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ABSTRACT The limited resources of land and wind have increased the requirement for better designing
of wind farm layouts in the wind industry. A three-dimensional layout of wind turbines (WTs) is proposed
in this paper to optimize the horizontal and vertical layouts of wind farms. The issue of optimization is
a highly challenging task as it involves many variables and requires handling conflicting criteria. Classical
optimization algorithms cannot handle this problem due to discontinuity and nonlinear behavior. Considering
this, a metaheuristic algorithm called improved electric charged particle optimization (ECPO) is developed
and implemented in four different shapes and cases studies. All the scenarios implemented have the same
wind distribution and obstacles. The result shows that ECPO achieves better performance in the case study
when the maximum number of a wind turbine is the same as the number of grids when compared to
three well-known metaheuristic algorithms, which are binary particle swarm optimization (BPSO), genetic
algorithm (GA), and artificial bee colony (ABC). By implementing the three-dimensional WFLO, the
levelized cost of energy (LCOE) will increase by 7% in the case of the optimal number of WT and 3%
in the case of the fixed number of WT.

INDEX TERMS Electric charge particles optimization, wind farms, optimization.

I. INTRODUCTION
Wind energy has made significant development in recent
years. According to the Global Wind Energy Council
(GWEC), 2020 was the best year in history for the global
wind industry as 93 GW of new capacity was installed, which
resulted in a cumulative capacity of 743 GW [1]. To reduce
the cost in terms of installation and maintenance costs, wind
turbines are generally grouped into wind farms. However,
the group of wind turbines will affect the amount of power
produced owing to the wake effect within the wind farm,
particularly in large wind farms that lead to considerable
power loss [2]. Therefore, it is essential to design a wind
farm layout that minimizes the wake effect while maximizing
the expected power output that is generally called wind farm
layout optimization (WFLO).

The associate editor coordinating the review of this manuscript and
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The optimization design of a wind farm is a complex task
owing to the presence of discontinuities caused by the wake
effect of turbines and the large number of variables involved.
These two factors make it difficult to solve the issue by using
classical optimization methods, such as the mixed-integer
non-linear programming (MINLP) or calculus-basedmethod.
Therefore, metaheuristic, the algorithm that has proven to
handle the discontinuity of the optimization problem, has
became the most popular and prominent method to solve
WFLO problems.

Numerous researches have been conducted to opti-
mize wind farm layout by using metaheuristic algorithms.
Mossetti et al. [3] conducted the first research to solve the
WFLO problem in which a genetic algorithm (GA) was used
as the algorithm to place the turbine in a wind farm that con-
sisted of 10×10 cells each. The total energy produced and the
cost per year of the whole wind farm were designed as multi-
objective functions. Grady et al. [4] improved the algorithm
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proposed by Mossetti by implementing the total energy and
production cost as the objective functions. This approach
can produce greater total power production by adding more
turbines in the layout with comparable efficiency by using
more individuals to generate the fitness function in the GA.
As a result, this study can decrease overall cost per unit
power production as compared to the previous results using
the algorithm developed by Mossetti.

Moreover, many researchers used GA to solve the WFLO
problem with different objective functions. Mora et al. [5]
used net present value (NPV) as the single objective function.
Integer codification was used in the GA to investigate possi-
ble solutions to improve efficiency. In [6], the total energy
produced and per unit value of cost per year of the whole
wind farm is set as the objective function and solved by
using multiobjective GA. Contrary to the objective function
proposed byMosseti et al. [3] and Gradi et al. [4], this author
implemented the objective function that not only optimizes
the placement of wind turbines but also controls the cost.
Three types of variables, i.e., turbine location, turbine type,
and hub height, were set as the control variable in [7], while
NPV and investment cost are set as the objective functions,
which is optimized using the GA. The author considers the
uncertainty of wind direction and speed when evaluating the
cost function. The probability optimization methodology is
developed to consider various possible scenarios and their
probability occurrence to obtain a behavior of the solu-
tions under risk. Meanwhile, Wang et al. [8] proposed a
GA to compare the performance of the optimization process
between the grid-based method and unrestricted coordinate
method.

