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ABSTRACT The use of Attitude and Heading Reference Systems (AHRS) for orientation estimation is
now common practice in a wide range of applications, e.g., robotics and human motion tracking, aerial
vehicles and aerospace, gaming and virtual reality, indoor pedestrian navigation and maritime navigation.
The integration of the high-rate measurements can provide very accurate estimates, but these can suffer
from errors accumulation due to the sensors drift over longer time scales. To overcome this issue, inertial
sensors are typically combined with additional sensors and techniques. As an example, camera-based
solutions have drawn a large attention by the community, thanks to their low-costs and easy hardware setup;
moreover, impressive results have been demonstrated in the context of Deep Learning. This work presents
the preliminary results obtained by DOES , a supportive Deep Learning method specifically designed for
maritime navigation, which aims at improving the roll and pitch estimations obtained by common AHRS.
DOES recovers these estimations through the analysis of the frames acquired by a low-cost camera pointing
the horizon at sea. The training has been performed on the novel ROPIS dataset, presented in the context of
this work, acquired using the FrameWO application developed for the scope. Promising results encourage
to test other network backbones and to further expand the dataset, improving the accuracy of the results and
the range of applications of the method as a valid support to visual-based odometry techniques.

INDEX TERMS AHRS, computer vision, dataset acquisition, deep learning, orientation estimation.

I. INTRODUCTION
The pose estimation problem consists in estimating the posi-
tion and orientation of a vehicle, device, human or robot with
respect to a reference frame, through the use of different kinds
of internal or external sensors. The accurate measurement
of the orientation plays in fact a critical role in a wide
range of activities, e.g., robotics and human motion tracking,
bio-logging for animal behaviour research, aerial vehicles
and aerospace, gaming and virtual reality applications,
medicine and biotechnology, indoor and outdoor pedestrian
navigation, maritime and/or autonomous navigation. When
Global Navigation Satellite Systems (GNSS) are not able to
provide correct information about the position and attitude
of a vehicle, navigation and localization operations are
generally performed through the integration of different
kind of sensors: inertial, odometry, laser and sonar ranging
sensors, underwater positioning systems, etc. [1].
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In the last years the use of low-cost technologies is
becoming widely spread in numerous applications: this
means that the accuracy of the pose obtained by these systems
can be affected by even more disturbing factors than the
traditional high-performing methods. In these circumstances,
the development of accurate and reliable orientation estima-
tion algorithms can still be considered a very challenging
task, being at the basis of the localization process and of
the consequent performances of the device employed for
any specific task. This finds particular application in the
context of the navigation, be it aerial, maritime or pedestrian,
underwater/underground or in surface, autonomous, remotely
operated or traditionally performed. In the specific case
of maritime navigation, the information of position and
orientation of a vessel is of great interest for seafarers in
different operations and scenarios (e.g., open sea, congested
harbours andwaterways) as it is strictly related to the safety of
the navigation at any level [2]. The same goes for Unmanned
Surface Vehicles (USVs), which are mainly employed in
environmental monitoring, safety or navigation support and
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research operations. In this case, a non accurate estimation of
the orientation can severely compromise the ultimate success
of themission, especially when paired to low-cost sensors and
poor GNSS support.

The Inertial Measurement Unit (IMU) gives the instan-
taneous speed and position of the vehicle without the
need for external references by integrating the measures of
angular velocity and linear acceleration obtained through
its three orthogonal rate-gyroscopes and –accelerometers
respectively. Unfortunately, several problems are associated
with these sensors; among the others, measurements are noisy
and biased and the errors increase over time due to the drift
of the sensors. Micro Electro-Mechanical Systems (MEMS)
Attitude Heading Reference Systems (AHRS) integrate to
this configuration a magnetometer which measures the
variation of the Earth’s magnetic field: this allows to instantly
calculate an improved estimation whereas benefitting from
lighter weight, smaller sizes and lower prices. The great
potential of these devices makes them suitable for several
applications exploiting the pure orientation estimation, like
geomatics, surveys, augmented reality, etc.

