
Received February 8, 2022, accepted March 2, 2022, date of publication March 14, 2022, date of current version March 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3158319

Joint Social-Aware and Mobility-Aware
Computation Offloading in Heterogeneous
Mobile Edge Computing
CHENGLIN XU 1, CHENG XU 1, BO LI 2, (Graduate Student Member, IEEE),
SIQI LI 1, AND TAO LI1
1College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
2School of Computer Science and Engineering, Central South University, Changsha 410083, China

Corresponding author: Cheng Xu (chengxu@hnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61772185, in part by the Hunan
Leading Plan for Scientific and Technological Innovation of High-Tech Industries under Grant 2020GK2037, and in part by the
Fundamental Research Funds for the Central Universities of Central South University under Grant 2019zzts282.

ABSTRACT With increasing computation-intensive tasks of various applications running onmobile devices,
the limitation of computing resources and battery capacity on mobile devices makes it impossible to meet
the users’ Quality of Service (QoS). Fortunately, with the emergence of mobile edge computing (MEC),
mobile devices can offload tasks to edge servers to efficiently solve the above problems. However, meeting
the users’ QoS requirements with the help of deployed MEC facilities is still challenging since mobile
users’ service demands vary depending on their dynamic location. In addition, increasing the number of
edge servers to meet the requirements of applications would burden the initial investment and maintenance
fee accordingly. In this case, using idle resources from nearby mobiles may become an effective solution.
Most of the existing works do not consider the mobility of devices and users’ willingness to share. Therefore,
in this paper, we propose the mobile device selection algorithms (MDSA), in which the social relationship,
location correlation, and mobile activity of mobile devices were considered in the selection of target mobile
devices, providing device-to-device offloading. In addition, we propose the joint social-aware and mobility-
aware computation offloading algorithm (JSMCO) based on the improvedKuhn–Munkres (KM) algorithm to
obtain a resource allocation strategy that minimizes the energy consumption while satisfying the minimum
latency condition. The proposed algorithms have been verified to reduce the offloading success rate and
decrease the users’ time and energy consumption in extended real datasets.

INDEX TERMS Computation offloading, social-aware, mobile edge computing, social networks, mobility.

I. INTRODUCTION
Augmented reality, natural language processing, virtual real-
ity [1]–[3], and other similar applications require high
computing capability; thus, they have higher performance
requirements for mobile devices. However, due to the limi-
tation of the physical size of mobile devices, the resources
(computing resources and battery capacity) of mobile devices
are usually limited [4]. Cloud computing [5] allows users
to migrate computation-intensive tasks to the cloud, thus
improving the performance experience and reducing the
energy consumption of mobile devices. However, the service

The associate editor coordinating the review of this manuscript and

approving it for publication was Pedro R. M. Inacio .

quality of cloud computing is significantly affected by the
network status. Moreover, as the number of tasks increases,
the processing delay also increases. As a result, offloading
tasks from mobile devices to the cloud are faced with high
latency.

Mobile edge computing (MEC) is an appropriate solution
to the problem in cloud computing [6], [7]. An emerging
paradigm reduces latency by offloading tasks to edge servers
close to users rather than to cloud servers [8]. Because MEC
is implemented at the edge of the network, it provides low
latency and flexible computing services for device users.
However, there are more mobile devices and more offload-
ing task requirements in urban hotspots, and the processing
capacity of the edge server cannot be dynamically adjusted

28600 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-9133-613X
https://orcid.org/0000-0002-1323-3175
https://orcid.org/0000-0003-4326-4519
https://orcid.org/0000-0003-4807-3703
https://orcid.org/0000-0001-8221-0666

C. Xu et al.: Joint Social-Aware and Mobility-Aware Computation Offloading in Heterogeneous MEC

according to the users’ needs. If many edge servers are
deployed, hardware resources will be wasted. Conversely,
if the deployed edge servers are insufficient, they cannot cope
with the requirements for task offloading. There are many
idle computing resources amongmobile devices. Suppose the
tasks that the edge server cannot handle can be offloaded to
idle mobile devices. In this case, the problem of insufficient
processing capacity of the edge server can be solved [9], [10].

However, offloading tasks to nearby mobiles may consume
their valuable battery power and computing resources as well
as increase security risk, raising the issue of low willingness
to share resources among mobile users [11], [12]. Therefore,
promoting cooperation and improving user participation have
become important issues [13]–[15]. On the other hand, the
location of mobile devices varies, and each mobile device
has different computing resources to use. Task offloading will
fail when the selected device cannot complete the calculation
or return the results on time; thus, finding a suitable mobile
device to complete the task of computing offloading is also a
complex problem. In addition, when dealing with many tasks
with different requirements, allocating them efficiently is also
a problem that needs to be solved [16], [17] because failure
to allocate them rationally can lead to waste of resources
and many tasks not being completed on time. Therefore,
it has become challenging to utilize the powerful computing
capabilities in the cloud, the advantage of ultra-low latency
at the edge, and the computing resources provided by idle
mobile devices.

Social networks are a continuation of real social rela-
tionships, and users with social relationships [18] are more
willing to share resources on social networks. Therefore, the
social relationships between users could be used to measure
their willingness to share computing resources. The mobil-
ity of users affects the selection of offloading devices [19].
To select the appropriate device that provides computation
offloading, we proposed the mobile device selection algo-
rithms (MDSA) by combining social relationships andmobil-
ity (location correlation and mobile activity).

The cloud has powerful computing capability, the edge
can provide ultra-low latency services, and the resources of
idle mobile devices can solve the problem of insufficient
computing resources in hotspots. Therefore, combined use of
the above resources can meet the needs of mobile devices,
which has practical significance. However, flexibly allocating
these resources according to the actual environment becomes
a problem that needs to be solved. We propose the joint
social- and mobility-aware computation offloading (JSMCO)
algorithm to solve this problem.

Our contributions are summarized as follows:
• We considered a multitier system with multiusers, mul-
tiple edge servers, and a cloud server. We established a
social relationship to describe the relationship between
users and measured their willingness to share. In addi-
tion, we considered the mobility of users in the system
to make the offloading strategy more suitable for real-
world scenarios.

• We proposed an MDSA that integrates social relation-
ships, location correlation, and mobile activity attributes
to select the appropriate node to provide offloading ser-
vices according to the actual requirements.

• We employed multiple offloading methods (local
offloading, direct cloud offloading, direct edge offload-
ing, device-to-device (D2D) offloading, D2D-assisted
cloud offloading, and D2D-assisted edge offloading) to
compute offloading comparisons.

• We proposed a multiobjective optimization-based
JSMCO algorithm to assign resource allocation under
multiple offloading methods and multiple offloading
tasks conditions.

II. RELATED WORK
This section provides an overview of works related to edge
computation offloading, D2D computation offloading, and
joint social-aware computation offloading.

MEC can provide computing and storage services close
to the terminal devices at the network’s edge. Its advantage
is that it reduces device energy consumption and computing
time. For these reasons, MEC research has received a consid-
erable attention from academia and industry.

