ray system knows the position
and dimensions of the patient table to avoid collisions with
it, since it is part of the X-ray system. On the other hand,
the X-ray machine is not an obstacle, but a machine that
must avoid collisions with obstacles in a room. Therefore, the
elimination of the points in the cloud that represented these
objects was necessary.

The Crop Box filter defines a box (dimension, position,
and orientation) and then uses that box to filter the points
included in a defined point cloud. Although it is very similar
to the Pass-Through filter, the latter is better suited for real-
time data processing than the Crop Box filter. Because it is
so easy to define only one Crop Box filter to eliminate an
object, and because the previous filters would have already
reduced the point cloud information, implementing this filter
would not have any relevant impact on the performance of the
system. Therefore, we decided to implement the Crop Box
filter to eliminate the X-ray machine and the patient table.
In other words: After correctly positioning the point cloud,
the subsystem eliminated the points that contained the table,
based on its known dimensions and position (origin of the
coordinate system).
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Only the telescope mechanism, the X-ray tube, and the
collimator of the X-ray device appeared in the point cloud.
By monitoring certain joints of the X-ray device (e.g., the
X-ray tube joint), it was possible to eliminate theX-ray device
because the information obtained from this joint was the
position and orientation of the X-ray tube. This information
was useful in creating a box whose height was equal to the
extended height of the telescope mechanism and whose width
and length were equal to the diameter of the most protruding
tube of the telescope mechanism. We then positioned the bot-
tom of the box at the determined coordinates of the X-ray tube
joint, which meant that whenever these coordinates changed,
the position of the box also changed. The crop box filter was
then applied with the box previously described, eliminating
the telescope mechanism.

Elimination of the remaining components of the X-ray
device followed a similar procedure. Based on the dimen-
sions of the X-ray tube and the attached collimator, a new
box was created to enclose both. The position of this box
depended on the coordinates of the monitored joints and was
rotated based on the angles retrieved from one of these joints
(X-ray tube joint). The last addition was necessary because
the X-ray tube can rotate. Once the box was defined, the
Crop Box filter used this box to eliminate the X-ray tube and
collimator. Also, it is important to mention that the results
of implementing such downsampling and clustering methods
can be seen in Figure 7a to Figure 7c and in Figure 9a
to Figure 9d.

Eliminating the table and the X-ray equipment resulted in
a point cloud that contained only the obstacles in the room.
These obstacles were needed for both the object recognition
subsystem and the motion planning subsystem. Therefore,
we created a ROS node to publish the information from the
filtered and cantered point cloud in the format needed by
each of the following subsystems. This node subscribed to
the topic that published the point cloud, which contained
only the obstacles, and then implemented Euclidean Cluster
Extraction. Once the clusters were present, the node anal-
ysed each of them to retrieve their dimensions and position
and generate green bounding boxes, which were simplified
representations of the obstacles to facilitate motion planning
and collision avoidance tasks. These bounding boxes were
stored in an array, published, and then retrieved by the motion
planning subsystem. On the other hand, we needed to send
the points that make up each obstacle as individual obstacle
point clouds to the object recognition subsystem to classify
the obstacles. To accomplish this, we created a custom ROS
message, which we defined as an array that would con-
tain multiple point clouds. More specifically, these obsta-
cles point clouds in the array were the previously retrieved
clusters.

C. OBJECT RECOGNITION SUBSYSTEM
3D object recognition is a young field, and even today it is
challenging to recognise 3D objects based on their complex
shapes. According to [32], the most commonly used methods

FIGURE 3. Architectural diagram of the object recognition subsystem. The
subsystem receives a set of point cloud clusters, which are then sent
individually to PointNet to recognize the obstacle. Based on the cluster
and the detected class, a color-coded bounding box is created. The
clusters are attached to an array of bounding boxes and later published
for visualization purposes.

for 3D object classification include neural networks and Deep
Learning. Moreover, it is foreseen that in the coming years,
the use of Deep Learning-based models for 3D object recog-
nition will increase significantly.

