IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 8, 2022, accepted March 7, 2022, date of publication March 14, 2022, date of current version April 1, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3159249

Enhanced Obfuscation for Software Protection in
Autonomous Vehicular Cloud
Computing Platforms

MUHAMMAD HATABA'-2, (Member, IEEE), AHMED SHERIF ', (Senior Member, IEEE),
AND REEM ELKHOULY?

ISchool of Computing Sciences and Computer Engineering, The University of Southern Mississippi, Hattiesburg, MS 39401, USA
2National Telecommunications Institute, Cairo 11786, Egypt
3Green Computing Systems Research Organization, Waseda University, Tokyo 169-8050, Japan

Corresponding author: Ahmed Sherif (ahmed.sherif @usm.edu)

ABSTRACT Nowadays, sensors, communications connections, and more powerful computing capabilities
are added to automobiles, making them more intelligent. The primary goal was to eliminate the need for
human control, making them Autonomous Vehicles (AVs). Consequently, researchers thought to put all
that newly added computational power to use for other endeavors. Hence, Autonomous Vehicular Cloud
Computing (AVCC) models were introduced. Nevertheless, this goal is not an easy undertaking, the dynamic
nature of autonomous vehicles introduces a critical challenge in the development of such a distributed
computing platform. Furthermore, it presents far complicated issues as far as security and protection of
services associated with this framework. In this paper, we center around securing programs running on
AVCC. Here, we focus on timing side-channel attacks which aim to leak information about running code,
which can be utilized to reverse engineer the program itself. We propose to mitigate these attacks via
obfuscated compilation. In particular, we change the control flow of an input program at the compiler level,
thereby changing the program’s apparent behavior and accompanying physical manifestations to hinder these
attacks. We improve our previous ARM-based implementation to address its limitations and provide more
comprehensive coverage for different programs. Our solution is software-based and generically portable -
fitting different hardware platforms and numerous input program languages at the source level. Our findings
prove a considerable improvement over our previous technique, which may provide more defense against

timing side-channels.

INDEX TERMS Autonomous vehicles, autonomous vehicular cloud computing, software security.

I. INTRODUCTION

The computing power of autonomous vehicles (AVs) is
quickly increasing. AVs are outfitted with different process-
ing, memory and storage facilities, as well as computer vision
technologies. In addition, there is a myriad of sensors and
actuators that are connected to each other and to their sur-
roundings via various communications interfaces, allowing
them to drive themselves autonomously without the need for
human control. Furthermore, AVs frequently collaborate to
collect data from their surroundings and transmit it to distant
servers, where it may be processed and analyzed to deliver
various services.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tariq Umer

In addition to navigation, some collaborative applications
were introduced to monitor the environment and pollution
levels or aid in wide-scale traffic management systems.
Hence, a paradigm called the Internet of Vehicles (IoV) [2]
was born, which is the next level of Wireless Sensor Net-
work, where the cars themselves act as the information hub.
Researchers took the computing potential found in AV to the
next level. They aim to utilize these smart cars’ occasionally
inactive computing capabilities to provide computing ser-
vices as a utility. This model is called autonomous vehicles
cloud computing (AVCC) [3].

Cloud computing is a relatively new technology that is
currently game-changing in the industry. Users don’t need
to own powerful computing capabilities at their hands.
Instead, they can rent as much power as they need in

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 10, 2022

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 33943

https://orcid.org/0000-0002-1651-7325
https://orcid.org/0000-0002-3333-8142

IEEE Access

M. Hataba et al.: Enhanced Obfuscation for Software Protection in Autonomous Vehicular Cloud Computing Platforms

a pay-as-you-go model. The advancement in communica-
tion technologies such as LTE and 5G allows a gradually
ubiquitous spreading of this new paradigm. Cloud computing
is being offered in different delivery models suiting differ-
ent user needs. There is Software as a service, Platform
as a service, and Infrastructure as a service. These models
have something in common; some computation task is done
remotely in a physically out of reach platform that the user
cannot control or govern.

Remote code execution is a trending requirement in numer-
ous usage scenarios, such as a case when a user is using a
smartphone or a small computer. In other situations, some
companies opted to use cloud computing platforms to allow
their employees a more flexible working style. In times of
hardship like nowadays, the pandemic forced many people
to work from their homes, and they needed to access the
company’s computing resources seamlessly with the same
functionalities. On the other hand, all of these usage scenarios
suffer from common security threats and privacy concerns.
More importantly, remote code execution on shared platforms
that are physically inaccessible is inherently risky in terms
of trustworthiness. That is to be confidential, integral, and
available at time of need.

These requirements become more challenging in the field
of AVCC. Although AVCC is essentially a cloud computing
platform, using cars instead of stationary computers residing
in some company’s building introduced more challenging
problems. The first obvious problem is that these cars are
moving, which means that the communication interfaces will
continually change the cloud formation. Although the orga-
nizational problems are addressed from an architectural per-
spective, they open the system to unknown threats every time
a car enters or leaves the cloud [4]. Secondly, AVs are pow-
ered by embedded systems, which means they have power
limitations and are also limited in processing capabilities,
storage, and memory.

AVs are indeed a bonanza of a variety of security attacks
such as Denial of Service (DoS), jamming, hijacking authen-
tication, racketeering, copyright infringements, stealing data,
sabotage,, and our current focus here, information leakage via
side-channels and reverse engineering.

This new breed of attacks is resilient to traditional open
security methods, relying on conventional cryptographic
approaches. Digital signatures, certificates, and trusted plat-
forms are examples of traditional cryptographic approaches
that may not be sufficient. Since the code is running remotely,
attackers may be able to view the actual decryption process
and get the information [5]. Homomorphic encryption [6]
is a fairly new technique to support encrypted execution of
instructions. Even so, it is not quite applicable yet, since it
requires complicated setup hardware and tremendous practi-
cal cost, which may not be suitable in the embedded systems
environment. Therefore, we need a new practical security
approach to remotely protect code execution from potential
attackers who share the same physical hardware in the AVCC.

33944

Here we propose to use a technique called obfuscation to
hide the actual behavior of a running program by increasing
its logical complexity [7]. The obfuscation makes the code
difficult to understand by attackers; hence they cannot leak
information about it. That’s why this closed technique is
called security by obscurity or security by design. In partic-
ular, we disrupt the normal control-flow of a running pro-
gram, by introducing a compiler-based branch instruction
transformation algorithm, which is applied dynamically and
randomly to the input program. Therefore, we complicate
the behavior of the control flow of the program, which will
be reflected in its running time and other physical mani-
festations such as power consumption, electromagnetic and
sound emissions. A side-channel attacker would need con-
sistency in these manifestation to infer correlations about a
running program and hence leak information about the run-
ning program’s behaviour. By using our technique we would
disrupt these correlations and hence thwart side-channel
attacks.