Chen et al. [20] studied task offloading in software-defined
ultradense networks. They proposed a method to minimize
the delay while saving the battery life of user equipment.
Guo et al. [21] proposed a two-layer game-theoretic greedy
offloading scheme to solve the mobile edge computation
offloading problem in ultradense Internet of Things networks.
They also verified that the approach has certain advantages
under the conditions of computation offloading among mul-
tiple edge servers. Dinh et al. [22] proposed an optimization
framework for offloading from a single mobile device to
multiple edge devices. This framework minimizes the pro-
cessing delay of all tasks and the energy consumption of
mobile devices by jointly optimizing task allocation decisions
and the frequency of the central processing unit (CPU) of
the mobile device. You et al. [23] studied resource allo-
cation in a multiuser MEC system based on time-division
multiple access and orthogonal frequency-division multiple
access. Zhao et al. [24] studied the problem of computa-
tion offloading from multiple mobile devices to one mobile
edge server to minimize energy consumption. They proposed
a branch delimitation approach based on the reconfigura-
tion linearization technique (Gini coefficient-based greedy
heuristic) and a greedy heuristic algorithm based on the Gini
coefficient. Ning et al. [25] proposed an iterative heuris-
tic MEC resource allocation algorithm that combined cloud
computing and MEC. The algorithm can make offloading
decisions dynamically to optimize processing latency and
offloading efficiency. Ren et al. [26] proposed a collaborative
cloud edge computing schemewith federated communication
and computing resources to improve the efficiency of edge
clouds under the condition of limited communication and
computation capacity. Xu et al. [27] proposed a computa-
tion offloading algorithm based on a neural network task

VOLUME 10, 2022 28601

C. Xu et al.: Joint Social-Aware and Mobility-Aware Computation Offloading in Heterogeneous MEC

model and presented an adaptive task scheduling algorithm
using an improved ant colony algorithm. A cloud edge col-
laboration framework for distributed neural networks was
proposed based on the above algorithms. Zhao et al. [28]
proposed a cloud edge collaboration approach by jointly
optimizing computation offloading decisions and computing
resource allocation, which can offload services to vehicles in
an in-vehicle network.

Ahani and Yuan [29] proposed the use of BS to assist
D2D offloading (BS acts as a relay for task distribution
and result collection) and adopted the Lagrangian duality
algorithm to balance the increased overhead and reduce
the computation offloading time. Lin et al. [30] used
D2D offloading and local offloading to minimize the total
energy consumption. Xing et al. [31] studied a multias-
sisted MEC system that supports D2D offloading. They pro-
posed a heuristic scheme for joint optimization of wireless
communication, computing resources, and tasks allocation.
Xie et al. [32] proposed a computation offloading scheme
for precedence-constrained tasks with the aim of minimizing
the time consumption and computing cost of computation
offloading.

He et al. [13] proposed an incentive mechanism based on
an online auction where the users’ mobile devices dynam-
ically participate in the system, which can obtain better
unloading decisions without future information. Pu et al. [33]
proposed an online incentive-aware task offloading frame-
work, which ensures that the computing resources obtained
by mobile devices from other mobile devices do not exceed
their contribution. Jin et al. [33] proposed a multimarket
dynamic double auction mechanism (mobiauc) to promote
fair resource exchange. Li et al. [34] regarded the collab-
orative task offloading problem as a social welfare max-
imization problem and used a prime dual framework to
develop an online incentive mechanism for the execution of
the tasks. It considers the dynamic participation characteris-
tics of the users’ mobile devices. Saha et al. [35] designed
an incentive mechanism to improve user participation, con-
sidering mobile device resource allocation and reputation.
Noor et al. [36] proposed a cell cloud architecture, which
refers to the reputation-based economic incentive model,
encouraging mobile users to actively share their mobile
device resources. Qiao et al. [14] proposed a reputation-based
consensus mechanism (Proof of Reputation) so that the
proposed computing scheme can be safely and effectively
deployed in the device-to-device edge computing networks
(D2D-ECN) framework. Chatzopoulos et al. [15] put forward
a framework of joint incentive mechanism and reputation
mechanism so that the devices participating in coopera-
tion can obtain corresponding rewards, whereas the self-
ish devices are punished accordingly to achieve a better
computing unloading effect. Roostaei et al. [37] proposed a
mobile cloud computing framework supporting device-to-
device. At the same time, to encourage mobile devices to
contribute to the D2D cloudlet, an incentive mechanism
based on credit and reputation was developed. The incentive

mechanism uses a second-price reverse auction to measure
the value of resources in the D2D cloudlet.

Cao et al. [9] leveraged social-aware to select the shar-
ing of idle communication and computing resources among
mobile users to reduce energy and communication resource
consumptions. In addition, they proposed a joint task-data
offloading framework and a matching-based and game
theory-based scheme to resolve the association between
mobile devices. Chen et al. [38] proposed a D2D crowd
framework in which network edge devices use network-
assisted D2D collaboration to share computing and com-
munication resources so as to reduce energy consumption.
To reduce the task computing time and energy consumption,
Ciobanu et al. [39] proposed transferring data and comput-
ing from mobile devices to the cloud, fog nodes, or other
mobile devices. Chen et al. [40] proposed considering social
relationships as an essential factor for collaborative com-
putation offloading and taking the minimum weight of a
perfect bipartite graph as the decision-making method of
multitask computation offloading. Yu et al. [41] proposed
a hybrid multicast-based task offloading framework that
uses social-aware to establish D2D connections and reduces
energy consumption through the task assignment strategy of
the framework.

In [20]–[28], only one local computing, edge server com-
puting, cloud computing, or cloud edge collaboration can be
selected for offloading computation. Computation offloading
using this strategy in urban hotspots will cause a high net-
work load and insufficient server resources. If idle mobile
terminal resources can be fully utilized, the efficiency of com-
putation offloading will be improved. D2D communication
has become a hot research topic [29]–[32], which does not
rely on local base stations but uses physical proximity to
reduce end-to-end latency and energy consumption. How-
ever, due to the increasing number of mobile devices, the
demand for mobile devices for computation offloading is also
increasing, which leads to several problems in the use of
mobile devices for computation offloading or data transfer.
On the one hand, using other mobile devices for computa-
tion offloading can pose security risks. Alternatively, mobile
devices have a lot of idle computing resources; however, they
are unwilling to provide computation offloading to every-
one. [13]–[15], [33]–[37], [42] have considered cooperation
between devices, incentive mechanism, reputation or a com-
bination of incentive mechanism, and reputation. The above
methods can improve the users’ effective participation and
cooperation, but these methods have higher system overhead
and more complex operability. The studies in [9], [38]–[41]
considered social-aware for computation offloading, but none
considered the mobility of users. Mobile device locations
are dynamically determined by user behavior, unlike cloud
or edge servers, where the location is relatively constant.
Therefore, this paper considers mobility (location correla-
tion and mobile activity) and social-aware while combining
cloud servers, edge servers, andmobile devices for offloading
computation.

28602 VOLUME 10, 2022

C. Xu et al.: Joint Social-Aware and Mobility-Aware Computation Offloading in Heterogeneous MEC

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we first built a task model, task computing
model, social relationship model, location correlation model,
mobile activitymodel, and energy consumptionminimization
problem formulation.

As presented in Fig. 1, we considered a system model
with multiuser, multi-edge and cloud servers, where the set of
mobile devices can be denoted as M= {1, 2 ,M}. Each
mobile device location is not fixed, they can move in the area
covered by the base stations, and different base stations in dif-
ferent locations can serve them. We assumed that all mobile
devices could communicate with wireless base stations and
with each other by D2D. When the mobile device handles
computation-intensive tasks or latency-constrained tasks, the
mobile device can perform computation offloading according
to actual conditions. Mobile devices can transmit tasks to the
edge or cloud server for computation offloading through the
wireless base station. Tasks can be offloaded to other mobile
devices when other mobile devices are available. The mobile
devices can assist other mobile devices in offloading tasks
to the edge or cloud server when far from the base station.
In Fig. 2, we also assumed that the relationship between
mobile devices is based on the social relationship between
users.