3D object classification using Deep Learning is divided
into three main categories:
A. Multi-view-based methods
B. Volumetric-based methods
C. Point-based methods
The first uses multiple images from different views of an

object to learn how to recognise it from different angles. The
second converts the detected 3D objects intomeshes or voxels
to create a simpler view of the object that can be used to
classify a model more easily. Finally, the last method uses
the raw data from point clouds and passes it to an object
classification model Figure 3.

Even though the previous methods correctly classify 3D
objects, the first two approaches drastically simplify the
information about 3D objects. For example, to implement the
second method, we would have had to apply voxelization
to the already downsampled obstacle point clouds, which
would have resulted in a critical loss of data. However, the
third method provides an approach that uses raw data from
sensors (point clouds) to detect objects. Therefore, we imple-
mented the third method to develop an accurate object recog-
nition subsystem that can work directly with raw data from
sensors.

PointNet [21] is a Deep Learning architecture for 3D object
classification and segmentation that uses point clouds and
outputs scores for all possible classes, where the index with
the highest score is the predicted class. The PointNet struc-
ture includes a classification network and a segmentation
network. More specifically, the architecture works by first
taking a certain number of points as input to the classifica-
tion network. Then, the network applies input and feature
transformations and then aggregates the point features by
max-pooling. The output is classification results for a previ-
ously defined number of classes. Moreover, the segmentation
network is an extension of the classification network that
combines global and local features to later output point values
later.
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FIGURE 4. Architecture diagram of the motion planning subsystem. The
subsystem receives the array of bounding boxes from the object
detection subsystem, reformats the bounding boxes into the format
specified by the motion planning framework, and inserts the obstacles
into the motion planning scene. The scene is later used by the motion
planning framework to plan and execute routes.

This architecture can provide equivalent or better results
than modern neural networks based on meshes, images,
or volumes. In addition, PointNet laid the foundation for
point-based Deep Learning methods. Today, several architec-
tures are based on it, which means that it is still a reliable
benchmark for 3D shape classification tasks. For this reason,
PointNet has been defined as the architecture for classi-
fying obstacles in the examination room. We implemented
the architecture using TensorFlow and trained it with a
customised version of the ModelNet40 dataset [33], which
contained only objects commonly found in an X-ray exam-
ination room. The training result was a neural network with
an accuracy of 92.02 and an average class accuracy of 92.94.
Once we had a trained model, we created a script to initialise
the model and run it after obtaining a point cloud.

We also developed a bridge node to connect PointNet to
the ROS architecture. This ROS node subscribed to the array
of obstacle point clouds and initialised the PointNet model.
The node then converted the obstacle point clouds to NumPy
arrays, normalised them, reordered the x, y, and z columns,
and checked the number of points of each obstacle to pro-
vide the input expected from the PointNet implementation.
We needed to check the number of points that make up an
obstacle because the PointNet implementation had a defined
number of input points (1024). The previous statement means
that if the objects had less than 1024 points, classification for
these obstacles was not possible. On the other hand, if the
obstacles had more points than required, the node applied
random point deletion until the point clouds of these obstacles
reached the required number of points.

Once we had correctly formatted point clouds, we called
the PointNet implementation function and passed it the pre-
viously mentioned point clouds (one at a time). The function
then returned the predicted classification for that point cloud.
Once there was an object prediction, a box was gener-
ated whose colour depended on the returned classification.
We also defined the dimensions and position of the box
based on the classified obstacle. The boxes generated after
recognising an obstacle point cloud were inserted into an
array. After analysing all obstacles from a received array
that contained the obstacle point clouds, the new array was
published to adjust the behaviour of the X-ray system based
on the objects in a room in the future work.

FIGURE 5. Architectural diagram of the integrated system architecture of the radiography equipment automation framework based on the previously
described subsystems.
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FIGURE 6. Algorithmic flowchart of the integrated system architecture for collision avoidance automation framework in radiography
equipment.
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The node created generated boxes only for obstacles with
more than 1024 points, i.e., there was a possibility that an
array of boxes did not contain all obstacles in the room.
Therefore, we did not define the output of this subsystem as
input to the motion planning subsystem.