This work presents an improvement to our obfuscation via
compilation technique [7]. In particular, the contributions of
this paper are:

« first, we enhance our obfuscation mechanism to protect
programs running on AVCC platforms against informa-
tion leakage via side-channel attacks which use timing
analysis;

o second, we address the limitations of our initial imple-
mentation in some AVCC applications, specifically in
the cases where there was a small number of opportuni-
ties for branch conversions, hence it limited control-flow
obfuscation transformations.;

o third, we kept the advantages of our compiler-based soft-
ware system, that’s being input language agnostic and
platform independent, which makes our system generic
and easily applicable in AVCC platforms;

e finally, present an analytical study for our system
and their effectiveness with regard to different input
programs.

The remainder of this paper is organized as follows.
Section II lays forth some of the fundamental notions that
underpin the ideas we used in our suggested method and
provides a summary of the literature relevant to our study,
as well as their efficacy in contrast to our suggested approach.
In section III, we discuss our network and threat models as
they apply to our system. In part IV, we talk about how we’re
going to put our system in place. Section V depicts the exper-
iments and the analysis of the data. Finally, in section VI,
we wrap up the study and make some recommendations for
further research.

1. BACKGROUND INFORMATION AND RELATED WORK
Before moving forward with laying out our proposed system,
we have to build a firm background about the information that
we used as well as a knowledge base of the related literature
and how it connects to our work.

VOLUME 10, 2022

M. Hataba et al.: Enhanced Obfuscation for Software Protection in Autonomous Vehicular Cloud Computing Platforms

IEEE Access

A. PRELIMINARIES
In this section we delve into more details about the most
important constructs that we used in our system.

1) THE LLVM COMPILER

A compiler is a tool that converts high-level language pro-
grams into machine-level instructions. Compilers learn a lot
of program’s semantic information, which allows them to
optimize output programs’ performance.

LLVM [8] is a robust, open-source compilation infrastruc-
ture for building compilers. Historically, LLVM began as
a research project known as (Low-Level Virtual Machine)
developed by Vikram Adve and Chris Lattner at the Uni-
versity of Illinois [8], [9] to provide a static/dynamic com-
piler applicable for an arbitrary wide range of programming
languages. Now LLVM is the official compiler for Apple
products, including MAC OS X and iOS. The compiler is
based on the famous Static Single Assignment (SSA) form [9]
significantly simplifies developing compiler optimizations.

Moreover, LLVM is an extensible compiler suite that sup-
ports customization through modules and plugins. It allows
developers to create plugins to customize the functionality
of the compiler. For instance, a custom LLVM pass exists
to implement the Control Flow Guard (CFG) exploit mitiga-
tion and things like binary instrumentation for fuzzing/code
coverage purposes. The LLVM compiler suite, functions as
a backend portion of a compiler that handles machine code
generation from the LLVM IR (Intermediate Representation).

Compiler suites such as the Clang C/C++ compiler and
other programming languages like the Swift and Rust com-
pilers use the LLVM project as a backend. These compilers
output LLVM IR code, which is then passed to LLVM to
generate compiled binaries from the LLVM IR. Any compiler
targeting LLVM as a backend automatically supports code
generation for any architecture supported by LLVM, such
as Intel X86 or ARM. The LLVM project also includes a
linker (LLD) and other valuable utilities when developing
compilers.

Due to its wide adoption and modular extensible archi-
tecture, LLVM is an excellent choice when writing plugins
for code obfuscation purposes. By performing obfuscation
at the LLVM IR level, it is possible to develop compiler
passes for code obfuscation purposes that support multiple
programming languages and instruction set architectures.

2) CONDITIONAL BRANCHES

Control-flow optimizations, such as branch optimizations,
relax the control dependences in the program in order to
facilitate parallelization and pipelining. Conditional branches
are the main instructions that affect control-flow, as their
outcome is generally not known until the runtime. Typically,
these branches add a significant cost to the runtime of a pro-
gram. As a result, conditional branches impede parallelism or
pipelining attempts [10].

VOLUME 10, 2022

Historically, numerous scholars experimented with various
ways to convert or resolve branches to increase program
speed [11]. As a result, speculation was developed to reduce
the impact of such control dependency while maintaining
data correctness. Branch prediction is used in speculative
execution to figure out the location of the next instruction
beforehand. Then we can fetch, decode, and execute the next
instruction as though the branch forecasts were consistently
right [12]. The entire pipeline is flushed if a mistake is found
during execution, the proper instruction is retrieved, and all
operations completed are thrown away. By using predicates,
which are a form of guarded instructions, the authors in [13]
attempted to relieve such control dependences by using guard
instructions called predicates. An instruction’s execution is
determined by the evaluation result of some guard expression.

Conditional branches can be classified into the following
branch types [14]:

Forward Branch Changes the control-flow to a target
after the branch but, generally, in the same loop nesting
level.

Backward Branch Changes the control-flow to a target
before the branch but, generally, in the same loop nesting
level. A backward branch can be thought of as a loop;
thus, the loop optimizations can be applied to it.

Exit Branch Transfers the control out of the loop nest,
which terminates one or more loops.

Consequently, there are various techniques involved in
optimizing branches within a piece of code [15]. They are
listed below:

1) Straightening: put the target code instead of the branch,
replaces some branches with the target code to get
larger basic blocks.

2) Tail merging: unify tail branches of basic blocks to a
single branch, which replaces identical tails with one
tail and branch from the others.

3) Branch-to-Branch optimization: replaces a branch by a
simpler one, which usually occurs when a branch target
is another branch.

4) If simplification: eliminating the empty or constant-
valued condition arms of an if-construct; it also deletes
the empty if-constructs that may be found in the auto-
matically generated or optimized code.

5) If-conversion: converts conditional branches into pred-
icated instructions, supported by the underlying proces-
sor architecture.

In section IV, we discuss in details if-conversion optimiza-
tions. We utilized these branch optimization techniques for
security through obscurity by varying their time cost to thwart
probabilistic analysis of code execution.

B. RELATED WORK

Almost all of the concepts we used in our system have been
studied before in some form or another; the originality is in
combining the appropriate components in the proper order to
better fulfill our security needs without making the system

33945

IEEE Access

M. Hataba et al.: Enhanced Obfuscation for Software Protection in Autonomous Vehicular Cloud Computing Platforms

too complicated. Some of the relevant work is discussed in
this section.

1) CODE OBFUSCATION

First of all, we have to state that obfuscation has been around
for some time [16]. It was introduced to manage the privacy
of sensitive data in cloud computing platforms [17] and for
program protection as in [18]. In [19], the authors present
a study of Obfuscation, and deobfuscation tools in Android
platforms. They investigated automated tools such as RS,
ReDex, Obfuscapk, and DeGuard. Additionally, [20], [21]
also investigated some other techniques to obfuscate android
apps. Some of the most famous techniques are: Debug Infor-
mation Removal, Function Call Indirection, Goto Instruc-
tion Insertion, Reordering, Arithmetic Branch Insertion, Nop
Insertion, and Medhods Overload. Also, there several com-
mercial Java obfuscators such as Zelix Klassmaster, Stringer,
Allatori, DashO, DexGuard, ClassGuard, and Smoke.