In addition, two cost models (Mosseti’s model [3] and
Chen’s model [9]) are compared to find the best optimization
result. The result showed that the 20 × 20 grid-based model
achieved better results than the unrestricted method andMos-
seti’s cost is more accurate than Chen’s cost model. The
author in [10] developed a single objective GA to minimize
the cost of energy (COE) in a wind farm with 10 × 10 grid
cells. Unlike the other research that mainly uses the Jensen
wake model, in this research the author used the Gaussian
wakemodel to evaluate the velocity deficit in wind farms. The
proposed approach yields better objective function and lower
computational time compared to the same scenario obtained
by Gradi et al. [4].
PSO is also a popular algorithm that was adopted to

solve WFLO problems. Chowdurri et al. [11] implemented a
mixed-discrete PSO algorithm to solve unrestricted WFLO
with the COE as the single objective function. The algorithm
was developed to optimize the wind farm layout by allowing
multiple types of commercial wind turbines with different
rotor-diameters, hub-height, and performance characteristics.
The author designed the diagonal site of a 2 km × 2 km
wind farm in [12] to increase the surface area exposed to the
wind. In this study, COE is set as the single objective function.
By implementing this design, the distance of adjacent WTs is
longer and as a result, the power generated and the efficiency

of the wind farm was improved with a minimized objective
function. The author in [13] implemented an adaptive PSO
to optimize the levelized production cost (LPC) of the wind
farm. The optimized control strategy was taken as the new
consideration to increase the performance of the optimization
process. The limitation of this design is that it is applicable
only to the exact wake model. The electrical infrastructure,
the location of the offshore substation, and the intra-array
cable network are set as the new constraints in designing
wind farm layout in [14]. In this research, the author imple-
mented a PSO algorithm to optimize the levelized cost of
energy (LCOE) as the single objective function in an offshore
wind farm scenario. Meanwhile, Veeremachaneni et al. [15]
developed a multi-objective PSO algorithm to minimize the
layout cost and maximize the energy output of wind farms.
The author proposed two different strategies to reduce the
complexity of the optimization process, i.e., first come first
removed strategy and worst first removal strategy.

Numerous researchers have used different optimization
algorithms and techniques to solveWFLOproblems. Amulti-
objective evolutionary strategy algorithm is developed by the
author in [16] to solve the transformed bi-criteria optimiza-
tion problem, while the objective functions are energy output
and constraint violation. In the algorithm, all the constraints
are transformed to formulate the second objective function,
which would be minimized to zero. Bilbao et al. [17] used
simulated annealing (SA) to maximize the wind farm annual
profit. This approach gave better performance in terms of
total power produced and computational time as compared
to distributed genetic algorithm (DGA). A lazy greedy algo-
rithm was implemented to optimize the placement of WTs in
a wind farm by setting COE as the objective function [18].
This study adopted the submodular property of the cell when
designing the turbine position in a wind farm to reduce the
computational time with the guaranteed quality of the result.
Chen et al. [19] implemented the greedy algorithm to find
the best position of WTs in wind farms where LCOE was
used as the objective function. The incremental calculation
method and repeated adjustment strategy were implemented
in this study to accelerate the calculation of wind power and
improve the result in the optimization process. The author
in [20] implemented an extended pattern search (EPS), mul-
tiagent system (MAS) optimization approach to optimize the
position and size of a wind turbine, including rotor diameter
and hub height in the wind farm tomaximize the profit. In this
research, the author proposed the advanced modeling system
for the cost, wake effect, atmospheric condition, and power
generation for real-world applications.

In another study, Ramli and Bouchekara [21] implemented
a new algorithm called the binary most valuable player algo-
rithm (BMVPA) with COE set as the single objective func-
tion. In this study, the grid was treated as a matrix to reduce
the design variables. The optimization results showed that the
new algorithm is better when being compared to GA and PSO
with the objective function value. Wang et al. [22] used a dif-
ferential evolution algorithmwith a new encodingmechanism
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to solve the WFLO to maximize the power output. In the new
encoding mechanism, each wind turbine was considered to
be an individual and all the wind turbines as the population.
By implementing this technique, the efficiency and effective-
ness of the algorithmwere increased. In a recent study (2021),
a lightning search algorithm with multi-objective function
was applied to solve WFLO by minimizing annual energy
production, wind farm area, and wake effect losses [23]. The
author implemented nacelle’s rotationmodeling to address all
variations of wake effect in each wind turbine as a function of
the wind direction that can represent the real scenario of the
wind farm. A biogeography based optimization (BBO) algo-
rithm was presented by Aggarwal et al. [24] to evaluate the
COE as the single objective function. A modified objective
function by adding the weightage of the wind farm efficiency
is adopted to reduce wake loss per turbine and to obtain better
wind farm efficiency. The result is then compared with PSO,
GA, and ACO showing that BBO achieves a better fitness
function than these two algorithms.