D. MOTION PLANNING SUBSYSTEM
To implement motion planning in the architecture, we used
MoveIt! because it is highly compatible with the framework
used to develop the architecture (ROS) and integrates setup
and visualisation tools that facilitated the implementation and
subsequent testing of motion planning in ceiling-mounted
X-ray machines Figure 4.

MoveIt! can plan motion from an initial position to a
target position based on the information it has about the
scene. Therefore, the scene needs to be constantly updated
with obstacle information to avoid collisions during motion
execution. It is important to mention that after initialising
the motion planning framework, a topic is created to update
the scene, which expects messages in a format specified
by MoveIt!. Based on this information, we created a ROS
node that subscribes to the array of boxes published by the
obstacle detection subsystem and converts the boxes to the
format specified by MoveIt! for defining obstacles. After
converting the boxes to the correct message format, they were
published to the previously mentioned topic to successfully
update the scene based on the processed information from the
sensors.

III. RESULTS
The creation of the various subsystems resulted in the system
architecture shown in Figure 5.

After creating the architecture and with the goal of eval-
uating its functionality, we created two test platforms. The
first was a simulation created with Gazebo. This simulation
included the X-ray machine, the examination room, four
simulated depth sensors (positioned in the upper corners
of the room), and additional components found in such a
room. The second test platform, on the other hand, was a
scaled version of an examination room. The use case test
platform consisted of an aluminium frame and acrylic panels
to delineate the room, a gantry and telescope mechanism to
represent the X-ray machine, four range sensors attached to
the top corners of the model, and various 3D-printed compo-
nents to characterise different components of an examination
room.

In this section, we describe the results of implementing and
testing the architecture on both test platforms.We also present
the results of training the PointNet implementation.

A. ALGORITHM USED IN THE SYSTEM
Previously we have described the architecture in detail and
as comprehensively as possible. By dividing the created
architecture into sub-architectures and using diagrams to
describe them, it was possible to explain in detail the work-
flows of the sub-architectures and illustrate how they are

FIGURE 7. Gazebo simulation of radiography examination room.

connected and what information they communicate with each
other. However, in order to describe the architecture in more
detail without splitting it into sub-architectures, and to show
in more detail how we used specific packages and their
respective functions, we created the flowchart (Figure 6),
which describes the architecture in summary form while
highlighting the main functions that make this architecture
work.

It is important to mention that this architecture contains a
large number of scripts written using Python and C++. The
reason for using two programming languages to create the
architecture is that some functions were faster and easier to
generate and compute. This increases the complexity of the
architecture. However, this is where ROS comes into play,
by establishing common message types that allow communi-
cation between scripts. Also, it is important to note that tasks
such as data type conversions have been omitted from the
flowchart as they are implicit to working with certain func-
tions. In summary, the flowchart is very similar to FIGURE 5.
Nevertheless, it provides important insights that would not be
as readily apparent in another type of diagram, but flowchart
completes the concept view for reproducibility of the system.
In flowchart we also have used different colour code to dif-
ferentiate the algorithm used in different subsystems.

B. SYSTEM ARCHITECTURE IMPLEMENTATION IN
GAZEBO SIMULATION
Gazebo Simulator allows the simulation of various sensors,
such as depth sensors, and implements plugins to connect
them to ROS.

Gazebo establishes this connection by creating ROS topics
through which the simulated sensors publish their read-
ings. Therefore, to connect the architecture to the sensors,
we mapped their topics to the topics expected by the architec-
ture. With the initialization of the simulation (Figure 7), the
ROS architecture, and theMoveIt! framework, it was possible
to visualise the different stages of the system architecture
using RVIZ.