The detailed system model is as follows:

A. TASK MODEL
We represent the task as a quadruple < λi, ψi, µi, lti >;
parameter λi indicates the size of the input data for the task
of device i; parameter ψi, the required computing resource
(we use the number of CPU clock cycles needed to indicate
the required computing resources); µi, the size of the output
data; and parameter lti, the task processing time limit.
The task processing time limit represents the maximum

time allowed to complete the task, and the task must be
processed within this time to satisfy the requirements of the
mobile device. The task processing time is determined by
finding the ratio of the required computing resource per task
to the CPU performance of the device, which can be defined
as follows:

ti = ψi
/
fi (1)

where fi denotes the computing power of device i using the
CPU frequency (number of clock cycles per second) as the
computing unit.

If the same devices consume the same amount of energy
consumption per unit of time, the energy consumption ρi can
be calculated based on the task processing time, and it is
defined as follows:

ρi = ρ
ec
i · ti (2)

ρeci denotes the energy consumption generated by the com-
putation of device i per unit time, and ti denotes the time
required for the task computation.

FIGURE 1. Illustration of a system model with multiuser multiedge server
and a cloud server.

B. TASK COMPUTING MODEL
As a result of the different computing capabilities of cloud
servers, edge servers, and mobile devices, the delay and
energy consumption are also different. Comprehensive uti-
lization of these computing resources is necessary to obtain
better offloading results. Meanwhile, we will define the
energy consumption and the delay associated with each strat-
egy to evaluate offloading strategy.

Since this paper mainly considers the effects of social
relationships, location correlation, and mobile activity on
the computation offloading results, signal fading will not be
considered in the data transmission. Figure 3 presents the
computation offloading.

1) LOCAL OFFLOADING (LO)
Energy consumption is determined by the energy consump-
tion of the local device and the computing time of the task
when a local device processes the task. The diagram is pre-
sented in Fig. 3(a). The local offloading energy consumption
is defined as follows:

EC i = ρ
ec
i · ti (3)

Because the task was locally processed, its processing
time only depends on the performance of the device and the
amount of task calculation. Therefore, the task processing
time is calculated as follows:

ti = ψi
/
fi (4)

In Fig. 3(a), x ii determines whether the task is locally
processed:

xii =

{
1; if the task Ti is processed locally
0; otherwise

(5)

VOLUME 10, 2022 28603

C. Xu et al.: Joint Social-Aware and Mobility-Aware Computation Offloading in Heterogeneous MEC

FIGURE 2. Illustration of the connection between users, social
relationship, and device relationship.

2) DIRECT CLOUD OFFLOADING (DCO)
Since task offloading aims to increase the processing speed
and reduce the energy consumption of the mobile device,
the energy consumption of the cloud is not considered.
When offloading tasks to the cloud, the energy consumption
includes the energy consumption of the mobile device send-
ing data to the cloud server and the mobile device receiving
the processing result from the cloud, which is schematically
presented in Fig. 3(b). It can be defined as follows:

EC i,c = ECs
i,c · λi/Ri,c + EC

r
i,c · µi/Rc,i (6)

where ECs
i,c denotes the power of mobile device i to send data

to the cloud, and ECr
i,c denotes the power of mobile device i

to receive data sent from the cloud.
When offloading tasks to the cloud, the time consumption

includes the transmission delay between the mobile device
and cloud server and the processing delay of the cloud server.
Therefore, the task processing time ti,c is defined as follows:

ti,c = λi/Ri,c + λi/Rc1,c2 + ψi/f ci + µi/Rc,i
+µi/Ri,c2 + sc1,c2/Rc1,c2 · 2 (7)

where f ci indicates the computing capacity that the cloud
server allocates to node i; λi/Ri,c, the time of sending data
from the mobile device to the base station; µi/Rc,i, the time
of receiving data from the mobile device; Rc1,c2, the data
transmission rate between the base station and the cloud
server; and sc1,c2, the distance between the base station and
the cloud server.

In Fig. 3(b), xci determines whether the task is offloaded to
the cloud:

xci =

{
1; If the task Ti is offloaded to the cloud server c
0; otherwise

(8)

3) DIRECT EDGE OFFLOADING (DEO)
The computing power of the edge server is not as strong as the
cloud server, but its proximity to the mobile terminal makes
the propagation delay lower than the cloud server. When the
edge server processes the task, its energy consumption is
equal to the sum of the energy consumption of the mobile
device sending the data to the edge server and receiving the
data result from the edge server. Its schematic is presented in
Fig. 3(c), and its energy consumption is defined as follows:

EC i,e = ECs
i,e · λi/Ri,e + EC

r
i,e · µi/Re,i (9)

where ECs
i,e denotes the power sent by a mobile device to the

edge server; Ri,e, the rate sent by a mobile device to the edge
server; ECr

i,e, the power of the mobile device to receive data
from the edge server; Re,i, the reception rate.

The time consumption includes the time delay in sending
and receiving data and the time delay in processing data by
the edge server. The time consumption ti,e can be defined as
follows:

ti,e = λi/Ri,e + ψi/f ei +µi/Re,i (10)

where f ei denotes the computing capacity of the edge server.
In Fig. 3(c), the xei determines whether the task is offloaded

to the edge:

xei =

{
1; if the task Ti is offloaded to edge device e
0; otherwise

(11)

4) D2D OFFLOADING (D2DO)
D2DO is a strategy for computation offloading using idle
mobile devices. Its data transmission can be done without
cellular networks, and it accomplishes computing tasks with-
out cloud or edge servers. The energy consumption of D2DO
consists of the energy consumption of the mobile device for
sending and receiving data and the energy consumption of
the mobile device for completing the computation task. The
schematic is presented in Fig. 3(d), and energy consumption
EC i,j is defined as follows:

EC i,j = ECs
i,j · λi/Ri,j + ρ

ec
i · ψ i/fj + EC

r
i,j · µi/Ri,j (12)

where ECs
i,j denotes the power of mobile device i to send

data to j; ECr
i,j, the power of mobile device i to receive data

from j; and Rj,i, the transmission rate between node i and j.
The transmission rate is determined by the type of wire-
less transmission network (Bluetooth, WLAN) used between
node i and j.

The time consumption of D2DO is related to the send-
ing time of mobile device i, the computing time of mobile

28604 VOLUME 10, 2022

C. Xu et al.: Joint Social-Aware and Mobility-Aware Computation Offloading in Heterogeneous MEC

FIGURE 3. Illustration of the different computation offloading methods.

device j, and the receiving time of mobile device i. We define
the time consumption ti,j as follows:

ti,j = λi · Ri,j + ψi · fj + µi · Ri,j (13)

In Fig 3(d), the x ji determines whether the task is offloaded
to other mobile devices:

x ji =


1; if the task Ti is offloaded to

another mobile device j
0; otherwise

(14)

5) D2D-ASSISTED CLOUD OFFLOADING (D2DCO)
When mobile devices cannot transmit data directly to the
cloud server for computation offloading, other devices can
be regarded as a relay to transmit data to the cloud server.
Figure 3(e) presents the diagram. The energy consumption of
D2DCO consists of device i sending data to j, mobile device
i receiving data from j, mobile device j sending data to the
cloud server, and mobile device j receiving data from the
cloud server. The energy consumptionEC i,j,c for D2DCO can
be expressed as follows:

EC i,j,c = ECs
i,j · λi/Ri,j + EC

r
i,j · µi/Ri,j + EC

s
j,c · λi/Rj,c

+ECr
j,c · µi/Rj,c (15)

where ECs
j,c denotes the power of mobile device j to send data

to the cloud, and ECr
j,c denotes the power of mobile device j

to receive data from the cloud.
The time consumption of D2DCO includes mobile device i

sending data to j, mobile device i receiving data from j, mobile
device j sending data to the cloud server, mobile device
j receiving data back from the cloud server, and the time
consumption required for cloud server calculation. The time

consumption of D2DCO ti,j,c can be defined as follows:

ti,j,c = λi · Ri,j + µi · Ri,j + λi · Rj,c + µi · Rj,c + ψi/f cj
+
(
sc1,c2/Rc1,c2

)
· 2 (16)

In Fig. 3(e), the x j,ci determines whether the task is
offloaded to the cloud with the help of other mobile devices:

x j,ci =


1; if the task Ti is offloaded to the

cloud server via mobile device c
0; otherwise

(17)

6) D2D-ASSISTED EDGE OFFLOADING (D2DEO)
The signal transmission range of edge servers is limited;
therefore, computing resources available to different edge
servers are different so that D2DEO can provide a better
quality of service (QoS) and a more reasonable allocation
of computing resources. Figure 3(f) presents a schematic of
D2DEO. The energy consumption is related to mobile device
i sending data to j, mobile device i receiving data from j,
mobile device j sending data to the edge server, and mobile
device j receiving data back from the edge server by analysis.
Thus, the energy consumption EC i,j,e for D2DEO can be
expressed as follows:

EC i,j,e = ECs
i,j · λi · Ri,j + EC

r
i,j · µi/Ri,j + EC

s
j,e · λi · Rj,e

+ECr
j,e · µi/Rj,e (18)

The time consumption of D2DEO includes sending data
from mobile device i to j, receiving data from mobile device
i to j, sending data from mobile device j to the edge server,
receiving data from the edge server to mobile device j, and
computing by the edge server. The time consumption ti,j,e can
be defined as follows:

ti,j,e=λi · Ri,j+µi · Ri,j+λi · Rj,e + µi · Re,j + ψi/f cj (19)

In Fig. 3(f), x j,ei determines whether the task is offloaded
to the edge with the help of other mobile devices:

x j,ei =


1; if task Ti is offloaded to the edge

server e via device j
0; otherwise

(20)

C. SOCIAL RELATIONSHIP MODEL
The concept of community is often used to describe social
relationships, where nodes (users) with similarities (interests,
behaviors, etc.) are grouped into a community. Nodes within
the same community are more closely related than those from
different communities. Therefore, to describe the social rela-
tionship between nodes, we consider the similarity between
nodes and communities as well as the similarity between
nodes and nodes to model social relationships.

This paper presents the social similarity [42] between users
by the weight matrix calculated from social relationships.
This matrix reflects the closeness of social relationships

VOLUME 10, 2022 28605

C. Xu et al.: Joint Social-Aware and Mobility-Aware Computation Offloading in Heterogeneous MEC

betweenmobile devices, and theweight matrix A is expressed
as follows:

A =
[
ai,j
]
Nde·Nde

(21)

where Nde denotes the number of mobile device nodes,
including edge devices, ai,j ∈ [0, 1] , ai,j = 0 indicates that
device i and j are not socially related, and ai,j = 1 indicates
that the social relationship is closely related. Since social
relationships are directional, ai,j is different from aj,i (e.g.,
we recognize celebrities, but they usually do not recognize
us). The social similarity attribute determines the value of
ai,j. In this paper, ai,j is determined by the similarity between
node and community and between nodes. It can be defined as
follows:

ai,j = ηCSi,j + (1− η)NSi,j (22)

CSi,j indicates the similarity between node i and com-
munity Cj (the community where node j is a member),
and NSi,j indicates the similarity between node i and j.
η is a variable parameter that adjusts the importance
of CSi,j and NSi,j.
The similarities between nodes and communities can

be used to reflect the relationship between them [43].
The similarity between communities CSi,j is defined
as follows:

CSi,j =

∑
9k∈γi,j

9k∑
8k∈8j

8k
(23)

Using (5), we can calculate the similarity between user i
and communityCj.9k denotes the attribute set of nodes i, and
8k denotes the attribute set of community Cj. γi,j represents
the intersection of the social relationship attribute set of the
node i and the community j :

γi,j = 9i ∩8j (24)

The similarity between nodes reflects attributes
similarity between nodes, which is defined
as follows:

NSi,j =

∑
9k∈�i,j

9k∑
9k∈j9k

(25)

where �i,j indicates the intersection of social relationship
attributes between user i and user j.

�i,j = 9i ∩9j (26)

D. LOCATION CORRELATION MODEL
The exact location of people’s movements is uncertain, but
the areas frequently visited (e.g., home and office) are rela-
tively fixed. They will stay a long time in these areas. If the
mobile devices are selected for computation offloading, they
will be more likely to complete it. Therefore, by considering
the location correlation when selecting the offloading nodes,
better offloading results can be obtained.

In this paper, the position relationshipmatrix represents the
position relationship between nodes. The relationship matrix

can reflect the location correlation between the served node
and the service node. It reflects whether the service node is in
a frequently active area. Thus, the relationshipmatrix can find
more suitable server nodes. The position relationship matrix
is defined as follows:

P =
[
bi,j
]
NdNd

(27)

where Nd denotes the number of mobile device nodes. The
variable bi,j is defined as follows:

bi,j =

{
1, ρl i = ρl j and ρl i ∈ Areaj
0

(28)

When it is satisfied that node i and j are in the same area,
and j is in a frequently active area, bi,j is equal to 1; otherwise,
it is equal to 0. ρl i indicates where the device i is located, and
Areaj denotes the area where j is frequently active.

Areai = {i1, i2, i3 in} (29)

The regions are divided by geographical location, and n
represents the number of regions.

E. MOBILE ACTIVITY MODEL
Mobile activity indicates the degree of activity, and higher
activity indicates that the user’s location changes fast, which
means that the user stays in a fixed area for less time.
This type of user is more suitable for less computationally
demanding tasks. We use Mobi ∈ [0, 1] to represent mobile
activity.

Mobi =
(
ρl i, dur, date

)
(30)

where ρl i denotes the location of the user; dur , the duration
of the user at the current location; and date, the date of the
user at the current location. Mobi is obtained by analyzing
the user’s movement track data.

F. POWER CONSUMPTION
Under the condition of guaranteed delay, we will find the
offloading strategy with the lowest energy consumption. The
sum of energy consumption EC is defined as follows:

EC =
∑

l∈M ,e∈E

∑
k∈M ,c∈C

∑
c∈C

∑
e∈E

∑
j∈M

∑
i∈M

× (x iiECi + x
j
iECi,c + xei ECi,e + x

c
i ECi,j

+ xk,ci ECi,k,c + x
l,e
i ECi,l,e) (31)

where EC i is the energy consumption for local computing;
EC i,c, the energy consumption of DCO; EC i,e, the energy
consumption of DEO; EC i,j, the energy consumption of
D2DO; EC i,j,c, the energy consumption of D2DCO; EC i,j,e,
the energy consumption of D2DEO,; and M, is the set of
mobile devices.

28606 VOLUME 10, 2022

C. Xu et al.: Joint Social-Aware and Mobility-Aware Computation Offloading in Heterogeneous MEC

Then, the optimization objective is defined as follows:

MIN (EC) (32)∑
i∈M

xei ψi ≤ fe (32a)

x ii + x
j
i + x

e
i + x

c
i + x

j,c
i + x

j,e
i = 1 (32b)(

xji + xj,ci + xj,ei
) (
ρl i − ρl j

)
= 0 (32c)

x ii ti+x
j
i ti,j+x

e
i ti,e+x

c
i ti,c+x

j,c
i tj,c + x

j,e
i tj,e <= lti (32d)

The constraint in (32a) ensures that the sum of the server
resources used cannot exceed the computing resources owned
by the edge server. The constraint in (32b) ensures that each
task can only be calculated by one offloading mode. The
constraint in (32c) guarantees that the offloading task cannot
be transmitted to nodes outside of the transmission range.
The constraint in (32d) ensures that the task processing time
cannot exceed the maximum delay.