Several studies on WFLO have been conducted by using
different sets of variables and the position of the wind turbine
as the main variable. Chen et al. [9] analyzed the impact of
the hub height variation for WFLO by using a nested GA in
which power output is set as the single objective function. The
result shows that the power output will increase when using
different hub heights as compared to the fixed hub heights.
A three-dimensional greedy algorithm was implemented by
the author in [25] by optimizing the hubheight as one of the
variable control. The result shows that the total power output
increases when using multiple hub heights and the cost per
unit power output will decrease particularly for the complex
terrain wind farm. The effect of hub height optimization on
the annual energy production (AEP) in WFLO problem was
studied in [26]. In this case, the other variables such as the
position, the rotor diameter, and the total number of WT
are fixed. The result shows that multiple hub height wind
farms can increase the annual energy production by 2%when
compared to single hub height. The WTs type and hub height
are set as an optimization variable in [27]. The LCOE is set
as the single objective function that is optimized using a GA.
The result showed that height variability is useful in wider
offshore cases.Meanwhile,Wang et al. [28] implemented the
different hub heights in the range 40–80 m and the result
showed that the application of different hub heights achieves
better optimization results with higher power production and
higher efficiency. A more advanced optimization process
was presented by Huang et al. [29] where the wind turbine
rotor diameter that influences the height of the turbine is
designed as the optimization variable by using the NSGA II
algorithm. The optimization process consists of a nested loop
that optimizes the selection ofWT type and the layout of wind
farms separately. The result showed that the WT selection
decreased the LCOE, which are set as an objective function.
Moreover, in a recent study (2021), Xu et al. [30] used dif-
ferential evolution and greedy algorithm to design wind farm
layout with multiple hub heights of WTs. The results show

that by using multi hub height, it can reduce the LCOE by
13.96%, 12.54%, 8.22%, 6.14%, and 7.77% for the num-
ber of WT of 5, 10, 30, and 50, respectively. Moreover,
Zhu [31] confirmed the result shown in the previous research
wherein the adaptive differential evolution with the greedy
method is used to solve the WFLO problem. The result
showed that the multiple hub heights of WTs can increase
the output power by approximately 5.59%, 1.16%, 0.18%,
0.22%, and 0.63% when the WT is 5, 10, 20, 30, and 50,
respectively.

Improving the performance of wind farms in terms of the
COE and power produced, in addition to the other aspects
such as the location of the wind turbine, hub height, rotor
diameter, or the wind turbine type, is crucial. However, the
addition of variables will make the optimization more com-
plex and will require more computational time, particularly
for a large number of wind turbines. This paper will involve
two variables: a wind turbine location and hub height to
optimize the WFLO with an ingenious idea. This consists
of bundling the two variables in one packet optimized simul-
taneously in the optimization algorithm. The ingenious idea
will reduce the complexity of the WFLO problem, while the
optimization only runs once for each iteration.

As reported in the literature, a metaheuristic algorithm is
one of the best options to solve the WFLO problem due
to the ability to handle the discontinuity and many vari-
ables involved. Based on The No Free Lunch (NFL) the-
orem that states that no algorithm is best for solving all
optimization problems [32], many new algorithms, especially
metaheuristic algorithms, have recently been developed with
specific advantages and drawbacks based on their applica-
tion. One of the most recently published algorithms is electric
charge particle optimization (ECPO) that has shown excel-
lent performance to solve mathematical benchmark prob-
lems for optimization, in sidelobe level reduction for circular
antenna array (ECPO) [33], and to find moving targets using
unmanned aerial vehicles (UAV) [34]. In this present study,
the improved version of the ECPO algorithm was devel-
oped to solve the three-dimension WFLO problem where the
binary version of ECPO is used to optimize the layout of
the wind farm and the continuous version is implemented to
optimize the hub height of the wind turbine.

The main contribution of this paper can be summarized as
follows:

1. An improved and efficient ECPO algorithm to solve
WFLO problem is proposed by simultaneously optimizing
WTs’ position and the hub height.

2. Reducing the complexity of theWFLO problem consists
of more than one variable control by bundling into one vari-
able and simultaneously optimizing it.