As can be seen in Figure 8a, the first subsystem correctly
aligned the various point clouds and output the successfully
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FIGURE 8. Architectural implementation results in Gazebo: (a) alignment
and merging of point clouds; (b) downsampled point cloud;
(c) elimination of patient table and X-ray device; (d) obstacle detection;
(e) correct object detection of a person as black bounding box represents
detection of a person; (f) incorrect object detection of a person as yellow
bounding box represents detection of a TV Stand.

merged sensor point clouds, which simultaneously provided
a nearly complete view of the room in a single point
cloud.

After merging the point clouds, the obstacle detection sub-
system was able to efficiently downsample the scene, leaving
only the objects in the space (Figure 8b). In addition, this
subsystem also eliminated the points representing the patient
table and the X-ray machine based on their known positions
(Figure 8c). Finally, the boxes output by the system archi-
tecture correctly enclosed the detected obstacle, as shown in
Figure 8d. In addition, the subsystem published the array of
the obstacle point clouds. However, since this was a custom
message type, it was not possible to visualise this message
type in RVIZ.

The object recognition subsystem received the array of
point clouds, fed themwith the PointNet implementation, and
then published bounding boxeswhose colour depended on the
neural network’s predictions. From the output boxes, it could
be seen that the system could provide accurate predictions
when the point cloud of an obstacle provided a nearly com-
plete view of the real obstacle (Figure 8e). However, when
the point cloud only partially described an object/person,
the probability of an incorrect prediction increased signifi-
cantly (Figure 8f).

Finally, the motion planning subsystem continuously
retrieved the boxes output by the obstacle detection sub-
system and converted them to the format required by the
motion planning framework. Using the Motion Planning
Visualization GUI of MoveIt! which is an RVIZ plugin,
it was possible to define the target position for the X-ray
devices. If the target position represented a collision with an
obstacle, the colour of the X-ray device turned red, which
meant that the device could not move to that position and
that the subsystem had correctly received the position of
obstacles. On the other hand, the system was able to plan

FIGURE 9. Radiography room Innovation Think Tank Use-Case Testing
Platform (ITT-UCTP).

FIGURE 10. Architecture implementation results in the Use Case Testing
Platform: (a) point cloud alignment and merging; (b) downsampled point
cloud without crop box filter; (c) downsampled point cloud with crop box
filter; (d) patient table and X-ray machine elimination; (e) obstacle
detection; (f) motion planning.

movements to target positions located in an obstacle-free
space without colliding with obstacles on the way to the target
position.

When executing motions based on the motion plan created
by MoveIt! it was found that the architecture could not run at
high speed. The main reason for this was that the map update
speed was slower than the movement speed, which meant
that the device could not swerve when the obstacles near the
system changed position or new obstacles appeared near the
system. Since the elimination of the X-ray device depended
on the joint states of this device, at high speed the filters
of Crop Box would not correctly eliminate the points that
made up the device. To solve these problems, we decided to
limit the speed of the movement. This speed limit allowed the
system architecture to be faster than the motion of the x-ray
device.

Given the successful implementation of the architecture in
Gazebo, the next step was to evaluate its functionality in the
real world. Therefore, we tested the architecture in a use-case
platform of the X-ray examination room.
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C. SYSTEM ARCHITECTURE IMPLEMENTATION IN
RADIOGRAPHY ROOM USE-CASE
TESTING PLATFORM
Similar to the simulation, the first step was to execute the
architecture and initialise the depth sensors, gantry, and
telescope mechanism in the test platform for the use case
(Figure 9). It is important to note that we had to rebuild the
topics output by the depth sensors to the topics expected by
the system architecture. Once this was done, we were able to
monitor the different subsystems of the architecture.

In the case of the first subsystem, we could see that
these clouds were more irregular than those from the sim-
ulation, but we were able to successfully align and merge
them (Figure 10a).