IV. JOINT SOCIAL-AWARE AND MOBILITY-AWARE
COMPUTATION OFFLOADING (JSMCO)
The JSMCO algorithm mainly addresses the problem of
energy consumption minimization under the condition of
meeting the task latency. In the algorithm, we considered the
social relationship, location correlation, and mobile activity
while also making full use of idle resources and realizing the
collaborative work of cloud, edge, and mobile devices.

Figure 4 presents the procedure of offloading strategy. The
left side of the figure shows the tasks generated by the mobile
device node; the right side, the ways that each task can be
offloaded; the middle line, the offloading nodes that the task
can choose; and the weight of the line, the energy consump-
tion required for offloading. Therefore, we can transform
the optimization problem in this paper into the matching
problem of solving weighted bipartite graphs. The improved
Kuhn–Munkres (KM) algorithm can handle this problem very
well, so the objective function (32) can be transformed into
the improved KM algorithm to solve the weighted bipartite
graph.

A. FUNDAMENTALS OF THE IMPROVED KM ALGORITHM
The KM algorithm [44] is used to solve the weighted bipartite
graphmatching problem. It transforms the problem of finding
the maximum weight match into finding the perfect match
of the bipartite graph and finally obtains a maximum weight
perfect match.

It can be seen from Fig. 4 that the task generated by the
mobile device node corresponds to a part of the bipartite
graph. A mobile device node that can complete the task,
edge, and cloud corresponds to another part of the bipar-
tite graph. The connection between the task and offloading
method nodes represents the offloading method that the task
can adopt and the energy consumed by offloading. Therefore,
we can convert the minimization optimization problem to the
minimumweight matching of the bipartite graph.When using
the KM algorithm for bipartite graph matching, the number

FIGURE 4. Matching model diagram of the weighted computing task and
offloading method.

of nodes at both ends of the bipartite graph must be the same,
and the maximum weight matching is calculated, which is
inconsistent with the conditions in this paper. Therefore,
in this paper, the KM algorithm could not be used directly,
so the optimized KM algorithm [45] was used instead. First,
the virtual task node and the weight between the virtual task
node and the offloadingmethodwere introduced to satisfy the
condition that the left and right nodes of the bipartite graph
are equal, and then the matching of the maximum weight of
the bipartite graph was transformed into the matching of the
minimum weight.

B. JSMCO ALGORITHM
The JSMCO algorithm is used to minimize energy consump-
tion to meet the minimum-delay demand. It needs to use
the MDSA to obtain the optimal auxiliary unloading mobile
device nodes and the optimized KM algorithm to obtain the
optimal offloading strategy. The pseudocode of the algorithm
is as follows:

Algorithm 1 is used to find the optimal computation
offloading strategy to obtain the least-energy consumption
while satisfying the time delay. The algorithm can be divided
into nine steps: (1) obtain the list of task nodes and the avail-
able resources (cloud, edge, and mobile devices); (2) obtain a
set of nodes around the task node that can assist in offloading
according to the current time and the task node; (3) obtain all
the offloading methods available for the task nodes; (4) get
the optimal offloading node using algorithm 2; (5) calculate

VOLUME 10, 2022 28607

C. Xu et al.: Joint Social-Aware and Mobility-Aware Computation Offloading in Heterogeneous MEC

Algorithm 1 Joint Social-Aware and Mobility-Aware Com-
putation Offloading Algorithm
1. Initialization

get TaskList () Get a list of task nodes
get Resource () Getting cloud, edge, and mobile device available

resources
end initialization

For all TaskList do
2. procedure getUnloadedNode()

Get the nodes around a task node
end procedure

3. procedure disIsSuitable ()
Get all available offloading methods for the current task
end procedure
procedure OptAssNode()

4. Obtain the best assisted offloading node for the current task via
algorithm 2
end procedure

5. Procedure energyCo ()
Calculate the energy consumption of all offloading methods
end procedure
Procedure timeCon ()
Calculate the time consumption of all offloading methods
end procedure

End For
6. procedure getAllTaskUnloadReList()

Obtain offloading methods and results that meet the
requirements

end procedure
7. procedure dataConversion ()

Data Conversion
end procedure

8. procedure UnloadingOptimization ()
Obtain weight-minimizing offloading methods
end procedure

9. procedure Unloading ()
Computation offloading according to the offloading scheme and

calculation of the offloading time and energy consumption
end procedure

the energy and time consumption of the offloading strat-
egy that meets the offloading time requirements; (6) obtain
the initial offloading results for all tasks; (7) transform the
offloading result for calculation; (8) obtain the offloading
strategy that minimizes the energy consumption by the min-
imum weight matching of the improved KM algorithm; and
(9) calculate the offloading according to the offloading strat-
egy in the previous step.

C. MOBILE DEVICE SELECTION ALGORITHMS (MDSA)
We select the optimal offloading mobile device nodes based
on three factors, namely, social relationship, location cor-
relation, and mobile activity. Considering the combination
of these factors, it is possible to select a more appropriate
mobile device that provides computation offloading. This
paper assigns weight to social relationships, location corre-
lation, and mobile activity. The core formula omI,j of the
MDSA is expressed as follows:

omi,j =
(
∂ai,j + βbi,j + δMobj

)
(33)

∂, β, and δ are variable parameters, which are adjusted
according to the actual demand.

Algorithm 2Mobile Device Selection Algorithms (MDSA)
1.initialization:
Initializing the values of the ∂, β, δ parameters of the mobile device
selection algorithms.
end initialization
2.procedure ParserData ()

Parsing datasets to obtain social data, trajectory data, interaction
data.

end procedure
Set computation offloading start time StartTime
Set computation offloading end time endTime
Set Number of cycles division
For all division do
3. initialization:

Set the node range for allocation and size for the task.
Initialize the properties of all mobile devices.
end initialization
4. procedure CreatTask ()
Task creation based on task and mobile device settings
end procedure
5.For all Obtain the set of task nodes do

Set The time point is the time point of the task node
Set The current node is the task node involved in the

calculation
proceduregetUnloadedNode ()

Get the set of nodes that meet the task nodeNodesLocation
end procedure
6. for all The set of all encounter nodes
if chooseNode<>null

procedure community ()
Calculate the similarity of nodes
end procedure
procedure location ()
Calculating the nodes location correlation
end procedure
procedure nodeMobility ()
Calculating the mobile activity of nodes
end procedure
Ni,j = (∂similarity+ βlocation+ δmobility)

end if
7. for all Node Matching Sets NI,j
Get the result of the pairing with the largest value in the set
end for

End For
End for

The MDSA is used to obtain the optimal mobile device for
providing offloading services. The algorithm can be divided
into seven steps: (1) initialize the parameters according to the
optimized parameter values obtained from the experimental
results; (2) parse the data from the dataset; (3) select the
offloading task node and the initialization task; (4) create
tasks based on initialization parameters; (5) obtain the list
of contact nodes according to the offloading time and the
offloading task node; (6) calculate the social relationship,
location correlation, and mobile activity and then used omi,j
to obtain a matching set; and (7) obtain the optimal node that
provides offloading service.