3. Wind farm layout is designed by solving the WFLO
problem with various type of shapes and different maximum
number of WTs.

The remainder of this paper is organized as follows.
Section II describes the theoretical model of wind farm layout
models. Section III proposes the mathematical model of the
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WFLO problem. Section IV describes the improved ECPO
algorithm to solve theWFLOproblem. Section Vwill present
the scenario, results, and discussion, while a conclusion is
provided in Section VI.

II. WIND TURBINE MODEL
A. WIND TURBINE AND WAKE EFFECT MODEL
The characteristic of a wind turbine is related to the power
curved parameter that involves cut-in speed, cut-out speed,
nominal speed, and nominal power. The relation between
those parameters is shown in (1) [2].

P(v) =


0 if V < Vcut−in
λv+ η if Vcut−in < V < Vrate
Prate if Vrate < V < Vcut−out

(1)

When the wind speed is greater than the cut-in speed, the
blades of wind turbine will spin and generate power. The
power increases until the wind speed reaches the nominal
speed and remains constant until the speed reaches the cut-
out speed. If the wind speed exceeds the cut-out speed, the
wind turbine will stop spinning to prevent the wind turbine
from getting damaged. λ and η are the slope and the intercept
parameter, respectively used to calculate the power in each
wind speed between cut-in and cut-out speeds.

Wind turbines will extract energy from the wind, and the
wind speed behind the blades are slower and more turbulent.
This phenomenon is called the wake effect and the area
behind it is called the wake region. This phenomenon has
been studied and modeled by many researchers. One of the
prominent models is the Jensen Katic model, which was first
proposed by Jensen [35] and improved by Katic [36]. The
representation of the wake effect by using the Jensen-Katic
model is shown in Figure 1.

FIGURE 1. Representation of the wake effect.

For any two turbines located (xj, yj) that have hub height
(Hj), the velocity of the wind due to the wake effect of all the

surrounding wind turbine can be formulated using (2).

vj=v0
[
1−

i=1∑
n

(
1−

√
1− CT

)( rj
ri + kdij

)2 As
Aj

](
Hj
Hi

)a
(2)

B. ENERGY CALCULATION
The wind farm’s energy production is determined by the
wind speed and wind direction distribution. In this research,
Weibull distribution is used as the distribution of the wind.
The expected energy production from a wind turbine is cal-
culated by using (3) [37].

E = 8760
∫
p (θ)

∫
pv (v; ci; ki|η (v)) (3)

The total energy produced by the wind farm is the sum of
the energy produced by the individual wind turbine.

C. LCOE MODEL
Cost of energy (COE) [$/KWh] is defined as the cost per
kWh of energy converted from the wind. This parameter is
generally used to represent the price of energy where the
operation of thewind farm for its operational life will not have
either economic profit or economic losses [38]. The levelized
COE (LCOE) is similar to CoE, but the difference is that
LCOE differentiates between fixed and variable costs. The
LCOE will include the time variation of money represented
by the interest and the inflation rate, and will be related to life
cycle cost that can be modeled using (4).

Ccost =
cT n+ cs

[ n
m

]
+ cOMn(

1− (1− r)−y
)
/r

(4)

In the three dimension layout optimisation, the different
height will contribute to the cost, by referring to litera-
ture [27], the increase of 1 meter of the tower can contribute
to around 1/200 of the total cost, so, the wind farm cost with
the variable of the hub height can be modeled in (5)

Ccost = Ccost
(
Href

) (
1+

1
200

(
N∑
i=1

(
Hi − Href

)
N

))
(5)

So, LCOE as the main objective function can be modeled
in as follows.

LCOE =
(
Ccost
Ptotal

)
(6)

III. MODELING OF 3-D LAYOUT OPTIMIZATIONS
A. DESCRIPTION
WFLO mainly includes the selection of the wind turbine
capacity, wind turbine diameter and height, and wind farm’s
location, including the area size, terrain, obstacles, and wind
distributions. After the required data is gathered, the opti-
mization process can begin. This paper proposes the variable
combining method where the wind turbine location and hub
height are combined into one package variable that will be
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FIGURE 2. 3D WFLO Flow Cart.

optimized to minimize the wind farm’s LCOE. The entire
procedure of optimization is illustrated in Figure 2.

B. OBJECTIVE FUNCTION
The main objective of WFLO is to minimize LCOE, where
CT = $750,000, Cs = $8,000,000, m = 4, r = 3%,
y = 20 years and COM = $20,000/year.