The effectively merged multisensory data were then
retrieved by the following subsystem (obstacle detection sub-
system). As we described earlier, the first step performed
by the obstacle detection subsystem was downsampling.
However, the results obtained by downsampling were not as
effective as those obtained in the simulation (Figure 10b). The
irregularities of the point clouds retrieved from the real sen-
sors were the main reason for the ineffectiveness. Therefore,
we applied another filter (Crop Box filter) that resulted in a
clear and correctly down-sampled output (Figure 10c).

Based on the known positions of the X-ray machine and
the patient table, these objects were eliminated from the point
clouds, resulting in a pure obstacle point cloud (Figure 10d).
Furthermore, the obstacle detection subsystem was able to
correctly generate and publish bounding boxes for each obsta-
cle in the room (Figure 10e).

In addition to the bounding boxes, the obstacle detection
subsystem continuously published arrays of obstacle point
clouds. Then, the object recognition subsystem retrieved
the obstacle point clouds. However, the object recognition

FIGURE 11. Training plot of the PointNet implementation smoothed with
an exponential moving average with a smoothing factor of 0.9. It includes
the (a) accuracy (orange) and (b) loss (blue) achieved by the model.

subsystemwas not effective because in the use-case platform,
all detected obstacles contained less than 1024 points. There-
fore, the neural network was not able to predict a class for
these point clouds.

On the other hand, the motion planning subsystem effec-
tively converted the format of the bounding boxes to the
format expected by ‘‘MoveIt!’’. We verified this successful
conversion by using the Motion Planning Visualization GUI
and setting the target position to be a position where an object
was located, which gave the expected results (Figure 10f).
If the target position was an obstacle-free position, MoveIt!
was able to plan a movement to that position.

Finally, in order to execute a movement, we needed to
establish a link between the X-ray device representation
(gantry and telescope mechanism) and ROS. Therefore,
we created scripts for the movement of the mechanism based
on the joint states given by MoveIt! during the movement
execution. We defined this motion based on the joint states to
maintain the same position as the virtual X-ray mechanism
represented in RVIZ. The result was successful collision
avoidance during motion execution. In addition, since the
architecture was implemented in a scaled representation of
the X-ray space, no velocity issues were encountered as in
the simulation.

D. POINTNET IMPLEMENTATION TRAINING
As mentioned in the previous sections, PointNet was defined
as a model for classifying the objects in the examination
room. More specifically, we used the implementation pre-
sented in [34] as it provides a straightforward alternative
to integrate PointNet into TensorFlow 2, the version of
TensorFlow used in this work. In addition, as described ear-
lier, we adapted ModelNet40, originally comprising 12,311
CAD models from the 40 most common object categories in
the world and reduced its content to 15 classes representing
objects found in an X-ray examination room. These classes
were bed, bottle, chair, curtain, desk, door, lamp, laptop,
monitor, nightstand, person, plant, stool, table, and television
stand.

Once the model and dataset were ready, we trained the
model as shown in Figure 11(a) & (b).We also used the Adam
optimizer for training with an initial learning rate of 0.001,
batch size of 16, a decay step of 200,000, and a decay rate
of 0.7.

Training on the custom ModelNet40 with a GeForce
GTX 1080 Ti GPU ran until accuracy was above 90%, as the
main goal of this work was to prove the functionality, which
did not require an extremely accurate model. Furthermore,
as mentioned in the second section, the evaluation of the
model resulted in an accuracy of 92.02% and an average class
accuracy of 92.94%.

IV. DISCUSSION AND CONCLUSION
The aim of the present work was to create a system archi-
tecture that would enable the development of intelligent
and autonomous X-ray devices. The developed system had
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multiple subsystems that integrated multisensory data fusion,
obstacle detection, object classification and motion planning.

To build the above system architecture, we used the ROS
framework to support the processes that needed to be exe-
cuted by the different subsystems. Other supporting frame-
works and libraries were also required, withMoveIt! the Point
Cloud Library, and TensorFlow being the most important.

