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ABSTRACT This paper presents the use of machine learning (ML) to facilitate the design of dielectric-
filled Slotted Waveguide Antennas (SWAs) with specified sidelobe level ratios (SLR). Conventional design
methods for air-filled SWAs require the simultaneous solving of complex equations to deduce the antenna’s
design parameters, which typically requires further manual simulation-based optimization to reach the
desired resonance frequency and SLR. The few works that investigated the design of filled SWAs, did
not optimize the design for a specified SLR. For an accelerated design process in the case of specified
SLRs, we formulate the design of dielectric-filled SWAs as a regression problem where based on input
specifications of the antenna’s SLR, reflection coefficient, frequency of operation, and relative permittivity
of the dielectric material, the developed ML model predicts the filled SWA’s design parameters with very
low error. These parameters include the unified slots length and the non-uniform slot displacements required
to achieve the desired performance. We experiment with several regressive ML algorithms and provide
a comparative study of their results. Our numerical evaluations and validation experiments with the best
performing ML models demonstrate the high efficiency of the proposed ML approach in estimating the
dielectric-filled SWA’s design parameters in only a few milliseconds. A comparison to the design obtained
through conventional optimization using the Genetic Algorithm also indicates superiority of the ML models
in computation time and resulting antenna performance.

INDEX TERMS Antenna design, slotted waveguide antennas, dielectric-filled SWA, sidelobe level ratio,
machine learning, neural networks.

I. INTRODUCTION
Slotted waveguide antennas (SWAs) have been widely
adopted in various radar, communications, andmilitary appli-
cations due to their set of appealing characteristics [1]. These
characteristics include simple design, relatively low weight,
and small volume, high power handling capability, high effi-
ciency, and good reflection coefficient [2]. SWAs are com-
posed of rectangular waveguides with slot cuts made either
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on the broad wall or the narrow wall of the waveguide. The
introduced slots are used to radiate energy from the antenna.
Typical SWAs have rectangular-shaped slots but could also
have elliptical or corner edge slots that provide enhanced
power handling abilities [3], [4].

The design method for air-filled SWAs was first proposed
by Elliott [5], [6] and Stevenson et al. [7], which allowed the
calculation of the design parameters of the antenna, including
the slots length, width, displacements from the waveguide
center-line, in addition to their distribution along the length
of the waveguide [7]. The proposed method requires the
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simultaneous solving of equations based on Stevenson equa-
tions and Babinet’s principle [8]. The solution to these equa-
tions also relies on Stegen’s assumption of the universality of
the length of the resonant slots [9], in addition to Tai’s for-
mula [10] and Oliner’s length adjustment factor [11]. While
the aforementioned design approach provides good results,
it is complex and relies on numerically solving various equa-
tions to deduce the antenna’s design parameters, which typ-
ically requires further manual simulation-based optimization
to reach the desired resonance frequency and Sidelobe Level
Ratio (SLR). The need for manually optimizing the design
of the SWA through simulations is another drawback, as it is
very time-consuming.

An additional drawback of conventional SWAs is their
narrow frequency range. Knowing that SWAs are made of
rectangular waveguides, their sizes have to be enlarged when
lower operating frequencies are desired, which can be a chal-
lenge when size is a limitation, especially since finding the
required waveguide design parameters for the desired fre-
quency range is not a straightforward procedure. In different
situations, a limited choice of waveguides to be used as radiat-
ing SWAs exists, which sets some constraints on the operating
frequency. A promising solution to the size and frequency
range constraints faced in standard SWAs is the insertion
of dielectric material inside the waveguide, without having
to increase its size. The shift in the resonance frequency
can be controlled by using dielectric materials with different
relative permittivities to fill the SWAs. However, this requires
extensive numerical computations and simulation-based opti-
mization to find the right antenna design parameters and
dielectric material properties for the desired frequency of
operation and SLR.

It was first proposed by Larson et al. [12] that filling the
SWA with a dielectric material can reduce the waveguide
size needed, increase the flexibility in slots location, reduce
the slot length that allows spacing the shunt slots entirely
in the narrow wall, and prevent electrical breakdown when
working with high power microwaves. Larson used Babinet’s
principle to modify the equations of the radiation resistance,
guide wavelength, slots conductance, and slot resonant length
for dielectric-filled SWAs, previously presented by Elliott
and Oliner in [7], [11]. However, the modified equations
are even more complex than the typical air-filled ones and
rely on solving several equations with different parameters to
reach the desired output. Moreover, the modified equations
did not take into account the variations in the equations of
slot displacements and were not used to design SWAs with
specified side lobe ratios.