C. DESIGN VARIABLE
The design variables in this WFLO problem are

Minimize F (n, xi, yi,Hi) = min (LCOE) = min
(
Ccost
Ptotal

)
(7)

Subject to DiεDf ,HiεHf , (xi, yi) ⊂ S

xmin ≤ yi ≤ ymax
Hmin ≤ Hi ≤ Hmax (8)

D. CONSTRAINTS
There are several constraints to be considered in the WFLO
problem. The first constraint is the minimum distance
between the turbine (Dmin). In this research, Dmin is five times
the rotor radius that can be formulated as below.√(

xi − xj
)2
+
(
yi − yj

)2
≥ 5Di, i 6= jε [1, n] (9)

The other constraint is the hub height, the minimum hub
height is 50 m, and the maximum is 80 m, which can be
formulated as follows:

50 ≤ Hi ≤ 80 (10)

The other constraint is that the location of wind turbines
should be in the wind farm area, which can be formulated
in (11) as follows:

xmin ≤ xi ≤ xmax
ymin ≤ yi ≤ ymax (11)

Furthermore, the last constraint is the obstacle where
the wind turbine area cannot be installed; in this research,
we implement an obstacle’s in the same size and location for
all scenarios.

∀ ∈ [1n] /∈ [XoL ,XoU ] /∈ [YoL ,YoU ] (12)

IV. ELECTRIC CHARGED PARTICLES OPTIMIZATION
A. STANDARD ELECTRIC CHARGED
PARTICLES OPTIMIZATION
The ECPO is a population-based metaheuristic algorithm
inspired by the interaction of electrically charged particles.
ECPO have some internal parameters used as follows: nECP
is the total number of ECPs; MaxITER is the maximum num-
ber of iterations; nECPI is the number of ECPs interacting in
one of the three strategies; and naECP is the archive pool size.
The charged particle interacts using a selected strategy where
the best particle will attract the worst, and the worst particle
will repel the best one.

Initialization: The first step of ECPO is generating nECP
charged particles within the search space by using a random
normal distribution. Then, all the particles are sorted accord-
ing to their fitness.

Archive Pool: A separated naECP (archive pool) is created.
Then, the best ECPs will be saved and updated for each
iteration based on the size of the archive.
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Selection: This is the most crucial step in ECPO that
will determine the performance of the optimization process.
The number of ECPs in interaction (nECPi) are arbitrarily
selected from the population generated. The ECPs selected
are then sorted from the best to theworst and dong interaction.

Interactions: The selected nECPI article then interact
among themselves based on the one of three strategies which
are detailed as follows.

Strategy 1: Only the best ECP gets interacts with another
ECP. This strategy will generate (n-1) new ECPs called
ECPinew1 and ECPinew2 in which n is the number of nECPi
selected.

Strategy 2: The ECPbest does not interact with all of the
remaining ECPs. It is instead associated with selected ones.
All the three ECPs will interact with other ECPs, except
ECPbest and create n number of ECPnew.

Strategy 3: Strategy one and two are combined in this
strategy. The interaction product is called the new population
of ECPs (newECP) which have sizes similar to the original
population size for all numbers of the nECPi chosen or the
different chosen interaction strategies.

Checking the Bounds: In this step, any ECPnew created in
the interaction step will be checked. If any article is found
outside the search space, it will be bounced back to the sign
boundary.

Diversification: In this step, the new ECP population will
be diversified using a specific probability called the proba-
bility of diversification (Pd). Then, the information from the
newECP and archievedECP will be collected by the diversity
operator.

Population update: In this stage, the new population from
rank 1 to nECP is modified and stored in the archive pool.

B. IMPROVED ELECTRIC CHARGED
PARTICLES OPTIMIZATION
To reduce the computation time, the type of variable is opti-
mized based on the application. In this WFLO application,
two types of variables will be optimized. The first variable is
the location of the wind turbine, and the second variable is the
height. A binary version of the variable will be implemented
for the location, while for the height of the wind turbine, the
continuous version will be adopted.

For the initial form of the ECPO algorithm, each type of
variable will be optimized separately and will consume twice
the time if two types of variables are optimized. However,
in this study, these two variables will be set as a bundle of
variables optimized simultaneously. Therefore, an improved
version of ECPO was developed.