However, the more prevalent use of obfuscation is in hid-
ing malware and other foist software to evade scanning or
analysis. An example work of such context is of [22]. They
proposed a technique for obfuscating trigger-based malware
code based on some conditions at the static compiler level.
This scheme allows for evading malware analysis tools. They
used the LLVM compiler to transform the input program
into an obfuscated binary. The system captures a conditional
input trigger that starts the malware; it derives an encryption
key from the input, encrypts the code, and removes the key
from the generated code. Thus analyzer programs cannot
easily detect the start or execution of malware code. This sys-
tem generates static obfuscated code essentially for malware
triggering.

On the other hand, there has been extensive research as well
on deobfuscation and automated analysis tools [23]-[25]. For
example, in [26], the authors present a technique for extract-
ing an executable program from the packed and obfuscated
binary code. They developed a hardware-assisted software for
import tables reconstruction and rebuilding obfuscated API
names.

That said, our proposed obfuscation system generates
dynamically, and every changing obfuscated binaries, which
make our is generic in that sense ad suitable for application
in the realm of AVCC platforms.

2) CLOUD SECURITY

There have been many attempts in the literature to solve the
security problem in the remote execution platforms in general
such as the cloud computing. Many recent papers surveyed
the latest state of art work in that endeavor, such as [27]-[30].
However, to the best of our knowledge, none of them has
considered using dynamic compilation technology to secure
remote code execution. Here, we shed some light on some of
these attempts.

a: TWIN CLOUDS
[31] propose securing the cloud by utilizing two clouds:
a trusted private cloud (where the cloud is under the

33946

user’s control) and a commodity public cloud. The private
cloud is used for encrypting critical data and algorithms
(setup phase). The commodity cloud is used for computing
time-critical computations (trusted cloud queries) in parallel
under encryption (the query phase). A user first sends his/her
request to the trusted private cloud, which authenticates and
encrypts the algorithm/data using a trust mechanism that is
based on Yao’s garbled circuits [32]. This process is based
on two-party encryption to realize what is called verifiable
computing [33]. That is computing the value of a function
with minimal knowledge from participating parties. The sys-
tem exposes the twin cloud architecture to programmers,
increasing the cost of the software. Moreover, it incurs the
extra cost of garbled circuit execution and communication
between the clouds. Though, this work presented a practi-
cally efficient approach for secure computations as opposed
to Fully Homomorphic Encryption (FHE), which aims to
allow calculations on encrypted data without using additional
helper information [34], [35].

b: HYPERVISOR SECURITY

[36] discussed the issue of how to trust a hypervisor. They
present root trust static and dynamic management concepts.
They suggest having a third-party certificate authority that
provides certificates that can be used for remote attestation
of a given platform; by extending the Trusted Comput-
ing Base (TCB) as per the Orange Book [37]. The differ-
ence between Static Root Trust Management (SRTM) and
Dynamic Root Trust Management (DRTM) is that the lat-
ter can start a program in an Isolated Execution Environ-
ment (IEE) at any time, not just at boot time, which is a new
root for trust chained from the initial state of the machine
(a clean CPU state). Hence, a client can be assured that
its virtual machine is integral since it has started from a
trustworthy state and has not been modified or replaced by
a malicious one. The system incurs a costly start overhead
due to the chained trust mechanism. Moreover, the system
is still susceptible to side-channels attacks from other virtual
machines. Also, adownside of the system is that the technique
relies only on verifying that the hash belongs to a list of
trusted hashes, but that does not necessarily guarantee that it
represents a trustworthy module. The certificate authority can
be deceived by a fraudulent certificate issued by a malicious
insider since the system relies only on a key for security in the
launch process. Moreover, after the launch process, there is no
way to guarantee the integrity or privacy of our computations
on the cloud during runtime. There is also the risk of sabotage
attacks via buffer and memory overflow exploits.

¢: SECURE VIRTUAL ARCHITECTURE (SVA)

[38] present a new compiler-based virtual instruction set for
executing code on a given system, including kernel and appli-
cation code. The architecture provides instructions for object-
level memory safety, control-flow integrity, and type safety,
allowing it to monitor all privileged operations and control
physical resources. They also provide custom instructions

VOLUME 10, 2022

M. Hataba et al.: Enhanced Obfuscation for Software Protection in Autonomous Vehicular Cloud Computing Platforms

IEEE Access

to control memory layouts, such as allocation and explicit
de-allocation instructions. Thus, this work only protects the
system from sabotage attacks such as memory or buffer
overflow attacks on a physical resource. However, the system
is still susceptible to eavesdropping attacks, especially at
the OS level. Moreover, the SVA sandboxing mechanism
focuses only on the instruction set beyond the Intermediate
Representation (IR) level and a code-generation phase.

That said, there are hardware-based commercial solution
offered by major vendors in the cloud market. For exam-
ple there is Intel TXT [39], ARM TrustZone [40], AMD
SEV [41], and Intel SGX [42] technologies. The researchers
in [43] studied these technologies and compared them with
each other. However, the found that each technology can offer
certain security guarantees that the other technologies do not
provide under some particular settings. Therefore, it is up
to IT security managers to choose which hardware to adopt
according to their needs.

On the other hand, our work is a protection mechanism that
is totally software based, which is easier and less expensive to
set-up and more applicable to a wide range of usage scenarios.
Moreover, it’s independent of input programming language
and architecture agnostic. That’s because we focus on the
intermediate representation level. This makes our proposed
mechanism a suitable for a heterogeneous platform such as
the AVCC.

3) SIDE CHANNELS

Side Channel Attacks (SCA) have been posing a great threat
against different platforms and architectures. That’s why
there has been a great deal of research on how to launch them
and how to thwart them equally such as [44]-[46].

For example, the authors in [47] present a software-
based side channel attack that monitors power consumption
statistics. They exploited the Intel Running Average Power
Limit (RAPL) interface to gain unprivileged access, which
allowed them to correlate and infer which instructions being
executed and distinguish hamming weights of operands and
memory access operation. This breach allowed them to leak
information about the control flow of running program and to
leak data and cryptographic keys as well. They also presented
some non-trivial mitigation techniques to this attack.

In addition, the authors in [48], examined the vulnerabil-
ities of ARM processor’s instruction set architecture (ISA)
and their susceptibility to SCAs. They also, surveyed dif-
ferent countermeasures to thwart these attacks. However,
most of these attacks targeted cryptographic algorithms in
order to leak information about encryption keys, but here,
we aim to protect the execution trace of the running program
using obfuscation. Thereby, we mangle with the correlation
between a program’s runtime behavior and the input data.
Hence, we make it difficult for attackers to leak information
about the program and/or reverse engineer it.