Since then, only a few works have been reported on the
design of dielectric-filled SWAs, where, to our knowledge,
no work investigated the design of filled SWAs for specified
side lobe ratios, but rather most of the work analytically
analyzed the dielectric-filled SWAs based on theoretical for-
mulations and wave equations. Typically, a waveguide can be
either fully filled [13], [14], partially filled [15], [16], or in-
homogeneously filled [17]. Each type of these waveguides

has its own designmethods andmodes of propagation. In [17]
in-homogeneously filled waveguides with lossy dielectrics
were analytically analyzed using a system of differential
equations, transformed into a linear matrix eigenvalue prob-
lem. Partially filled SWAs with two slots and a dielectric
slab have been also analytically analyzed using a hybrid
full-wave technique in [18]. In [15] a mathematical model
presenting a partially filled SWA has been analyzed, where it
was shown that the insertion of the filling material increased
the gain and expanded the operating range of the SWA when
compared with air-filled SWAs. A partially-filled leaky-wave
SWA with transverse slots has been analyzed to investigate
the velocity factor, first null beamwidth, main beam, and the
optimal antenna length dependencies for uniform filling and
different slot lengths in [16]. Recently, partially and fully
filled circularly polarized radial line slot arrays have been
designed in [14] to improve the gain and radiation band-
width. Improvements have been reported in the directivity
and aperture efficiency of the antenna, but with sidelobe level
ratios of 11 and 15 dB. The aim of this paper is to present
a simplified and accelerated design approach of fully filled
slotted waveguide antennas for specified sidelobe ratios. The
design technique takes into account the desired resonance
frequency, sidelobe level ratio, number of slots, and waveg-
uide dimensions, to obtain the required slots length and non-
uniform displacements.

In recent years, the field of antenna design and opti-
mization has been appealing for the use of Machine Learn-
ing (ML) algorithms [19], [20], since most of the antenna
structures that are of interest for real-world applications do
not have closed-form solutions. In addition, the design of
antennas and microwave devices often requires a laborious
and time-consuming geometric parameter optimization pro-
cess to achieve the desired target performance. The non-linear
relationship between an antenna’s geometric parameters and
its operating frequency, return loss, and similar parameters,
makes the design process more complex and computationally
heavy, especially when the number of geometric parameters
to optimize is many. To address this problem, many works in
the literature have leveraged ML to develop reliable regres-
sionmodels that can predict optimal geometric parameters for
target performance. As opposed to traditional design methods
that rely on time-consuming electromagnetic simulations,
trained ML models have very fast prediction time which
can be leveraged for an accelerated design process. Hence,
ML provides a computationally efficient way to estimate the
antenna design parameters with low error and high speed.

The ML-based antenna design approach has been used
to optimize the design of the fractal antenna and notch
structure of MIMO systems [21], double T-shaped monopole
antennas [22], square microstrip antennas with truncated
corners [23], and many other types of antennas [24] and
microwave components [25], [26]. Despite the extensive use
of ML in the design of several antennas in the literature,
a shortage exists in the application of ML to design SWAs.
Only one related work is found in [27], where an ML
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approach is used to optimize the length and the orientation
angle of the coupling slots in a planar slotted waveguide
antenna array. The SLR obtained is 13.5 dB. The model was
trained using 189 data points collected through simulations
in HFSS.

The objective of this work is to use ML to facilitate the
design of dielectric-filled SWAs with specified sidelobe lev-
els. Starting with an available waveguide of a given operating
frequency range, the aim is to use this waveguide as an SWA
but for a frequency lower than its nominal operating range,
without having to replacing it with a larger one. For specified
resonance frequency, SLR, and a permittivity of an available
dielectric material, our proposed MLmodel is used to predict
the length and the non-uniform displacements of the slots,
required to achieve a desired sidelobe level, with low error,
in a few milliseconds of computational time. The presence
of such ML model allows for the very quick redesign of the
filled SWA should the design parameters such as frequency
and SLR change. In addition, the use of machine learn-
ing facilitates and speeds up the design/fabrication process.
Sometimes, the fabrication process introduces some byprod-
ucts that lead to performance deterioration. To combat this,
the design must be repeated to account for these fabrication
issues. With the presence of an ML model of the antenna,
the redesign process takes only a fraction of a second. New
inputs are fed to the model and the outputs are just generated,
which saves all the time needed for performing a new set of
simulations.