To design the improved version of ECPO, the ECP is
created to combine two variables. The first ECP is set from
[0,1] and the second ECP is set in theminimum andmaximum
height of the wind turbine. Then, these two variables are
bundled into one package of variables that will be optimized
using the algorithm. After identifying the best package of
variables, the bundled variable is separated again to evaluate
the objective function. This improved ECPO algorithm will

reduce time, while consuming half the time compared to the
standard version of the ECPO algorithm.

V. APPLICATION AND RESULTS
A. CASE STUDY
Four WFLO problems are proposed in this study that can be
detailed as follows.

Case 1. The design problem is posed to find the location of
the wind turbine in a selected area where the hub height of a
wind turbine is fixed. The maximum number of wind turbines
is the total number of the grid. For convenience, this case is
also called 2D WFLO with an optimal number of WTs.

Case 2. The design problem is set to find the location of
wind turbines in the selected area where 30 is set as the
number of the WTs which are located in the wind farm.
The hub height of the wind turbine is set to constant. For
convenience, this case is also called 2D WFLO with a fix
number WTs.

Case 3. The design problem is posed to find the location
and hub height of wind turbines where the maximum number
of wind turbines is the total number of grids. For convenience,
this case is called 3D WFLO with optimal number of WTs

Case 4. The design problem is set to find the location and
hub height of wind turbines in the selected area where 30 is
set as the number of the WTs which are located in the wind
farm. For convenience, this case is called 3D WFLO with
fixed number of WTs.

B. INVESTIGATED SCENARIO
This study will investigate four sites with the same large but
different shapes. All the sites are assumed to have the same
wind distribution and obstacles. The areas in the investigated
sites are:

Sites A: 2000 m × 2000 m, Sites B: 1000 m × 4000 m,
Sites C: 800 m × 5000 m, Sites D: 400 m × 10000 m

Site A which is the square site is the standard site that
used by many previous researchers to validate and compare
the result of different algorithm WFLO. This type of site
was first developed by Mosseti [3] and followed by the next
researcher to find a better algorithm to solve the WFLO
problem. This site has 100 grids where each grid has a size of
200 m × 200 m. Site B, C, and D which are the rectangular
sites have the same large and number of grids but different
widths and lengths compare to site A.

All the case studies will be implemented to site A to
compare the LCOE, while for the three remaining sites, only
3DWFLO (case 3 and 4) will be implemented. By comparing
the LCOE and power production, the effect of the shape of
the area will be investigated. The obstacles for all the sites
are the same. Moreover, the wind distribution is also set to be
the same for all the scenarios.

C. RESULT AND DISCUSSION
All the investigated scenarios are optimized by using three
different strategies of ECPO. To validate the proposed
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algorithm, three popular metaheuristic algorithms (BPSO,
ABC, and GA) are also simultaneously implemented to solve
the scenarios with the same parameter involved. The result is
then compared to assess the best algorithm among them. Six
algorithms are simultaneously simulated using parallel com-
putation to solve 4 different cases of wind farm. The exper-
iment was run on an i9-11900F Intel processor at 2.50 GHz
with 32 GB RAM.

The first site to be elaborately investigated is site A with a
2 km × 2 km area. The six algorithms were run simultane-
ously to optimize four case studies that detailed in previous
section. In thismodel site, 100 grids are formed and the size of
each grid is 200 m× 200 m. For cases 1 and 3, the maximum
number of WTs is 100, while for case 2 and 4, the number of
WTs is set to 30. The result for all the case studies represented
by LCOE as the objective function are tabulated in Table 1.

TABLE 1. LCOE obtained for the investigated scenarios using different
algorithms.

Table 1 shows the comparison of the best LCOE achieved
in six different algorithms implemented for four case studies.
ECPO with all types of strategies yields better results as
compared to the three algorithms: BPSO, GA, and ABC for
cases 1 and 3. Moreover, for cases 2 and 4, BPSO achieved
better performance than ECPO, but ECPO is better than GA
and ABC in case 4. Cases 1 and 3 compare 2D and 3D in the
case of an optimal number of WTs, where cases 2 and 4 limit
the number of WTs. For the best result of ECPO, the 3D
WFLO can improve the LCOE by 7% for an optimal number
of WTs and 3% for a fixed number of WT.