On the other hand, the researchers in [49] introduced a
software tool that can generate a polymorphic version of
a function of a program. They used different techniques

VOLUME 10, 2022

Cloud Service SO, : Parked
Provider ! AvVs
—————————— > E . Ne
] Fmmmm————— >% \/ & ’u\;/ zr’

RSU ((V)< ~ e 2
y
o Sl
L o7 SN 4

Moving
Q /) Avs
L3 o7

|
'
'
|
1
|
1
|
|
|
1
|
|
1
|
1
|
1
|
Vol
Vo
ot
ot
o
Vo
P
P
P
ol
P
o
o
P
[
P
P
P
P
|
[
[
|

FIGURE 1. Autonomous vehicular cloud computing system.

like instruction reordering, changing addresses of registers,
and dummy code insertion. Nonetheless, our techniques pro-
vides more diversification to the resulting technique since we
employ a technique that randomly and dynamically changes
the control-flow of the program and hence its execution
time. Moreover, our scheme is simple to apply and already
integrated within the compiler infrastructure which makes
it a relatively light-weight technique. However, some of the
aforementioned ideas, can be incorporated in our system
to offer more protection. These, along with other similarly
integrable methods will be investigated in future work.

IlIl. SYSTEM DESCRIPTION

A. NETWORK MODEL

cloud computing has existed for a while now, hence the idea
of utilizing AVs computing capabilities to create a similar
on-demand computing platform coined Autonomous Vehic-
ular cloud computing (AVCC). As illustrated in Figure 1,
AVs communicate together and to the outside world using
Road Side Units (RSUs) and many communication inter-
faces. Thereby, they can share their resources such as pro-
cessing, storage, sensing and collaborate together to perform
computation tasks which may need powerful processing.
These AVs can be traveling along the road or parked in
some place. Often, they may connect with remote servers to
provide some service. The management and synchronization
of such collaborative efforts and sharing of physical resources
will be done by a designated AVCC controller, often one
of the parked AVs, in order to balance the demand with
the availability. The service provider will sell and manage
the computing offerings through some kind of an interface
with perspective clients who might be using their personal
computer or even smartphones in any place around the world.
A client should be able to execute a code or/and store data on
some physically hardware selected by the AVCC controller
securely and without any governance from the client side.

B. THREAT MODEL
Platforms that are utilize shared resources such as AVCC,
often suffer from security attacks. That’s because, attackers

33947

IEEE Access

M. Hataba et al.: Enhanced Obfuscation for Software Protection in Autonomous Vehicular Cloud Computing Platforms

Source Program
obfuscated
with dummy
code

LLVM IR
.~ — Cross Compilation | Code Version

FIGURE 2. Flow chart explaining the steps of producing an obfuscated
code version using our proposed system.

Random Dummy Code
Insertion

Front End Compiler

LLVM IR
Code Version

Randomized Control-Flow
Obfuscations

try to advantage of some loopholes to breach the system and
obtain access to user data.

Here, we focus on non-invasive attacks that aim to leak
information about running programs. These attacks are often
easy to implement and quite scalabele and if executed on a
large scale can threaten the entire platform. They are called
side-channel attacks (SCA), which are based on monitoring
of some physical phenomenon associated with the execu-
tion of a target program, such as it’s power consumption,
acoustic emission, resource access patters or running time.
Then, the attacker might try to analyze this data in order to
deduce some correlations about the behavior of the program
being executed. Based on that, he might be able to learn
which instructions were issued and back trace the execution
of the program in order to reverse engineer it. His target
might be stealing a copyrighted program or later tamper
with it.

We assume that the attackers can be unauthorized intruders
or other users of the cloud platform. We also assume that
the service provider is honest but curious, meaning that they
would not affect the integrity of our system and the correct-
ness of the running program, but may try to leak informa-
tion about the code in the same manner mentioned above.
Either way, our proposed closed security-by-design technique
should try to thwart side-channels from any adversary by
obscurity and increasing logical complexity.

IV. PROPOSED TECHNIQUE

In this work, we extend our earlier systems that use obfus-
cated compilation, to work in the realm of AVCC [1].
In particular, We used the same idea and developed an
enhancement to that system designed to better serve the ARM
based architecture supporting the AVCC platform. In this
section, we explain how our system was constructed how it
works. We also addressed some architectural issues with the
obfuscation transformations to suit the new platform.

ARM processors have a technology called predication.
A predicate is a logical concept that adds a control flow deci-
sion point or an if-then-else functionality to the next group
of instructions,thereby they are said to be conditional. In the
original 32-bit architecture, there was a combination of four
conditional codes that controlled 13 predicated instruction.

33948

Later in 1994 the Thumb instruction set was introduced and
the inventors sought to eliminate this sort of conditional
execution in order to reduce the size of instruction for a
size of 16 bits. Then again in the modified version coined
Thumb-2, they overcome the size problem by introducing
special instruction which only provides predicates to the
following instructions.

In our system, we used a similar concept but with a dynam-
ically changing guard bit that controls the branch conver-
sion process based on the bit’s random value (either True
or False), which is the basis of our control-flow obfuscation
technique. We aimed to integrate this process within the
LLVM infrastructure, without affecting its integrity or the
correctness of the compiled program. Therefore, we modified
LLVM compiler framework to implement a dynamic obfusca-
tion scheme using randomized transformation of conditional
branches. When a source program is fed into the compila-
tion framework, our system first examines each code block
(typically a function) looking for these branch conversion
opportunities. Then, these convertible branches are flagged
by a bit as a sort of a predicate to decide whether to trans-
form that branch or not. This flag bit can be dynamically
changed with each compilation phase in order to change the
overall control flow of the program. Moreover, each flag
can be modified independently which allows us to add more
disruption to the input program at certain areas of the code
(say hotspot function) which in turn will manifest in signifi-
cantly added unpredictability of the timing behaviour of that
program. This would allow us to create sort of diversified
code versions for the same input program, having different
control flow behaviour, while maintaining its correctness
and functionality. Thereby, making it quite complicated for
attackers launching timing SCA to build correlations about
the behaviour of the running program, hence he will not be
able to leak information about it.