To that end, this work’s objectives are as follows:
• Develop a dataset of optimized design parameters (slot
length and displacements) for various performance
requirements (frequency of operation and SLR). The
samples are obtained through conventional simulation-
based optimization used to design dielectric-filled
SWAs.

• Train several regressive ML algorithms in a supervised
manner using the created dataset. The resulting ML
models can approximate the geometric design param-
eters of filled SWAs given the desired frequency of
operation and SLR.

• Numerically evaluate the performance of the developed
models and provide a comparative analysis.

• Validate the performance of the best performing models
by using their predictions to simulate the antenna and
compare the resulting reflection coefficient and SLR to
the ground-truth values in the test set.

• Conduct an error analysis on the validation results and
highlight the strengths and shortcomings of the ML
models.

• Compare with the results obtained through conven-
tional optimization techniques such as the Genetic
Algorithm.

The rest of the paper is organized as follows: The conven-
tional designmethodology of SWAs is presented in Section II,
highlighting the challenges faced and motivating the need

for adopting ML approaches in the case of dielectric-filled
SWAs. Section III introduces our design approach SWAs
filled with a dielectric material based on trained ML models.
In Section IV, we analyze the performance of the developed
ML models. A validation process is also presented for the
best performing models, along with an error rate analysis and
a verification for a design requirement. Concluding remarks
are given in Section V.

II. CONVENTIONAL DESIGN METHODOLOGY OF SWAs
Based on the required resonance frequency, the waveguide
inner dimensions, i.e. width and height, can be first found.
Then, for the desired SLR and a total number of slots cut, the
slots excitation are calculated from well-known distributions
in discrete antenna arrays, e.g. Taylor and Chebyshev distri-
butions. The air-filled SWA can be designed as detailed by El
Misilmani et al. in [3], and summarized as follows:
• The first and last slots are separated by a distance of
mλg/4 from both terminals, with m being an odd num-
ber, whereas consecutive slots are separated by λg/2.

• The slots lengths can be either non-uniform, for which
the length of each slot is calculated based on optimiza-
tion algorithms, or assumed to be uniform for simplic-
ity purposes. Using the proposed closed-form equations
in [3], the SWA resonant frequency did not vary when
different displacements leading to different SLRs were
applied, while assuming uniform slot length. For opti-
mal radiation characteristics, the length of all slots is
taken to be at their resonant length. For rectangular
slots [7], this length is typically around 0.49λ. Because
of the narrower ends of elliptical and round-ended slots,
their length is expected to be slightly larger than λ0/2,
optimized through simulations for the round-ended slots
used in this paper. Throughout the different designs that
we have worked on using the proposed design procedure
in this work, themodified round-ended slot length values
differed from the typical rectangular slot lengths by 1%
to 3% only.

• To achieve higher efficiency, the slots are placed in
alternating order on the length of the waveguide.

• The slots can be displaced from the waveguide center-
line by uniform or non-uniform displacements. In the
uniform case, an SLR of around 13 dB can only be
achieved, which is similar to the case of having equal
excitations to discrete elements in an antenna array. For
this, non-uniform displacements are used to achieve high
SLR.

To show the difference between the design of air-filled
SWA and dielectric-filled SWAs, the design equations of the
slot displacements are provided in the following.

In the uniform case, the slot displacements are calculated
as follows:

du =
a
π

√
arcsin

[
1

N × G

]
(1)
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with N is the number of slots and:

G=2.09×
a
b
×
λg

λ0
×

[
cos(0.464π ×

λ0

λg
)− cos(0.464π)

]2
(2)

In the non-uniform case, the slot displacements are calcu-
lated as follows:

dn =
a
π
arcsin

√√√√√ gn

2.09
λg

λ0

a
b
cos2

(
πλ0

2λg

) (3)

with cns are the distribution coefficients that should be deter-
mined to achieve the desired SLR, and:

gn =
cn
N∑
n=1

cn

. (4)

Equation (4) guarantees that
N∑
n=1

gn = 1.

In filled waveguides, the cutoff frequency (fc) of the
waveguide can be decreased by the square root of the relative
permittivity (εr ) of the dielectric material that is filled inside
the waveguide. For a fully filled rectangular SWA with dom-
inant TE10 mode, the cutoff frequency can be calculated as
follows:

(fc)10 =
c

2a
√
µrεr

[Hz] (5)

As inspected from the design equations of the air-filled
SWA, the different design parameters, including the slots
length, positions, and displacements, all depend on the guide
wavelength λg of the waveguide. This in turn will vary with
the changes in the value of the dielectric constant of the filled
material. However, using the design equations of the filled-
SWAs do not result in optimized values of slots length and
displacements required to operate the antenna at a desired
resonance frequency and SLR. For this, a further manual
optimization of dielectric-filled SWAs should be done that
requires extensive analytical and simulation work. In this
paper, we are proposing the use of ML to design this type
of antenna, instead of the typical analytical formulations and
optimization through simulations.