The LCOE of a wind farm depends on the power produced
by the wind farm and the number of wind turbines. So these
two factors can also be used to evaluate the performance of
the optimization algorithm to find the best wind farm layout.
Table 2 shows the power produced by each algorithm and case
study. For cases 1 and 3, ECPO achieves the highest power
produced compared to the three other algorithms. On the

TABLE 2. Power produced for the investigated scenarios using different
algorithms.

other hand, for cases 2 and 4, BPSO produces the highest
power in comparison to all the algorithms, but the ECPO
is better than the ABC and GA algorithms in these case
studies. The total number of wind turbines in the wind farm
is shown in Table 3. For the optimal number of wind turbines
(case 1 and 3), ECPO with all strategies yields the highest
number of wind turbines compared to the other algorithms.
A large number of wind turbines will give the highest power
produced, thus producing the lower LCOE compared to the
other algorithms as shown in Figure 3 However, in the case
of a fixed number of wind turbines (case 2 and case 4), the
power produced by the wind farm using the ECPO algorithm
is just better to compare with ABC and GA algorithm, PSO
becoming the highest one, thus make PSO have the lowest
LCOE followed by ECPO algorithm as shown in Figure 4

TABLE 3. Number of wind turbines for the investigated scenarios using
different algorithms.

FIGURE 3. Power produced comparison between different algorithm in
the case of optimal number of WTs.

FIGURE 4. Power produced comparison between different algorithm in
the case of fix number of WTs.

The wake effect reduces the power produced by the wind
farm and thus reduces the efficiency. By using an optimiza-
tion algorithm, the reducing power due to the wake effect can
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be minimized by optimizing the wind turbine’s location. The
increasing number of wind turbines reduces the efficiency of
a wind farm by only optimizing the WTs does not prevent
the reduction of efficiency of the wind farm. So, another
factor should be added as the control variable to maintain the
wind farm’s efficiency. In the present research, the hub height
of wind turbine is the variable besides the location that be
optimized, and the effect of the number of the wind turbine
on the efficiency of a wind farm for both scenarios, which are
only location (2D WFLO) and both location and hub height
(3D WFLO) optimized is shown in Figure 5. The blue and
red lines show the 3D and 2D WFLO, respectively. From the
trend, it proves that the 3DWFLO canmaintain the efficiency
of the wind farm in the value around 90 – 95%, while for 2D
WFLO, the efficiency is reducing until the value of 70%when
the number of wind turbines near the maximum number of
wind turbines in the wind farm. Thus, the efficiency affects
the LCOE of the wind farm. The higher the efficiency yield,
the lower LCOE as the power produced by the wind farm
increases. The overall trend of LCOE in the various number
of wind turbines is shown in Figure 6. The figure shows that
3D WFLO has a lower LCOE than 2D WFLO.

FIGURE 5. Efficiency pattern for different maximum number of WTs.

The performance of the optimization algorithm to find the
best solution can be assessed by tracking the algorithm’s
search history. The first indicator that can be evaluated is the
simulation time required to find the best objective function.
The second indicator is the search pattern to find if the
algorithm is either trapped in the local optima or successful in
finding the optimum global value. Figure 7 shows the search
histories for all algorithms in the case of 3D WFLO with
the optimal number of wind turbines. All ECPO strategies
show the fastest simulation time to find the global optimum
of LCOE compared to the other algorithms. Moreover, the
ECPOs also yield the most minimum value of LCOE. For
the fixed number of 3D WFLO, ECPO is just better than

FIGURE 6. LCOE pattern for different maximum number of WTs.

FIGURE 7. LCOE search history 3D WFLO for the optimal number of
WTs - Site A.

GA and ABC, as shown in Figure 8. BPSO achieves better
performance than ECPO in terms of the value of objective
function and simulation time.

The best layout of the 3D wind farm for optimal (case 3)
and fix number (Case 4) of WTs are shown in Figure 9 and
Figure 10, respectively. The red rectangle indicates the WTs
position, which is the center of each grid. For case 3, The
2 km × 2 km wind farm area consists of 72 Wind turbines
scattered in all positions of the wind farm. The different
pattern is shown for case 4, where 30 WTs fulfills the edge
and the center of the wind farm. The pattern was formed due
to the direction of the wind farm that is in the horizontal line
of the wind farm so that the optimization process would locate
the WTs in the longest possible distance. For case 4, in which
the number of WTs is limited by only 30, the longest possible
distance is half of the width of the wind farm by which
each row of the wind farm in vertical line can load 10 WTS
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FIGURE 8. LCOE search history 3D WFLO for a fixed number of
WTs - Site A.