Figure 2 shows the steps of creating diversified machine
code versions from an input source program. These code ver-
sion are tailored to the ARM platform target using LLVM’s
cross-compiler. Figure 3 shows how we ported our LLVM
based system to suit the embedded system architecture sup-
porting the AVCC platform. The figure detail how the cross-
compilation process works by utilizing different static and
shared libraries and toolchains according to the target object.
Programs running on ARM-based systems can be one of
two things, bare-metal infrastructures and OS controlled plat-
forms. In the bare-metal model, you would need to compile
all program libraries and every associated frameworks or
toolchains and link them together in the resulting executable
machine code. While in the latter model, often a Linux based
OS (such as Linaor OS) is the one governing the system.
Therefore, you wouldn’t need to compile and link every little
piece of code needed in your program. But on the downside,
the ARM processor itself need to be powerful enough to
support the OS and other programs to be executed on it.
All of these conditions should be kept in mind, since they
would greatly affect the resulting code size and hence its

VOLUME 10, 2022

M. Hataba et al.: Enhanced Obfuscation for Software Protection in Autonomous Vehicular Cloud Computing Platforms

IEEE Access

Targ et_ ezl Target Source Generic Source
Files
Cross
Compiler
Target Static .
Libraries Target Objects
- Cross Linker
Application
Shared
Libraries

Host

FIGURE 3. LLVM cross compilation steps.

execution time. Nevertheless, in both scenarios, our obfus-
cation scheme will work essentially in the same manner.

That said, during the experiments performed in [1],
we noticed that some a limited number of branch conversion
opportunities due to its underlying control-flow structure.
It means that the number of conditional branches converted
without threatening these conditions expectedly varies from
one program to another. That’s why, in the current imple-
mentation, we introduced an LLVM plugin (Transformation)
to randomly insert junk code into the input program. This
inserted code could be just random instructions or an entire
dummy program running within the actual input program
without compromising its functionality. The purpose of this
junk code is to maximize the branch conversion opportunities
in the input program by introducing new lines of code, which
will further hinder reverse engineering and analysis of the
compiled code.

In particular, the junk code insertion is a ModulePass,
meaning that the pass gets invoked on every module (source
code file) during compilation. However, LLVM supports
other modules such as FunctionPass that runs on every func-
tion, and BasicBlockPass that runs on every basic block
within the program, which can be further leveraged in future
work.

Note that this pass begins by creating a global variable
that is referenced by the inserted junk code. This is because
some LLVM optimizations attempt to remove dead code
from the compiled program for optimization purposes. This
optimization also has the unfortunate side effect of removing

VOLUME 10, 2022

=

Application
Shared
Libraries
Target

TABLE 1. Comparison of range of normalized runtime differences in both
versions of our system.

Benchmark Name || Old System | New System
Float 03:2% 24:49 %
IntMM -16:5% 24:49 %
Perm 0.95:39 % 2:10 %
Queen -5.8:3.8% 3.6:10.8 %
Quick Sort -4:32% 3.8:99%
Puzz 0.7:39% 94:12.6 %
Oscar -1.8:47 % 1.5:6.6%

the junk code that we have inserted to evade signature-based
detection. If the junk code references a global variable, it is
not marked as dead code and deleted.

After creating the global variable, the pass uses a loop to
iterate through each function, its corresponding basic blocks,
and each of the instructions within those basic blocks. It then
chooses and inserts random lines of code within the input
program. These instructions should be simple enough to
make sure not to overly complicate the input program or
significantly affect its overall performance. Nevertheless, the
manifestation of these modification would be noticed in the
runtime results, which serves our goal in mitigating side-
channel attacks.

V. EXPERIMENTS AND RESULTS

We set up our environment as follows. An HP Notebook
model 15-DY1023DX acting as the host machine running
WSL2 Ubuntu 20.04.1 LTS x86_64 version, and the target

33949

IEEE Access

M. Hataba et al.: Enhanced Obfuscation for Software Protection in Autonomous Vehicular Cloud Computing Platforms

Normalized Runtime Differences %

V1 V2 V3 V4 V5 V6 V7 V8 V9
Code Version

FIGURE 4. Obfuscated code versions of the float program and their
corresponding percentage of normalized runtime differences with respect
to the original unmodified version.

w
o
L

N w EN
o o o
L L L

Normalized Runtime Differences %
=
o
!

V1 V2 V3 \Z: V5 V6 V7 V8 V9
Code Version

FIGURE 5. Obfuscated code versions of the IntMM program and their
corresponding percentage of normalized runtime differences with respect
to the original unmodified version.

machine was a Linux-based 32bit ARM platform. For the
sake of proving our system’s validity, we simulated the target
platform using an ARM Emulator (QEMU) [50]. This soft-
ware simulates an Thumb-2 Arm microprocessor along with
its system-level architecture. Nevertheless, we plan to test the
system with real hardware kits in our future work.

We added our obfuscation extension to LLVM framework
version 12, and used it to cross-compile the source of the
input programs and produce machine code targeting the ARM
platform. Our technique is easily integratable with any other
version of the LLVM compile that supports the “If Conver-
sion” transformation.

As a proof of concept, we choose some simple yet standard
benchmark programs as the subject for our experiments.
These benchmarks are well-known algorithms borrowed
from the test set of the Gem5 software [51]. We fed these
programs to our system, which first added some dummy
code that contains branch instructions. This dummy code is
randomly selected from a pool of code base programs. We did
that to avoid using the same code multiple time, hence this
could present a vulnerability in our system. Then the modified

33950

iy
o
!

£ o [oe)
! ! !

Normalized Runtime Differences %
N

V1 V2 V3 \Z V5 V6 V7 V8 V9
Code Version

FIGURE 6. Obfuscated code versions of the perm program and their
corresponding percentage of normalized runtime differences with respect
to the original unmodified version.

=
o
!

Normalized Runtime Differences %

V1 V2 V3 V4 V5 V6 V7 V8 V9
Code Version

FIGURE 7. Obfuscated code versions of the queen program and their
corresponding percentage of normalized runtime differences with respect
to the original unmodified version.

code would be inserted into the control-flow obfuscation
pass. Which in turn does random If conversion transformation
to the program. Finally, a machine code tailored for the
ARM platform is produced using the LLVM cross compiler,
as explained before in Figure 3. The previous steps were
summarized in Figure 2.

We did the same process multiple times for each input
program, in order to produce different code version for the
same program. Then, we compared the running time of each
code version. This study of time measurement is the basis
for thwarting timing side-channel attack because the greater
and the more unpredictable the runtime, the more it will be
difficult for an attacker to make statistical correlations about
the behavior of the program, hence he can’t leak information
about it or reverse engineer it.

Figures 4 through 10 show the normalized runtime dif-
ference percentages across the various versions that we pro-
duced for each individual benchmark. Each of these different
program versions corresponds to a different bitmask, hence
another predicated instruction series and consequently differ-
ent running times, although the programs have exactly the

VOLUME 10, 2022

M. Hataba et al.: Enhanced Obfuscation for Software Protection in Autonomous Vehicular Cloud Computing Platforms

IEEE Access

=
o
!

S (<] ©
! i !

Normalized Runtime Differences %
N

V1 V2 V3 \Z: V5 V6 V7 V8 V9
Code Version

FIGURE 8. Obfuscated code versions of the quick sort program and their
corresponding percentage of normalized runtime differences with respect
to the original unmodified version.