III. PROPOSED ML APPROACH FOR THE DESIGN OF
DIELECTRIC-FILLED SWAs
A. PROBLEM DESCRIPTION
Let X = [x1, x2, . . . , xNx ] denote our input feature vector
where Nx is the number of features considered. Our inputs
consist of Nx = 4 features that are namely: the relative
permittivity εr of the dielectric material used to fill the SWA,
the desired frequency of operation fc, the desired value of
the reflection coefficient s11 at fc, and the desired value of
the SLR. We note that εr is used as an input parameter
since predicting its value would not be useful as the resulting
predictions are continuous values that would defer from the

FIGURE 1. Sketch of the top and side views of the SWA with dielectric
filling and 10 slots. The lengths of the slots are uniform while slot
displacements are non-uniform.

available fixed and standardized values of εr to be used in the
simulation software.

Let Y = [y1, y2, . . . , yNy ] denote our output feature vector
containing the design parameters of the SWA to be predicted
by the ML model. We consider Ny = 6 output design
parameters: the slots length sl and the displacements of the
first five slots denoted by d1, d2, d3, d4, and d5. We note that
we do not include the rest of the displacement values in our
output features since, when simulating the SWA, their values
are taken to be equal to the first five displacements as such:
d6 = d5, d7 = d4, d8 = d3, d9 = d2, and d10 = d1.
The ML model we present in this paper is suitable for an

SWA with 10 slots. To be able to design a filled SWA with a
different number of slots, a newMLmodel has to be designed,
for the sought number of slots. To do so, simulations for that
specific number of slots have to be done, then the features
and outputs from these simulations will be used to produce
the new ML model. Once ready, this new ML model will be
sufficient to estimate the characteristics of the antenna slots,
even for cases that have not been included in the simulations.
The results will be out in no time.

For the currently presented work, we apply several regres-
sive ML models to learn the non-linear mapping from X
to Y that can be then used for inference, allowing us to
approximate the antenna design parameters without relying
on tedious simulation-based optimization approaches. Four
ML techniques are used: ANNs, Random Forest, Support
Vector Regression (SVR), and the Least Absolute Shrinkage
and Selection Operator (LASSO). In what follows, we pro-
vide mathematical descriptions of the techniques used and
specify the set of hyper-parameters selected in each.

1) ARTIFICIAL NEURAL NETWORKS
ANNs, commonly referred to as neural networks, are mod-
elled after how the human brain computes and processes
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TABLE 1. Network hyperparameters.

FIGURE 2. Architecture of the ANN used to predict the design parameters
of the SWA.

information. They benefit from massively connected neu-
rons which represent the computing units. The regular feed-
forward operation in fully-connected ANNs is given by:

zl+1i = wl+1i al + bl+1i

al+1i = g(zl+1i ) (6)

where l represents the layer index, i represents the unit index,
z is the input vector into a layer, a is the output vector from a
layer,w is the weight parameter vector, b is the bias parameter
vector, and g represents the chosen activation function. The
network is trained to minimze the mean squared error as a
loss function which is given by:

LANN =
1
m

m∑
i=1

(ŷi − yi)2 (7)

where ŷi is the prediction of the ANN and yi is the ground-
truth value of the i-th sample.
The architecture of the ANN we develop for SWA design

optimization is illustrated in Fig. 2 and further described
in Table 1 in terms of the number of layers, units, training
parameters, and choice of activation. The network consist of
an input layer that consist of the four input parameters. The
input layer then feeds into several fully connected hidden
layers with decreasing numbers of hidden units activated
using the Rectified Linear Unit (ReLU) function. The final
layer is a linear regressive layer that predicts the design
parameters of the SWA. The specific number of neurons,
in addition to the choice of activation used, was obtained via
a process of hyper-parameter tuning for optimal performance
on the validation set.