The system architecture included four subsystems. The
first subsystem was tasked with aligning and merging data
from multiple sensors. The second subsystem processed the
point cloud output from the previous subsystem to produce
a point cloud that contained only the relevant information
(obstacles) required for the subsequent extraction of point
cloud clusters. Based on the clusters, arrays of simplified
representations of the obstacles (green bounding boxes) and
point clouds of the obstacles were output. The third subsys-
tem retrieved this final array and fed these point clouds into a
PointNet implementation. The network implementation later
generated and published bounding boxes in specific colours
(the colour depended on the recognised class) for each obsta-
cle cloud that consisted of more than 1024 points. On the
other hand, the fourth subsystem subscribed to the bounding
boxes published by the second subsystem and converted these
obstacles into the format required by the motion planning
framework to update the map of the scene and correctly avoid
obstacles during motion planning and execution.

With the integration of the system architecture, we imple-
mented the architecture in two test platforms to verify its
functionality. The first testing approach was to use a simu-
lation created with the Gazebo Simulator.

The main results of the simulation tests were successful
collision avoidance during motion planning and execution,
and correct recognition of obstacles, whose point clouds
provided a nearly complete view of the objects. However,
when the point clouds did not provide a complete view of the
objects, they were usually not classified correctly. In addition,
the system architecture exhibited significant latency for most
processes due to its computational complexity and linearity.
Consequently, themotion could not be executed at a very high
speed because the update rate of the scene map was slower
than necessary. This meant that during high-speed motion
execution, the system was not able to detect in time when
a new obstacle had appeared or when an object had changed
its position. To address these issues in the future, we plan to
implement multithreading as this would be an alternative to
speed up the processing of the point cloud and reduce latency.
We also plan to train the neural network with a richer and
more diverse dataset to classify point clouds that partially
describe an object.

After successfully implementing the system architecture
in a simulation, we tested the architecture in a real envi-
ronment using a use case testing platform. The testing plat-
form was a scaled representation of an X-ray examination
room. Similar to the simulation, it contained the elements
commonly found in this room. The most promising result
of the test on the use case test platform was the correct

motion planning and execution, successfully avoiding the
obstacles in the scene. On the other hand, object classification
was inconclusive, as each of the obstacles in the scaled test
space ranged from 70 to 150 points, which meant that the
PointNet implementation could not handle them (the number
of points required for classification is 1024). To address the
inability to classify objects with fewer than 1024 points,
some future work will focus on implementing upsampling
methods to increase the number of points in these point
clouds.

Moreover, in the current system architecture, the point
clouds from the different sensors are first manually aligned
and later the position transformation is stored to avoid the
need to manually align the point cloud in the future. However,
accidentally moving the depth sensors would affect the align-
ment. Therefore, it is also important to implement a method
to automatically align the point cloud. This work lies in the
scope of future work which will lead the concept to the next
technology readiness level (TRL) also translating the concept
into mathematical model as well.

In summary, the present work has shown that the imple-
mentation of the defined system architecture in ceiling
mounted radiography systems is a feasible solution. In other
words, the architecture would contribute to the automa-
tion of the device through the analysis and processing of
multisensory data, allow the simplification of an overly
complex workflow in the radiography department, reduce
the workload of MTRAs and speed up scanning operations.
On the other hand, in addition to the challenges mentioned
above (such as reducing latency, implementing upsampling
methods, and automatic camera alignment), there are sev-
eral real-world challenges in successfully implementing this
architecture in the real world. First, our architecture is trained
with only a certain number of classes and a limited amount of
data. In this regard, the classification accuracy of the neural
network will not increase with time. Therefore, the real-
world implementation should be able to use all the data it
can continuously collect to continuously train the network
with new information. This would increase the robustness of
the architecture in classification and reduce misclassification.
Another challenge is to numerically demonstrate in future
studies that the savings and efficiencies gained by imple-
menting our system architecture outweigh the cost of sensors
and adapting the examination room to integrate the system
components. Finally, patient and physician acceptance play a
key role in the real-world implementation of the architecture.
If either of these groups does not consider a fully autonomous
X-ray machine to be safe or useful, then the implementation
of this work in practise will be highly unlikely.
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