=
N
!

=
o
!

Normalized Runtime Differences %

V1 V2 V3 \Z! V5 V6 V7 V8 V9
Code Version

FIGURE 9. Obfuscated code versions of the puzz program and their
corresponding percentage of normalized runtime differences with respect
to the original unmodified Version.

same functionality. The running times were normalized in
comparison to the runtime of the original unmodified code
version, and the results were plotted in these figures respec-
tively. The equation for the normalized runtime difference can
be expressed as follows:

AT% = ((Tvi — To)/To) x 100 (1)

where Ty; is the runtime for that specific obfuscated code
version (which in turn corresponds to s specific bitmask),
To is the runtime for the original unmodified version. This
measure service as both a performance metric and indicator
of the robustness of our security proposal.

As we can see that these different code version all have
one thing in common, they were expectedly slower than the
original code version, due to our current system enhancement
that is the insertion of the randomly selected dummy code
with more branch opportunities. It also went under the same
control-flow obfuscation transformation and produced vary-
ing code versions with different runtimes.

To prove on how this enhancement affected the overall
system, we experimented on the same benchmarks using

VOLUME 10, 2022

Normalized Runtime Differences %

V1 V2 V3 V4 V5 V6 V7 V8 V9
Code Version

FIGURE 10. Obfuscated code versions of the oscar program and their
corresponding percentage of normalized runtime differences with respect
to the original unmodified version.

the old and the new techniques on the same platform and
collected the overall range of normalized runtime differences.
We summarized the comparison of both techniques in Table 1.

For example in Figure 4 we can see that these normalized
differences varied between 2.4% and 4.9%, which means
they ran a little slower than the original code, with differ-
ent percentages for each code version. On the other hand
from Table 1, we know that this range was —0.3% to 2%,
which was quite small, proving that we needed this sort of
enhancement.

The same goes for the IntMM benchmark plotted in
Figure 5, showing a range of 24% to 49% as compare to the
—16% to 5% with the old technique as per Table 1. Also
the Perm program in Figure 6 had a range of 2% to 10% as
opposed to 0.95% to 3.9%. In addition, the Queen program
shown in Figure 7 showed similar results, ranging between
3.6% to 10.8% as opposed to —4% to 3.2%. As for the Quick
Sort program, which we know from our previous work [1],
has many recursive calls, thus it was more challenging to
perform the if-conversion transformation. Having the oppor-
tunities for predication are limited [52], the time changes
were also minor —4% to 3.2% as per Table 1. But with our
new technique we achieved a range of 3.8% to 9.9%, and the
statistics from its code versions were plotted in Figure 8.

On the other hand for the Puzz program shown in Figure 9,
although the range is between 9.4% to 12% which is compa-
rably larger than 0.7% to 3.9%, we have to note the width
of the newly introduced range (the difference between the
maximum and minimum values) is somewhat smaller than
some of previous cases, hence the difference between the
code versions themselves was not as big as it was in other
programs. This could have happened because the inserted
random dummy code didn’t have many branch conversion
opportunities, hence we need a more concise way to choose
dummy code instead of just randomly inserting it. This needs
to be addressed in future work, because as more as we have
significant time changes, we can disrupt timing side-channel
attacks.

33951

IEEE Access

M. Hataba et al.: Enhanced Obfuscation for Software Protection in Autonomous Vehicular Cloud Computing Platforms

Also, for the Oscar program, shown in Figure 10, the old
technique achieved a range of —1.8% to 4.7%, and now with
the new technique we have a range between 1.5% to 6.6%
which some would say a smaller performance gain. Also,
they could have happened because of a poor choice for the
random dummy code. Though, unlike the Puzz program, here
the difference between the code versions is quite noticeable,
meaning that the results could be acceptable in mitigating the
attacks.

In summary, we can see from these different results that
in most programs, we achieved considerable enhancement
over the old technique as per the resulting normalized time
differences. That said, in some cases we need some way to
efficiently insert random dummy code that would produce
more runtime changes. We intend to further investigate that
in our future work.

VI. CONCLUSION
AVCC platforms are fairly new and they are still under
investigation. Security and privacy problems are among the
most important issues facing there wide-scale adoption. One
of the most serious security threats are side channel attacks
(SCA). In our work, we proposed an obfuscation mechanism
to protect software running on AVCC against timing SCA.
Virus and malware developers use obfuscation to hide their
code from scanners and detectors. We used similar concepts
to implement a dynamic yet randomized control-flow obfus-
cation technique using conversion of conditional branches.
This would result in seemingly unpredictable disruptions to
normal code behaviour, making it difficult for attackers to
leak information about the running program. In this current
approach we provide enhancements to our early work. In par-
ticular, we compensate for the cases where there were limited
opportunities for conditional branch conversions, which pre-
viously introduced hindrance to our obfuscation mechanisms.
Therefore, we were able to extend more protection for a wider
range of generic programs running on embedded system
based platforms, which is typically the case in hand in AVCC.
The results show that our LLVM-based obfuscation sys-
tem is platform agnostic, independent of the input language
and quite lightweight, which makes it a good candidate for
application the AVCC platform.

REFERENCES

[1] M. Hataba, A. Sherif, and R. Elkhouly, “A proposed software protection
mechanism for autonomous vehicular cloud computing,” in Proc. IEEE
Int. Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2021, pp. 878-881.

[2] H.Zhou, W. Xu, J. Chen, and W. Wang, “Evolutionary V2X technologies
toward the internet of vehicles: Challenges and opportunities,” Proc. IEEE,
vol. 108, no. 2, pp. 308-323, Feb. 2020.

[3] R. W. L. Coutinho and A. Boukerche, “Guidelines for the design of
vehicular cloud infrastructures for connected autonomous vehicles,” IEEE
Wireless Commun., vol. 26, no. 4, pp. 611, Aug. 2019.

[4] J. Cui, L. S. Liew, G. Sabaliauskaite, and F. Zhou, “A review on safety
failures, security attacks, and available countermeasures for autonomous
vehicles,” Ad Hoc Netw., vol. 90, Jul. 2019, Art. no. 101823.

[5] C. P. Garcia, S. ul Hassan, N. Tuveri, I. Gridin, A. C. Aldaya, and
B. B. Brumley, “Certified side channels,” in Proc. 29th USENIX Secur.
Symp. (USENIX Secur:), 2020, pp. 2021-2038.

33952

[6]

[71

[8]

[9]

(10]

(11]

[12]

[13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

C. Gentry and D. Boneh, A Fully Homomorphic Encryption Scheme,
vol. 20, no. 9. Stanford, CA, USA: Stanford Univ., 2009.

M. Hataba and A. El-Mahdy, “Cloud protection by obfuscation: Tech-
niques and metrics,” in Proc. 7th Int. Conf. P2P, Parallel, Grid, Cloud
Internet Comput., Nov. 2012, pp. 369-372.