2) RANDOM FOREST
Random forest is an ensemble technique that averages the
result of a collection of de-correlation decision trees. As trees
are notoriously known to be noisy, averaging their results is
beneficial in reducing variance. In random forest, multiple
decision trees are fitted on randomly drawn bootstrap samples
from the training dataset, where a subset of the initial input
features are selected. The random forest model then averages
the results of each decision tree tomake a prediction. Given an
input sample x, the prediction ŷ by the random forest model
is then computed through:

ŷ =
1
N

N∑
i=1

Ti(x) (8)

where N is the total number of decision trees which was
chosen to be 100 with no maximum depth specified, and T (.)
represents a decision tree.

3) SUPPORT VECTOR REGRESSION
Inspired by the widely popular and effective Support Vector
Machines (SVMs) classifier, SVR is a regression algorithm
that is characterized by the use of kernels and the control of
the margin. Although SVR is less popular than SVMs, it has
proven to be an effective approach in estimating real-value
functions. SVR fits a symmetrical tube of width ε > 0 around
the estimated function in a way such that absolute values of
errors that fall below the ε threshold are ignored below and
above the estimate. Considering the function to be estimated
is non-linear, kernels are used to map the input into a higher
dimensional space, referred to as the kernel space [28]. The
loss function of the SVR algorithm is given by:

LSVR(w, b) =
1
2
|w|2 + C

m∑
i=1

|w.φ(xi)+ b− yi|ε (9)

where φ(.) is the transformation that maps inputs from the
feature space to the kernel space, C is a regularization term,
and |.|ε is the ε-sensitive loss. As kernel for transformation,
we use the widely adopted Gaussian Radial Basis Function
kernel. Following a process of hyper-parameter optimization
using Grid Search, the optimal values of ε and C were
selected to be 0.001 and 50 respectively.

4) LASSO
The LASSO method integrates the mean-squared error and
the L1 penalty in a linear model. Using the L1 penalty for
regularization results in a sparse solution as some of the
parameterswmay reach a value of zero, which is why LASSO
introduces an effect of feature selection. The loss function of
the LASSO method is given by:

LLasso(w, b) =
m∑
i=1

(wxi + b− yi)2 + λ
Nx∑
i=1

|wi| (10)

where λ is the regularization parameter that and
∑Nx

i=1 |wi|
is the L1 penalty. After hyper-parameter tuning, the optimal
value of λ was found as 0.00001.
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TABLE 2. Ranges of the input parameters covered in the dataset.

TABLE 3. Ranges of the output parameters covered in the dataset.

FIGURE 3. Boxplots showing the statistical summary of the models in
terms of MSE after 10-fold cross validation.

B. DATASET GENERATION
To be able to train our proposed ML models, a dataset of
300 samples was generated by simulating a WR-284 SWA
filled with dielectric material using the CST Microwave
Studio software. Each sample in the dataset consists of the
filled SWA’s design parameters, which are the slots length,
slot displacements value used have been optimized using
the conventional design methodology using the conventional
design methodology for various frequencies of operation and
relative permittivity values of the dielectric material used for
filling the SWA. The results obtained, in terms of reflection
coefficient and SLR were then recorded. Table 2 and Table 3
display respectively the ranges of the various input and output
parameters covered in the generated dataset.

IV. EXPERIMENTS & RESULTS
A. EXPERIMENTAL SETUP
We randomly partition the dataset into 80% training, 10%
validation, and 10% testing using a random seed of 42. All
models were developed, trained, and evaluated on the com-
mon data split. The ANN model is developed using the Ten-
sorflow library [29] and trained using the adaptive moment
estimation (ADAM) algorithm. The Random Forest, SVR,
and LASSO models are developed and trained using the Sci-
kit Learn library [30].

FIGURE 4. Boxplots showing the statistical summary of the models in
terms of R2 after 10-fold cross validation.

B. NUMERICAL EVALUATION
The performance of the models is evaluated using two statis-
tical metrics widely adopted in the evaluation of regression
models, which are the mean squared error (MSE) and the
coefficient of determination, referred to as R2 score [31]. The
MSE of a model represents the average squared difference
between the predicted outputs and the actual values. It is
expressed by:

MSE = 1
m

m∑
i=1

(h(xi)− yi )2 (11)

where m is the number of samples in the test set, h(xi) is the
predicted output of the model, and yi is the desired output
which is the actual value in the test set.

The R2 score is obtained by the following:

R2 = 1−

∑m
i=1(h(xi)− yi)

2∑m
i=1(yi − ymean)2

(12)

where ymean represents the mean of the desired outputs in the
test set.