FIGURE 9. Best layout of 3D WFLO by the optimal number of WTs.

each. Figures 9 and 10 also show the height distribution of
WTs. The hub height is set between 50 – 80 m. The variable
of hub height maintains the efficiency of the wind farm by
minimizing the overlapping area of thewake effect. The result
show in which the number of WTs is limiting, the variance
of hub height is lower because the distance of each WTs is
higher.

After the initial site of the wind farm with 2 km × 2km
size optimized, various shapes of the wind farm are evaluated.
In this research, 3 different rectangle shapes with the same
large are optimized to evaluate the effect of the shape of the
wind farm on the layout and the objective function. The sites’
size is 1 km × 4 km, 800 m × 5 km, and 400 m × 10 km.
All the shapes have the same grid size, 200 m × 200 m. All
the sites are optimized using case 3 and case 4, which are
explained in the previous section. The best-optimized layout
is shown in Figure 13 and Figures 14. Compared with the

FIGURE 10. Best layout of 3D WFLO by a fixed number of WTs.

FIGURE 11. Comparison of LCOE for different shape of wind farm.

FIGURE 12. Comparison of Power produced for different shape of wind
farm.

three shapes of the layout, the smallest width shapes consist
of the most WTs.

The comparison of LCOE for different shapes of wind
farms is shown in Figure 11 and Figure 12. Site A is the
initial shape of a wind farm with a square shape, while sites
B, C, and D are rectangular shapes of wind farms with the
same large area. Site D has the lowest width with only 400 m
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FIGURE 13. 3D WFLO for various layout shape with optimal number WT.

width, while site B and site C have 800 m and 1 km width.
The result shows that site D with the lowest width achieves
the best LCOE compared to the other shapes. The result is
suitable with the number of WTs where shape D consists of
the most number of WTs.

FIGURE 14. 3D WFLO for various layout shape with fix number WT.

TABLE 4. LCOE Comparison of 3D WFLO by using different sites in the
case of an optimal number of WTs.

The comparison of LCOE for all sites, including 1 square
and 3 rectangular sites in 2 different scenarios and 6 different
algorithms, is shown in Table 4 and Table 5. For case 3 with
optimal number of WTs, ECPO with strategy 2 achieves the
lowest LCOE compared to the other algorithm for all shapes.

31394 VOLUME 10, 2022



T. Hidayat et al.: Design of 3D Wind Farm Layout Using Improved ECPO With Hub-Height Variety

TABLE 5. LCOE Comparison of 3D WFLO by using different sites in the
case of a fixed number of WTs.

Moreover, in case 4 with a fixed number of WTs, BPSO
achieves better LCOE than ECPO, but ECPO is still better
than the ABC and GA algorithm. Furthermore, the results
also confirm that for all algorithms implemented, reducing
the width of the wind farm decreases the LCOE and increases
the number of WTs.

VI. CONCLUSION
This paper proposes an efficient algorithm using an improved
version of the ECPO algorithm to solve the 3D WFLO lay-
out optimization problem. Wind turbine position and hub
height are two variables control to minimize the Levelized
cost of energy (LCOE) while considering some conflicting
constraints: the distance between the turbines, the minimum
and maximum hub height, and the wind turbine locations.
The ECPO algorithm is implemented in 16 different sce-
narios based on four case studies and four different shapes
of the wind farm. Three popular metaheuristic algorithms
are simultaneously implemented to solve all the scenarios to
validate the result. The result is then compared to find the
better algorithm. Furthermore, different shapes of wind farms
with the same large were compared to evaluate the effect of
the shapes on the LCOE of the wind farm.

The result shows that by implementing the 3D WFLO, the
LCOE of the wind farm increases by 7% in the case of the
optimal number of WTs and 3% in the case of a fixed number
of the wind turbine. This result is consistent by using all types
of algorithms while ECPO achieved the best performance in
terms of the LCOE in the case of an optimal number of WTs.
Moreover, the performance of LCOE can also increase by
changing the shape of the wind farm. The result shows that
the wind farm’s rectangular shape has better LCOE than a
square shape wind farm. The LCOE of the wind farm in most
rectangular shapes reduces by 8% compared with the square
shape wind farm.

Considering future work, a multiobjective optimization
problem can be implemented to minimize other objective
functions such as noise level and the total area used. More-
over, the different terrains can be set as another constraint for
the WFLO.
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