The LLVM Compiler Infrastructure. Accessed: Feb. 1, 2022. [Online].
Available: http://www.llvm.org/

C. A. Lattner, “LLVM: An infrastructure for multi-stage optimization,”
M.S. thesis, Dept. Comput. Sci., Univ. Illinois, Champaign, IL, USA, 2002.
J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of
control dependence to data dependence,” in Proc. 10th ACM SIGACT-
SIGPLAN Symp. Princ. Program. Lang. (POPL), 1983, pp. 177-189, doi:
10.1145/567067.567085.

J. E. Smith, “A study of branch prediction strategies,” in Proc. 25 Years Int.
Symposia Comput. Archit. (Selected Papers) (ISCA), 1998, pp. 135-148.
[Online]. Available: http://dl.acm.org/citation.cfm?id=800052.801871

J. L. Hennessy and D. A. Patterson, Comput. Architecture: A Quant.
Approach. Amsterdam, The Netherlands: Elsevier, 2011.

S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and
W.-M.-W. Hwu, “A comparison of full and partial predicated execution
support for ILP processors,” ACM SIGARCH Comput. Archit. News,
vol. 23, no. 2, pp. 138-150, May 1995, doi: 10.1145/225830.225965.
P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y. Patt, “‘Branch classification: A new
mechanism for improving branch predictor performance,” Int. J. Parallel
Program., vol. 24, no. 2, pp. 133-158, Apr. 1996.

K. Kennedy and J. R. Allen, Optimizing Compilers for Modern Architec-
tures: A Dependence-based Approach. San Francisco, CA, USA: Morgan
Kaufmann, 2002.

C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Dept. Comput. Sci., Univ. Auckland, New Zealand,
Tech. Rep. 148, 1997.

M. Mowbray, S. Pearson, and Y. Shen, “Enhancing privacy in cloud
computing via policy-based obfuscation,” J. Supercomput., vol. 61, no. 2,
pp. 267-291, Aug. 2012.

M. Hataba and A. El-Mahdy, “Cloud protection by obfuscation: Tech-
niques and metrics,” in Proc. 7th Int. Conf. P2P, Parallel, Grid, Cloud
Internet Comput., Nov. 2012, pp. 369-372.

G. You, G. Kim, S.-J. Cho, and H. Han, ““A comparative study on optimiza-
tion, obfuscation, and deobfuscation tools in android,” J. Internet Serv. Inf.
Secur., vol. 11, no. 1, pp. 2-15, 2021.

J. Park, H. Kim, Y. Jeong, S. Cho, S. Han, and M. Park, “Effects of code
obfuscation on Android app similarity analysis,” Proc. J. Wireless Mob.
Netw. Ubiquitous Comput. Dependable Appl., vol. 6, no. 4, pp. 86-98,
Dec. 2015.

S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen, X. Wang,
and K. Zhang, “Understanding Android obfuscation techniques: A large-
scale investigation in the wild,” in Proc. Int. Conf. Secur. Privacy Commun.
Syst., Cham, Switzerland: Springer, 2018, pp. 172-192.

M. I Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware
analysis using conditional code obfuscation,” in Proc. Netw. Distrib. Syst.
Secur. Symp. (NDSS), 2008, pp. 1-13.

B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic
approach to automatic deobfuscation of executable code,” in Proc. [EEE
Symp. Secur. Privacy, May 2015, pp. 674-691.

G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier, and
A. Thierry, “CoDisasm: Medium scale concatic disassembly of self-
modifying binaries with overlapping instructions,” in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2015, pp. 745-756.

K. Coogan, G. Lu, and S. Debray, “Deobfuscation of virtualization-
obfuscated software: A semantics-based approach,” in Proc. 18th ACM
Conf. Comput. Commun. Secur. (CCS), 2011, pp. 275-284.

B. Cheng, J. Ming, E. A. Leal, H. Zhang, J. Fu, G. Peng, and J.-Y. Marion,
“Obfuscation-resilient executable payload extraction from packed mal-
ware,” in Proc. 30th USENIX Secur. Symp. (USENIX Secur.), 2021,
pp. 3451-3468.

B. Alouffi, M. Hasnain, A. Alharbi, W. Alosaimi, H. Alyami, and M. Ayaz,
“A systematic literature review on cloud computing security: Threats and
mitigation strategies,” IEEE Access, vol. 9, pp. 57792-57807, 2021.

1. Kanwal, H. Shafi, S. Memon, and M. H. Shah, “Cloud computing secu-
rity challenges: A review,” in Cybersecurity, Privacy and Freedom Pro-
tection in the Connected World (Advanced Sciences and Technologies for
Security Applications). Cham, Switzerland: Springer, 2021, pp. 459-469.

VOLUME 10, 2022

http://dx.doi.org/10.1145/567067.567085
http://dx.doi.org/10.1145/225830.225965

M. Hataba et al.: Enhanced Obfuscation for Software Protection in Autonomous Vehicular Cloud Computing Platforms

IEEE Access

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

M. K. Sasubilli and R. Venkateswarlu, “Cloud computing security chal-
lenges, threats and vulnerabilities,” in Proc. 6th Int. Conf. Inventive Com-
put. Technol. (ICICT), Jan. 2021, pp. 476-480.

D. Sampson and M. M. Chowdhury, “The growing security concerns of
cloud computing,” in Proc. IEEE Int. Conf. Electro Inf. Technol. (EIT),
May 2021, pp. 050-055.

S. Bugiel, S. Niirnberger, A.-R. Sadeghi, and T. Schneider, “Twin clouds:
Secure cloud computing with low latency,” in Communications and Mul-
timedia Security, B. De Decker, J. Lapon, V. Naessens, and A. Uhl, Eds.
Berlin, Germany: Springer, 2011, pp. 32-44.

A. C.-C. Yao, “How to generate and exchange secrets,” in Proc. 27th
Annu. Symp. Found. Comput. Sci. (SFCS), Oct. 1986, pp. 162-167, doi:
10.1109/SFCS.1986.25.

R. Gennaro, C. Gentry, and B. Parno, ‘“Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers,” in Advances in
Cryptology—CRYPTO 2010, T. Rabin, Ed. Berlin, Germany: Springer,
2010, pp. 465-482.

C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic
encryption scheme,” in Advances in Cryptology—EUROCRYPT 2011,
K. G. Paterson, Ed. Berlin, Germany: Springer, 2011, pp. 129-148.

N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with
relatively small key and ciphertext sizes,” in Public Key Cryptography
PKC 2010, P. Q. Nguyen and D. Pointcheval, Eds. Berlin, Germany:
Springer, 2010, pp. 420—443.

J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,
“TrustVisor: Efficient TCB reduction and attestation,” in Proc. IEEE
Symp. Secur. Privacy, May 2010, pp. 143-158.