1) CROSS-VALIDATION AND HYPOTHESIS SUMMARY
STATISTICS
To evaluate the hypotheses of the obtained models, we per-
form 10-fold cross-validation and report the statistical sum-
mary of the MSE in the boxplots of Fig. 3. It can be noticed
that the ANN achieves the best cross-validation results with a
lowest median MSE of 0.238 and a small IQR of 0.219 to
0.607. The second-best performing model is the Random
Forest which, compared to the ANN model, has a slightly
higher MSE median of 0.313 and a larger IQR range of
0.204 to 0.877. Both ANN and Random Forest models out-
perform the SVR and the LASSO models, which showed
worse cross-validation performance. The SVR and LASSO
models showed high MSE medians and relatively larger
Interquartile Ranges (IQRs) compared with the ANN and
Random Forest models. Specifically, SVR achieved a median
MSE of 2.714 and an IQR from 2.044 to 2.757, while the
LASSOmodel had a slightly lowerMSEmedian of 2.392 and
an IQR of 1.734 to 2.701.
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TABLE 4. Results achieved by the models on the test set for each output parameter and their average.

FIGURE 5. Comparative scatter plots of ANN model parameter predictions and their actual test set values.

Similar results are obtained in terms of R2 score, as plotted
in Fig. 4, where the ANN and Random Forest models also
show superiority in performance compared with the SVR and
LASSO models. In terms of R2 score, the Random Forest
achieves the best median value of 0.984 and an IQR of
0.969 to 0.988. The ANN model shows similar performance
with a median R2 score of 0.972 and had an IQR range
of 0.964 to 0.978, which are very similar to the results of
the Random Forest model. On the other hand, the SVR
and LASSO models achieved lower median R2 scores and
smaller IQRs. The SVR model achieved a median R2 score
of 0.954 and an IQR of 0.948 to 0.963, while the LASSO
model had very similar values with a median of 0.958 and an
IQR of 0.946 to 0.962.

2) PERFORMANCE ON THE TEST SET
The results achieved by the ANN, Random Forest, SVR, and
LASSO models on the test set in terms of MSE and R2 are
reported in Table 4. These test set results align with the obser-
vations in Fig. 3 and Fig. 4, where the ANN and Random For-
est models outperformed the LASSO and SVR models that
show high approximation errors. The Random Forest model
achieved the best average MSE of 0.10139, while the ANN
model achieved an average MSE of 0.17517. By inspecting

the MSE values for each output design parameter, it can be
noticed that theANNmodel has lowerMSE values for the slot
displacements (d1 to d5), while the Random Forest model
has a lower MSE value for the slot length sl . In terms of R2,
a similar pattern in the results is observed. However, the dif-
ferences in numerical scores of the ANN and Random Forest
models are negligible, and thus they are both considered as
high-performing models that can successfully approximate
the mapping between the desired antenna characteristics and
its design parameters with low error. The results achieved on
the test set confirm the trend in results shown by the summary
statistics reported after 10-fold cross-validation and highlight
the superiority of the ANN over the rest of the models on
the desired task. The numeric results achieved by the ANN
model on the test also confirmed its ability to generalize to
values outside the dataset with no signs of over-fitting to the
training and validation sets.

Fig. 5 shows the correlation between the predicted values
by the ANN model and the actual value in the test set for
each of the output design parameters. Similar scatter plots
for the Random Forest model are shown in Fig. 6. As it
can be seen from the scatter plots of Fig. 5 and Fig. 6, the
predictions by both the ANN and Random Forest models are
very close to the actual values, with the points situated around
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FIGURE 6. Comparative scatter plots of random forest model parameter predictions and their actual test set values.

FIGURE 7. Plots showing the influence of hyper-parameter tuning for the Random Forest (a), SVR (b), and ANN (c) models on the test set result. In (a), the
optimal number of estimators in the Random Forest model is observed to be 100 where the highest R2 score and lowest MSE value are achieved.
In (b), the lowest MSE achieved by the SVR model is at a C value around 100 with no significant influence of ε. In (c), we show the resulting MSE for
different architectures of the ANN model (in terms of layers and number of neurons). We select n neurons for the first layer and decrease it by 50 at each
layer. It is noted that the last layer containing six neurons with linear activation are not counted. Thus, It can be observed that the optimal design is
achieved with n = 250 and total number of layers equal to 5.

the identity line and an average R2 score above 0.99 for both
models. These plots demonstrate the high efficiency of the
developed ANN and Random Forest models in predicting
the design parameters of dielectric-filled SWAs given input
design requirements.

Fig. 7 shows the influence of varying the hyper-parameters
of the Random Forest, SVR, and ANN models and indicate
how the optimal set of hyper-parameters were obtained.