V. NUMERICAL RESULTS
An extended real dataset was used to evaluate the perfor-
mance of the MDSA and JSMCO algorithms proposed in
this paper. The performance of the algorithms cannot be

28608 VOLUME 10, 2022

C. Xu et al.: Joint Social-Aware and Mobility-Aware Computation Offloading in Heterogeneous MEC

FIGURE 5. Dataset interaction network diagram.

thoroughly evaluated since relatively few mobile devices
were available in the real dataset to assist with offloading.
Therefore, the dataset was expanded following the distribu-
tion law of the original data. The dataset used was based on
the upb-hyccups2012 [39], [46] dataset from a social track-
ing experiment conducted at Politehnica University, which
recorded the interactions between the experiment participants
and showed that their social relationships are based on their
Facebook profiles. The dataset social relationship network is
presented in Fig. 5.

The dots in Fig. 5 represent each node in the dataset, and
the different sizes indicate the degree of the node [47]. Larger
nodes indicate a greater degree, which means stronger social
relationships. The lines between nodes indicate the social
relationships between nodes, and the nodes with different
colors belong to different communities. We compared the
performance of the proposed MDSA and JSMCO algorithms
using the following baseline algorithms.

The social relationship algorithm [40] considers the social
relationship between mobile devices. They present a social-
aware bipartite matching-based cooperative task offloading
algorithm by incorporating social tie structure into the device
computation and network resource-sharing processes. How-
ever, the algorithm does not consider the mobility character-
istics of the devices.

The randomized algorithm does not consider user social
relationships. When computation offloading is required, the
algorithm randomly determines the computation offloading
strategy, and the result is uncertain. We used the average
value of 100 experimental results as the final result since
the randomized algorithm is very unstable. The experiments
included only a single-hop D2D communication, and multi-
hop was not considered.

To evaluate the success rate of computation offloading,
computation offloading latency, and computation offloading
energy consumption, we conducted experiments to determine
the task density and size factors.

A. IMPACT OF TASK DENSITY
By adjusting task density ρ (the ratio of tasks to helper
device), we observed the effect of D2D offloading on the
offloading success rate, energy consumption, and time delay.
The task density ρi can be expressed as follows:

ρi = TN i/Sumi (34)

TN i denotes the number of task nodes in region i, and
Sumi denotes the number of nodes in region i that can assist
offloading. When ρ is lower, the task can choose more assis-
tance nodes. Conversely, the task can choose fewer assistance
nodes.

The D2D offloading success rate ω can be expressed as
follows:

ω = sumsuc/sumall (35)

sumsuc denotes the number of successful offloading tasks;
sumall, the total number of offloading tasks; and ω, the prob-
ability that the task assigned to the first offloading node can
complete the offloading task.

In this experiment, the randomized algorithm randomly
selects the assistance nodes based only on the nodes found.
The algorithm based on the social relationship selects nodes
according to the closeness of their relationship, and it gives
preference to nodes with closer relationships for computa-
tion offloading. The proposed MDSA considers social rela-
tionships, location correlation, and mobile activity. In the
experiment of task density factor, we set ∂ = 3, β = 1,
δ = 1, η = 0.3.
In Fig. 6(a), all algorithms maintained a 100% offloading

success rate as the task density increases when the task is a
low-computing-requirement task. Because all the assistance
nodes around the task node can complete the offloading task,
selecting any assistance nodes will yield the same result.

Figure 6(b) and (c) demonstrates that the offloading
success rate decreases as the task density increases. The
offloading success rate of the randomized algorithm starts
to decrease at ρ = 0.2; the offloading success rate of the
social network-based algorithm starts to decrease at ρ =
0.5 and ρ = 0.3, respectively; and the offloading success
rate of the MDSA starts to decrease at ρ = 0.8 and ρ =
0.6, respectively. Meanwhile, Fig. 6(b) demonstrates that the
offloading success rate of the social network-based algorithm
at ρ = 0.7 and ρ = 0.8 is higher than that of ρ = 0.6. This is
because the social network-based algorithm does not consider
the mobility of mobile devices.

The experimental results in Fig. 7(a) indicate that the
energy consumption of the three algorithms is the same for
the low-computing-requirement task. In Fig. 7(b), the energy
consumption of the JSMCO and social network algorithms
are similar when the task density is in the interval of 0.1–0.5,
and the energy consumption gap is more apparent when the
task density is in the interval of 0.6–0.7 and 0.8–1. It can also
be seen in Fig. 7(c) that the JSMCO algorithm consumes less
energy compared with the other two algorithms.

VOLUME 10, 2022 28609

C. Xu et al.: Joint Social-Aware and Mobility-Aware Computation Offloading in Heterogeneous MEC

FIGURE 6. The success rate of offloading vs. the ratio of tasks to helper device under different computing requirements.

FIGURE 7. Energy consumption.

FIGURE 8. Time consumption.

The experimental results in Fig. 8(b) and (c) indicate
that the JSMCO algorithm has a shorter time overhead than
the other two algorithms when solving medium- and high-
computing-requirement tasks. Moreover, when the task den-
sity is in the middle part, the JSMCO algorithm offers more
apparent advantages than the other two algorithms.

When the task density is in the range of 0.1–0.2, the
computation offloading of the task is mainly performed by
the edge servers, so their energy consumption gap is relatively
small. When the task density is in the range of 0.2–0.8, the
mobile devices are more involved in computation offloading,
so the energy consumption advantage is more obvious. When
the task density is in the range of 0.8–1, the selection of

mobile devices available is relatively small, so the energy
consumption gap tends to be stable. This also shows the
superiority of the JSMCO algorithm.

B. IMPACT OF TASK SIZE
Different users have different offloading requirements.
Therefore, to better accommodate the needs of different users,
the task offloading strategy should be able to handle the
offloading requirements of different task sizes. In the experi-
ment of task size factor, we set ∂ = 3, β = 1, δ = 1, η = 0.3.
The results in Fig. 9(a) indicate that the MDSA and social

network algorithms have the same offloading success rates

28610 VOLUME 10, 2022

C. Xu et al.: Joint Social-Aware and Mobility-Aware Computation Offloading in Heterogeneous MEC

FIGURE 9. The success rate of offloading vs. the ratio of tasks to helper device under different computing requirements.

FIGURE 10. Energy consumption.

FIGURE 11. Time consumption.

when the task density is 10%. However, the randomized algo-
rithm is relatively low, and its results are unstable. Figure 9(b)
demonstrates that theMDSA is consistent with the social net-
work algorithmwhen the task density is 60% and the task size
is relatively low (1–2 M). When the task size exceeds 3 M,
the offloading success rate of the social network algorithm
starts to decrease. The offloading success rate of the MDSA
starts to decrease only when the task size exceeds 7 M. The
results in Fig. 9(c) indicate that the offloading success rate
of all three algorithms significantly decreases when the task
density is 90%.

The MDSA performs better than the other two algorithms
with varying task densities and task sizes according to the
above experimental results. The reason is that the randomized

algorithm uses a random way to select the offloading nodes,
and the social network-based algorithm does not consider the
mobility characteristics of mobile devices.