D. C. Latham, Department of Defense Trusted Computer System Evalua-
tion Criteria. Richmond, VA, USA: Department Defense, United States of
America, 1986.

J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve, “Secure virtual archi-
tecture: A safe execution environment for commodity operating systems,”
ACM SIGOPS Operating Syst. Rev., vol. 41, no. 6, pp. 351-366, Oct. 2007,
doi: 10.1145/1323293.1294295.

W. Futral and J. Greene, Intel Trusted Execution Technology for Server
Platforms: A Guide to More Secure Datacenters. Berlin, Germany:
Springer Nature, 2013.

S. Pinto and N. Santos, “Demystifying arm TrustZone: A comprehensive
survey,” ACM Comput. Surv., vol. 51, no. 6, pp. 1-36, Nov. 2019.
“Strengthening VM isolation with integrity protection and more,”
Micro Devices, Santa Clara, CA, USA, White Paper, 2020.

V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptol. ePrint
Arch., vol. 2016, no. 86, pp. 1-118, 2016.

O. Demigha and R. Larguet, “‘Hardware-based solutions for trusted cloud
computing,” Comput. Secur., vol. 103, Apr. 2021, Art. no. 102117.

J. V. Cleemput, B. Coppens, and B. D. Sutter, “Compiler mitigations for
time attacks on modern x 86 processors,” ACM Trans. Archit. Code Optim.,
vol. 8, no. 4, pp. 1-20, Jan. 2012.

B. Gras, C. Giuffrida, M. Kurth, H. Bos, and K. Razavi, “ABSynthe: Auto-
matic blackbox side-channel synthesis on commodity microarchitectures,”
in Proc. Netw. Distrib. Syst. Secur. Symp., 2020, pp. 1-18.

C. Shen, C. Chen, and J. Zhang, “Micro-architectural cache side-channel
attacks and countermeasures,” in Proc. 26th Asia South Pacific Design
Autom. Conf., Jan. 2021, pp. 441-448.

M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella, and
D. Gruss, “PLATYPUS: Software-based power side-channel attacks on
x86,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2021, pp. 355-371.
D. McCann, K. Eder, and E. Oswald, “Characterising and comparing
the energy consumption of side channel attack countermeasures and
lightweight cryptography on embedded devices,” in Proc. Int. Workshop
Secure Internet Things (SloT), Sep. 2015, pp. 65-71.

N. Belleville, D. Couroussé, K. Heydemann, and H.-P. Charles, “Auto-
mated software protection for the masses against side-channel attacks,”
ACM Trans. Archit. Code Optim., vol. 15, no. 4, pp. 1-27, Dec. 2018.
QEMU: The FAST! Processor Emulator. Accessed: Feb. 1,2022. [Online].
Available: https://www.qemu.org/

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, and R. Sen, “The gem5
simulator,” ACM SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1-7,
2011.

J.R. Allen, K. Kennedy, C. Porterfield, and J. Warren, Conversion of Con-
trol Dependence to Data Dependence. New York, NY, USA: Association
for Computing Machinery, 1983.

Adv.

VOLUME 10, 2022

MUHAMMAD HATABA (Member, IEEE)
received the B.Sc. degree in electronics engineer-
ing, majoring in computers and systems from
the Faculty of Engineering, Mansoura University,
Dakahlia, Egypt, in 2008, and the M.Sc. and Ph.D.
degrees in computer science and engineering from
the Egypt-Japan University of Science and Tech-
nology (E-JUST), Alexandria, Egypt, in 2013 and
2019, respectively. In 2015, he was a Visiting
Research Fellow at the Professor Ueda Laboratory,
Department of Computer Science and Engineering, School of Fundamental
Science and Engineering, Waseda University, Tokyo, Japan. He is currently
with the School of Computing Sciences and Computer Engineering, The
University of Southern Mississippi, Hattiesburg, MS, USA. He is also
an Assistant Professor at the Computers and Systems (CS) Department,
National Telecommunication Institute (NTI), affiliated with the Ministry of
Communications and Information Technology (MCIT), Cairo, Egypt. He has
numerous publications in various aspects related to cybersecurity applica-
tions. He has also an extensive background in the fields of cloud computing,
computer networks, compilers, and software engineering. His research theme
was ““Code Protection by Obfuscated Dynamic Compilation.” His research
interests include autonomous vehicles, deep learning, smart grids, and code
protection.

1= &

-,

N—

AHMED SHERIF (Senior Member, IEEE)
received the M.Sc. degree in computer science
and engineering from the Egypt-Japan University
of Science and Technology (E-JUST), in 2014,
and the Ph.D. degree in electrical and com-
puter engineering from Tennessee Tech University,
Cookeville, TN, USA, in August 2017. He is
currently an Assistant Professor with the School of
Computing Sciences and Computer Engineering,
The University of Southern Mississippi (USM),
Hattiesburg, MS, USA. He is the author of numerous articles published
in major IEEE conferences and journals, such as IEEE International Con-
ference on Communications (IEEE ICC), IEEE Vehicular Technology
Conference (IEEE VTC), IEEE TRANSACTIONS ON DEPENDABLE AND SECURE
CompuTING, IEEE TrANsAcTIONS ON VEHICULAR TEcHNoLoGY (IEEE TVT),
and IEEE INTERNET OF THINGS JOURNAL. His research interests include cyber-
security, security and privacy-preserving schemes in autonomous vehicles
(AVs), vehicular ad hoc networks (VANETS), the Internet of Things (IoT)
applications, autonomous vehicle cloud computing (AVCC), and smart
grid advanced metering infrastructure (AMI) network. He served as a
Reviewer for several journals and conferences, such as IEEE TRANSACTIONS
ON VEHICULAR TECHNOLOGY, IEEE INTERNET OF THINGS JOURNAL, and the journal
of Peer-to-Peer Networking and Applications.

REEM ELKHOULY received the M.Sc. and Ph.D.
degrees in computer science and engineering from
the Egypt-Japan University of Science and Tech-
nology (E-JUST), Alexandria, Egypt, in 2012 and
2016, respectively. She is currently an Adjunct
Researcher at the Green Computing Systems Cen-
ter (GCS), Waseda University, Japan, and an Assis-
tant Professor at the Computers and Automatic
Control Engineering Department, Faculty of Engi-
neering, Tanta University, Egypt. She has authored
several papers presented in peer-reviewed conferences. She has published
two manuscripts in ACM Transactions on Architecture and Code Opti-
mization (TACO). Her research interests include compilers and code opti-
mizations, computer architecture, high performance computing (HPC), neu-
ral networks (NNs), human—computer interaction (HCI), and agent based
simulation (ABS).

33953

http://dx.doi.org/10.1109/SFCS.1986.25
http://dx.doi.org/10.1145/1323293.1294295