C. VALIDATION AND ERROR RATE ANALYSIS
1) VALIDATION ON TEST SET EXAMPLES
To validate the effectiveness of the ANN and Random Forest
models, we randomly select 3 samples from the test set and
use the models at inference to predict the design parame-
ters required. The predicted parameters, which are the slots
length and slot displacements, are then used to simulate the
dielectric-filled SWA using CST. We then compare in terms

of S11 and SLR the output of the simulations obtained by
using the design parameters predicted by the ANN and Ran-
dom Forest models with the simulation outputs of the ground-
truth test set values.

The results of this validation procedure are summarized in
Table 5 for three different test samples that cover different
values of the εr , the frequency of operation, and SLR. The
error rate between the predicted design parameters and the
simulation results are computed for each test sample. Fig. 8
shows the reflection coefficient plots and H-plane pattern
plots for the results of the three different samples of Table 5.

For sample 1, the design parameters predicted by the ANN
model are very close to the ground truth labels, with an error
percentage ranging between 0.024% and 0.308%. Specifying
these predicted design parameters in the simulator resulted
in an S11 value of −10.5 dB at an operation frequency of
1.9 GHz and an SLR of 17.6 dB. These results are very
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TABLE 5. Validation samples with ANN model design parameter predictions, test set ground truth values, and the obtained simulation outputs.

close to the ground-truth values where the error percentage
is as low as 4.761% and 0.568% for the S11 and SLR values
respectively. On the other hand, the Random Forest model’s
predictions showed slightly higher error percentages ranging
from 0.444% to 1.792%, which resulted in a higher S11 error
of 12.5% and SLR error of 2.824%. In this sample, the
prediction error of the Random Forest model resulted in an
S11 value below−10 dB, as shown in Fig. 8a, while the ANN
model was able to provide design parameters that resulted in
an S11 value that is very close to the ground truth value while
satisfying the conditions for antenna resonance.

For sample 2, using the predicted design parameters of both
ANN and Random Forest models resulted in S11 and SLR
values which are very close to the ground-truth values. The
ANN model predictions resulted in an S11 error of 3.643%
and SLR error of 0.584% while the Random Forest model
predictions resulted in an S11 error of 3.346% and SLR error
of 1.162%. Both models were very successful in this sample
in providing accurate design parameters which resulted in
very close results to the ground-truth output as illustrated in
Fig. 8c and Fig. 8d.

For sample 3, the ANN model resulted in an S11 error of
27.142% and an SLR error of 5.699% compared with the
ground-truth values. The Random Forest model was able to
provide a much lower S11 error at 4.34% but had a higher
SLR error at 7.692%. While the ANN model resulted in a
relatively high S11 error, the resulting S11 value of −14 dB is
still enough for the antenna to achieve resonance, as shown in
Fig. 8e, while providing a very close SLR value to the desired
level as illustrated in Fig. 8f.

Based on these validation results, it can be concluded
that the developed ANN and Random Forest models pro-
vide accurate predictions of the antenna’s slot length and
displacement parameters which do not surpass the 2% mark

and that very closely match the ground truth values obtained
through the conventional designmethodology. However, even
slight errors in the design parameters can cause a noticeable
error in the resulting S11 values. In certain cases, such as the
result of the Random Forest model in sample 1, the resulting
error might not lead to a good resonance since the S11 will
be slightly above −10 dB. However, this can be avoided
by specifying an S11 requirement that is much lower than
the resonance threshold, such as done in sample 3. In this
manner, even with a relatively high S11 error percentage, the
antenna will still achieve resonance and thus this would not
affect performance.We also note that the resulting prediction
error of the models can be further mitigated by enlarging the
size of the dataset they were trained on, but which is a time-
consuming process.

2) VALIDATION FOR A DESIGN REQUIREMENT
To further validate the effectiveness of our proposed
ML-based design method, an additional example is provided
here. Startingwith a typical 10-slots SWAoperating at 3GHz,
made of a WR-284 waveguide, the proposed method is used
to decrease the resonance frequency of the SWA to 1.93 GHz,
chosen arbitrarily outside the recommended frequency range
of the WR-284 of 2.60 to 3.95 GHz. Typically, to reach this
frequency,WR-510 orWR-430waveguide can be used. How-
ever, both of these waveguides have larger dimensions than
the WR-284, which requires changing the complete antenna
system. Instead, we use our ML-based design method where
the available WR-284 is filled with Arlon AD 295 dielectric
material of a relative permittivity of 2.95, and the ANNmodel
is used to predict the length and displacements of the slots
required to decrease the resonance frequency to 1.93 GHz
with an SLR of not less than 20 dB. The predicted slot length
and displacements by the ANN model are listed in Table 6
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FIGURE 8. Antenna’s reflection coefficient and H-plane pattern plots for each of the validation samples of Table 5. The plots show the simulation
results of the antenna after using the design parameters predicted by the ANN and Random Forest models compared with the simulation results
using the ground truth design parameters. G.T. stands for Ground Truth. R.F. stands for Random Forest.

and compared with those of the hollow SWA operating
at 3 GHz.