Figures 10 and 11 present that the JSMCO algorithm
obtains optimal energy and time consumption results in the
case of increasing task size. Figure 10(a) shows that both the
JSMCO and social relationship-based algorithms have lower
energy consumption in the low task density. The energy con-
sumption of the randomized algorithm is higher relative to the
other algorithms and shows irregular variations. Figure 9(b)
shows a significant increase in the energy consumption of the
three algorithms for moderate task densities. As the task size
increases, the JSMCO algorithm has less energy consumption
compared with the other two algorithms. The gap between the

VOLUME 10, 2022 28611

C. Xu et al.: Joint Social-Aware and Mobility-Aware Computation Offloading in Heterogeneous MEC

energy consumption of the JSMCO and social network algo-
rithm decreases when the task size is larger than 10 M; how-
ever, the algorithm in this paper is still optimal. Figure 10(c)
shows that the energy consumption gap between algorithms
becomes less at high task densities, but the JSMCO is still
optimal. The results of time consumption (a), (b), and (c) in
Fig. 11 indicate that the variation pattern is similar to those
of energy consumption (a), (b), and (c) in Fig. 10.

The above results suggest that the proposed algorithm still
outperforms the other two algorithms in terms of time and
energy consumption.

VI. CONCLUSION AND FUTURE WORK
This paper has developed a computation offloading policy for
a multiuser multiserver MEC system, where the social rela-
tionship among users, user mobility, and dynamic computing
resource was considered. To make full use of idle resources
of mobile devices and increase the users’ willingness to
share, we propose the MDSA, which considers social rela-
tionships, location relevance, andmobile activity. TheMDSA
can find suitable mobile devices to provide computational
offloading, thus improving the offloading success rate. At the
same time, we proposed a matching theory-based algorithm
to fully utilize computing resources and reduce energy con-
sumption while satisfying task latency requirements. Finally,
the numerical results verified that these methods have better
performance than the baseline methods in terms of offloading
success rate and time and energy consumption.

In this paper, we have considered the single-hop case for
computation offloading. To better utilize the resources in the
whole system to provide a better QoS, we will consider the
multihop-assisted offloading problem in the future.

REFERENCES
[1] R. Roman, J. Lopez, and M. Mambo, ‘‘Mobile edge computing, fog:

A survey and analysis of security threats and challenges,’’ Future Gener.
Comput. Syst., vol. 78, pp. 680–698, Jan. 2018.

[2] S. Vimal, M. Khari, N. Dey, R. G. Crespo, and Y. H. Robinson, ‘‘Enhanced
resource allocation in mobile edge computing using reinforcement learn-
ing based MOACO algorithm for IIOT,’’ Comput. Commun., vol. 151,
pp. 355–364, Feb. 2020.

[3] J. Chen andX. Ran, ‘‘Deep learningwith edge computing: A review,’’Proc.
IEEE, vol. 107, no. 8, pp. 1655–1674, Aug. 2019.

[4] X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, and L. Qi, ‘‘A com-
putation offloading method over big data for IoT-enabled cloud-edge com-
puting,’’ Future Gener. Comput. Syst., vol. 95, pp. 522–533, Jun. 2019.

[5] C. Stergiou, K. E. Psannis, B.-G. Kim, and B. Gupta, ‘‘Secure integration
of IoT and cloud computing,’’ Future Gener. Comput. Syst., vol. 78,
pp. 964–975, Jan. 2018.

[6] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, ‘‘A sur-
vey on Internet of Things: Architecture, enabling technologies, security
and privacy, and applications,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1125–1142, Oct. 2017.

[7] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato, and
C. S. Hong, ‘‘Joint communication, computation, caching, and control in
big data multi-access edge computing,’’ IEEE Trans. Mobile Comput.,
vol. 19, no. 6, pp. 1359–1374, Jun. 2020.

[8] Y. Deng, Z. Chen, X. Chen, and Y. Fang, ‘‘Throughput maximization for
multi-edge multi-user edge computing systems,’’ IEEE Internet Things J.,
vol. 9, no. 1, pp. 68–79, May 2021.

[9] Y. Cao, C. Long, T. Jiang, and S. Mao, ‘‘Share communication and compu-
tation resources on mobile devices: A social awareness perspective,’’ IEEE
Wireless Commun., vol. 23, no. 4, pp. 52–59, Aug. 2016.

[10] Y. Huang, Y. Liu, and F. Chen, ‘‘NOMA-aided mobile edge computing via
user cooperation,’’ IEEE Trans. Commun., vol. 68, no. 4, pp. 2221–2235,
Apr. 2020.

[11] H. Baek, H. Ko, and S. Pack, ‘‘Privacy-preserving and trustwor-
thy device-to-device (D2D) offloading scheme,’’ IEEE Access, vol. 8,
pp. 191551–191560, 2020.

[12] J. Xu, L. Chen, K. Liu, and C. Shen, ‘‘Designing security-aware incentives
for computation offloading via device-to-device communication,’’ IEEE
Trans. Wireless Commun., vol. 17, no. 9, pp. 6053–6066, Sep. 2018.

[13] J. He, D. Zhang, Y. Zhou, and Y. Zhang, ‘‘A truthful online mechanism for
collaborative computation offloading in mobile edge computing,’’ IEEE
Trans. Ind. Informat., vol. 16, no. 7, pp. 4832–4841, Jul. 2020.

[14] G. Qiao, S. Leng, H. Chai, A. Asadi, and Y. Zhang, ‘‘Blockchain empow-
ered resource trading in mobile edge computing and networks,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–6.

[15] D. Chatzopoulos, M. Ahmadi, S. Kosta, and P. Hui, ‘‘FlopCoin: A cryp-
tocurrency for computation offloading,’’ IEEE Trans. Mobile Comput.,
vol. 17, no. 5, pp. 1062–1075, May 2018.

[16] X. Diao, J. Zheng, Y. Wu, and Y. Cai, ‘‘Joint computing resource, power,
and channel allocations for D2D-assisted and NOMA-based mobile edge
computing,’’ IEEE Access, vol. 7, pp. 9243–9257, 2019.

[17] C. Yi, S. Huang, and J. Cai, ‘‘Joint resource allocation for device-to-device
communication assisted fog computing,’’ IEEE Trans. Mobile Comput.,
vol. 20, no. 3, pp. 1076–1091, Mar. 2021.

[18] D. Wu, B. Liu, Q. Yang, and R. Wang, ‘‘Social-aware cooperative caching
mechanism in mobile social networks,’’ J. Netw. Comput. Appl., vol. 149,
Jan. 2020, Art. no. 102457.

[19] G. Cao, S. Wang, M. Hwang, A. Padmanabhan, Z. Zhang, and K. Soltani,
‘‘A scalable framework for spatiotemporal analysis of location-based social
media data,’’Comput., Environ. Urban Syst., vol. 51, pp. 70–82,May 2015.

[20] M. Chen and Y. Hao, ‘‘Task offloading for mobile edge computing in
software defined ultra-dense network,’’ IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018.

[21] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, ‘‘Mobile-edge computation
offloading for ultradense IoT networks,’’ IEEE Internet Things J., vol. 5,
no. 6, pp. 4977–4988, Dec. 2018.

[22] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, ‘‘Offloading in mobile
edge computing: Task allocation and computational frequency scaling,’’
IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, Aug. 2017.

[23] C. You, K. Huang, H. Chae, and B.-H. Kim, ‘‘Energy-efficient resource
allocation for mobile-edge computation offloading,’’ IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[24] P. Zhao, H. Tian, C. Qin, and G. Nie, ‘‘Energy-saving offloading by jointly
allocating radio and computational resources for mobile edge computing,’’
IEEE Access, vol. 5, pp. 11255–11268, 2017.

[25] Z. Ning, P. Dong, X. Kong, and F. Xia, ‘‘A cooperative partial computation
offloading scheme for mobile edge computing enabled Internet of Things,’’
IEEE Internet Things J., vol. 6, no. 3, pp. 4804–4814, Jun. 2019.