Fig. 9 shows the simulated reflection coefficient results
and gain pattern results in the H-plane respectively for
both hollow SWA and filled SWA. Fig. 10 shows the gain

pattern results in the H-plane respectively for the filled SWA
designed using the ANNmodel. As can be observed in Fig. 9,
using the predicted design parameters of the ANNmodel, the
resonance frequency of the SWA was decreased from 3 GHz
to 1.93 GHz, with a good value of reflection coefficient.
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FIGURE 9. Comparative plot of the simulated reflection coefficients of the
hollow SWA and the filled SWA designed using the ANN model.

FIGURE 10. Gain pattern simulated results of the filled SWA designed
using the ANN model.

TABLE 6. Design parameters of the hollow SWA and filled SWA. The filled
SWA parameters are predicted by the ANN model to decrease the
resonance of the antenna to 1.93 GHz.

The SLR value has kept its value above 20 dB as required,
as shown in Fig. 10. These results validate the effectiveness
of our proposed method, which can be used to accurately
predict design parameters required to lower the operational
frequency of the SWA to the desired value, without having to
resort to a waveguide of a larger size.

D. COMPUTATION TIME
In terms of computation time, the ANN model has a pre-
diction time of around 0.0480 seconds while the Random
Forest model has a prediction time of 0.0160 seconds. The
computation time offered by both ANN and Random Forest
models is a huge advantage over the conventional design
methodology where optimization of the design parameters is
required, a process that is heavily time-consuming and com-
putationally expensive. Adopting conventional optimization
algorithms for this task is very time consuming and may not

FIGURE 11. Comparative plot of the simulated reflection coefficients of
the design obtained through the developed ANN model and the genetic
algorithm-based optimization in CST.

FIGURE 12. Realized gain pattern comparison plot of the design obtained
through the developed ANN model and the genetic algorithm-based
optimization in CST.

converge to the optimal solution. We provide a comparison
of the result obtained by the Genetic Algorithm optimizer in
CST with the result of our ANN model for the following tar-
get: operation frequency of 2.31GHzwith S11 = −20 dB and
SLR = 25 dB where a dielectric material with εr = 2.31 is
used. The optimization process using the Genetic Algorithm
took 42 hours of continuous running to provide a result.
Fig. 11 and Fig. 12 show the reflection coefficient and gain
pattern plots of the designs obtained by both ANN model
and Genetic Algorithm. It can be clearly observed that the
resulting design by Genetic Algorithm-based optimization
in CST fails to achieve resonance at the target frequency,
which indicates that the conventional optimizer failed to con-
verge to an optimal solution after a very large computation
time. On the other hand, the predicted design by the ANN
model, which is obtained in a fewmilliseconds, provides very
good resonance with the S11 value reaching below −20 dB
at the target frequency. This shows that the design process
of dielectric-filled SWAs is rapidly accelerated by our pro-
posed ML-based approach, where the prediction time of the
ML models developed are leveraged. In addition, accurate
design requirements are reached by adopting the ML-based
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approach whereas perfect results may not be reached by
conventional optimizers as shown in this example.

V. CONCLUSION
In this paper, an ML-based approach is used to design
dielectric-filled SWAs for a desired SLR in an accelerated
manner. Several developed ML models predict the required
slots length and displacements for a specified resonance fre-
quency, reflection coefficient value, and SLR. The results
show the capability of the developed ML models to rapidly
estimate the filled SWA design parameters with very low
error. Validation and detailed analysis of the error rate were
carried out, highlighting the effectiveness of the proposed
ML-based design approach. In addition, the performance
of the proposed ML-based design approach is compared to
the result of Genetic Algorithm-based optimization in CST
where superiority in both computation time and resulting
antenna performance are shown. The availability of theseML
models makes it possible to produce the design parameters
of filled SWAs in milliseconds, and enables fast redesign
when the inputs such as frequency of operation and SLR are
changed.
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