[26] J. Ren, G. Yu, Y. He, and G. Y. Li, ‘‘Collaborative cloud and edge comput-
ing for latency minimization,’’ IEEE Trans. Veh. Technol., vol. 68, no. 5,
pp. 5031–5044, May 2019.

[27] S. Xu, Z. Zhang, M. Kadoch, and M. Cheriet, ‘‘A collaborative cloud-
edge computing framework in distributed neural network,’’ EURASIP J.
Wireless Commun. Netw., vol. 2020, no. 1, pp. 1–17, Oct. 2020.

[28] J. Zhao, Q. Li, Y. Gong, and K. Zhang, ‘‘Computation offloading and
resource allocation for cloud assisted mobile edge computing in vehicular
networks,’’ IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7944–7956,
Aug. 2019.

[29] G. Ahani and D. Yuan, ‘‘BS-assisted task offloading for D2D networks
with presence of user mobility,’’ in Proc. IEEE 89th Veh. Technol. Conf.
(VTC-Spring), Apr. 2019, pp. 1–5.

[30] Q. Lin, F.Wang, and J. Xu, ‘‘Optimal task offloading scheduling for energy
efficient D2D cooperative computing,’’ IEEE Commun. Lett., vol. 23,
no. 10, pp. 1816–1820, Oct. 2019.

[31] H. Xing, L. Liu, J. Xu, and A. Nallanathan, ‘‘Joint task assignment
and resource allocation for D2D-enabled mobile-edge computing,’’ IEEE
Trans. Commun., vol. 67, no. 6, pp. 4193–4207, Jun. 2019.

[32] J. Xie, Y. Jia, Z. Chen, Z. Nan, and L. Liang, ‘‘D2D computation offloading
optimization for precedence-constrained tasks in information-centric IoT,’’
IEEE Access, vol. 7, pp. 94888–94898, 2019.

[33] A.-L. Jin, W. Song, P. Wang, D. Niyato, and P. Ju, ‘‘Auction mechanisms
toward efficient resource sharing for cloudlets inmobile cloud computing,’’
IEEE Trans. Services Comput., vol. 9, no. 6, pp. 895–909, Nov. 2016.

28612 VOLUME 10, 2022

C. Xu et al.: Joint Social-Aware and Mobility-Aware Computation Offloading in Heterogeneous MEC

[34] G. Li and J. Cai, ‘‘An online incentive mechanism for collaborative task
offloading in mobile edge computing,’’ IEEE Trans. Wireless Commun.,
vol. 19, no. 1, pp. 624–636, Jan. 2020.

[35] S. Saha, M. A. Habib, T. Adhikary, M. A. Razzaque, M. M. Rahman,
M. Altaf, and M. M. Hassan, ‘‘Quality-of-experience-aware incentive
mechanism for workers in mobile device cloud,’’ IEEE Access, vol. 9,
pp. 95162–95179, 2021.

[36] S. A. Noor, R. Hasan, andM.M.Haque, ‘‘CellCloud: A novel cost effective
formation of mobile cloud based on bidding incentives,’’ in Proc. IEEE 7th
Int. Conf. Cloud Comput. (CLOUD), Jun. 2014, pp. 200–207.

[37] R. Roostaei, M. Sheikhi, and Z. Movahedi, ‘‘Computation offloading
in D2D-enabled MCC for precedence-constrained components,’’ Ad Hoc
Netw., vol. 124, Jan. 2022, Art. no. 102700.

[38] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, ‘‘Exploiting massive D2D
collaboration for energy-efficient mobile edge computing,’’ IEEEWireless
Commun., vol. 24, no. 4, pp. 64–71, Aug. 2017.

[39] R.-I. Ciobanu, C. Dobre, M. Balanescu, and G. Suciu, ‘‘Data and task
offloading in collaborative mobile fog-based networks,’’ IEEE Access,
vol. 7, pp. 104405–104422, 2019.

[40] X. Chen, Z. Zhou,W.Wu, D.Wu, and J. Zhang, ‘‘Socially-motivated coop-
erative mobile edge computing,’’ IEEE Netw., vol. 32, no. 6, pp. 177–183,
Nov. 2018.

[41] S. Yu, B. Dab, Z. Movahedi, R. Langar, and L. Wang, ‘‘A socially-
aware hybrid computation offloading framework for multi-access edge
computing,’’ IEEE Trans. Mobile Comput., vol. 19, no. 6, pp. 1247–1259,
Jun. 2020.

[42] Y. Meng, C. Jiang, H. H. Chen, and Y. Ren, ‘‘Cooperative device-to-device
communications: Social networking perspectives,’’ IEEE Netw., vol. 31,
no. 3, pp. 38–44, Mar. 2017.

[43] K. Gu, D. Liu, and K. Wang, ‘‘Social community detection scheme
based on social-aware in mobile social networks,’’ IEEE Access, vol. 7,
pp. 173407–173418, 2019.

[44] R. J. Munkres, ‘‘Algorithms for the assignment and transportation prob-
lems,’’ J. Soc. Ind. Appl. Math., vol. 10, no. 1, pp. 196–210, Mar. 1957.

[45] L. Rui, Y. Yang, Z. Gao, and X. Qiu, ‘‘Computation offloading in a mobile
edge communication network: A joint transmission delay and energy
consumption dynamic awareness mechanism,’’ IEEE Internet Things J.,
vol. 6, no. 6, pp. 10546–10559, Dec. 2019.

[46] R. I. Ciobanu, R. C. Marin, and C. Dobre, ‘‘MobEmu: A framework
to support decentralized ad-hoc networking,’’ in Studies in Big Data,
Modeling and Simulation in HPC and Cloud Systems, J. Kołodziej, F. Pop,
and C. Dobre, Eds. New York, NY, USA: Springer, 2018, pp. 87–119.

[47] G. Rossetti and R. Cazabet, ‘‘Community discovery in dynamic networks:
A survey,’’ ACM Comput. Surv., vol. 51, no. 2, pp. 1–37, Jun. 2018.

CHENGLIN XU received the M.S. degree in soft-
ware engineering from Central South University,
Changsha, China, in 2018. He is currently pur-
suing the Ph.D. degree in computer science and
technology with Hunan University. His research
interests include social networks, edge computing,
and data mining.

CHENG XU received the Ph.D. degree in com-
puter science and engineering from the Wuhan
University of Technology, Wuhan, China, in 2006.
He is currently a Professor of computer science
and electronic engineering with Hunan Univer-
sity, Changsha, China, where he is also a Ph.D.
Supervisor with the College of Information Sci-
ence and Engineering. He has presented 28 arti-
cles and has hosted several national and provincial
nature fund projects. His current research interests

include cyber-physical systems, embedded systems, digital video processing,
computer vision, machine learning, and edge computing. He is a member of
the China Computer Federation.

BO LI (Graduate Student Member, IEEE) was
born in 1988. He is currently pursuing the Ph.D.
degree with the School of Computer Science
and Engineering, Central South University. His
research interests include social networks, edge
computing, Internet of Vehicles, and software
defined networks.

SIQI LI was born in 1990. He received the B.S.
degree in physics and the M.S. degree in con-
trol engineering from Shandong University, in
2012 and 2015, respectively. He is currently pur-
suing the Ph.D. degree in computer science and
technology with Hunan University. His research
interests include artificial intelligence, reinforce-
ment learning, and robotics.

TAO LI received the M.S. degree in communi-
cation engineering from Hunan University, where
he is currently pursuing the Ph.D. degree with
the College of Computer Science and Elec-
tronic Engineering. His current research inter-
ests include parallel I/O systems, file and storage
systems, high-performance computing, and dis-
tributed computing.

VOLUME 10, 2022 28613