Vision-based methods are also frequently employed for the
scope: these techniques allow to understand the surrounding
environment by detecting its visual features through a
camera; captured color data with their high resolution contain
in fact several information, and the sensors are generally low-
costs and with an easy hardware setup. In this context, the
detection of the horizon line is an important attribute for
the maritime image processing, as it allows to estimate the
camera’s orientation with respect to the sea surface other
than restricting the object search region when detection is
performed, thus reducing the processing time and the false
detection problem. Several approaches have been proposed
to solve this task, however the accuracy and the processing
time of the horizon line detection on high-resolutionmaritime
image still face some issues [3].

In the last decade, Visual Odometry (VO) and Visual
Simultaneous Localization and Mapping (VSLAM) tech-
niques have been successfully developed; however, their
application can be challenging too, especially when their
deployment is made in non-textured environments or with
poor-light conditions. To reduce these limitations, IMU and
camera systems are integrated in Visual Inertial Odom-
etry (VIO) techniques [4]; as a drawback, they require
manual interference for possible failure cases assessment,
careful and specific tuning of the parameters related to the
environment, and a final refining of the results. In recent
years, increasing consideration has been gained by Deep
Learning (DL) techniques, which demonstrated to be robust
to camera parameters and harsh scenarios: these methods are
in fact able to successfully extrapolate and learn new features
representations from the images they are fed with and these
can further improve the motion estimation [5].

With the aim of providing further enhancements in the
orientation estimation methodologies, this paper presents
DOES, Deep Orientation (of roll and pitch) Estimation at

FIGURE 1. Illustration of an image from the ROll and PItch at Sea (ROPIS)
dataset.

Sea, a new supportive DL model which can be combined to
the actual low-cost IMU-based configuration. This approach
is not intended to substitute the current systems, but aims at
improving the robustness of traditional methods when some
limitations occur: the unavailability of GPS signals in indoor
and under-surface environment, the undesirable high drift of
inertial sensors in case of extended GPS outages and the
issues of possible confusion with nearby robots for SONAR
& RADAR are some of the limitations associated with these
navigation systems. Visual-based methods help in this sense,
since they constitute a powerful tool to estimate the pose of
a camera through which the motion information is further
recovered. These techniques can be classified as geometric
or learning based: in the first case the camera geometry is
explored to estimate the motion, whereas in the latter the
model is fed with labeled data and then trained to accomplish
the same task. The advantage of the learning-based methods
is that they do not require the knowledge of the camera
parameters and can estimate the orientation with correct scale
even for monocular cases [6]. Moreover, visual methods can
be further integrated with traditional, IMU-based orientation
estimation algorithms to obtain a robust and reliable visual-
inertial odometry system [7]. The work presented in this
paper develops an affordable visual, learning-based backbone
which estimates the attitude of a monocular camera which
will be mounted on a vehicle.

The idea behind DOES is in fact to train a DL model
able to output the vehicle attitude (in terms of roll and
pitch angles) by processing the sea horizon view recorded
by a low-cost camera. In particular, the latter needs to be
mounted on the surface of an autonomous robot (or, similarly,
on the bridge of traditional ships) with its axis parallel to
the vehicle longitudinal axis, to correctly frame the horizon
line. A similar approach could be further tested on Unmanned
Aerial Vehicles (UAVs) too. To lay the foundation for this
task, preliminary intensive tests have been conducted to
verify the validity of the approach. Different DL architectures
have been tested for the processing of the images acquired
through an Android smartphone’s camera.

In this context, the lack of datasets specifically designed for
DL-based orientation estimation at sea has been evidenced.
While tackling this issue, the need of acquisition methods
assuring the synchronism of the measurements for a reliable
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Ground Truth (GT) has been addressed too. For this reason,
this paper presents also the first release of the ROll and
PItch at Sea (ROPIS) dataset (Fig. 1), which has been created
through FrameWO, an Android application developed for
the scope. The choice of employing low-cost sensors meets
the necessity to develop affordable and smart tools to
enhance the orientation estimation; for this reason, the first
deployment of the dataset has been acquired using open-
source libraries and software. In this preliminary release,
the operating user acquires the data in the proximity of the
seashore trying to simulate the real behaviour of a ship in
navigation.

The aim of this project is to provide a supportive visual-
based, low-cost technique for attitude estimation which can
be easily deployed in the context of navigation at sea or other
challenging scenarios, as it does not need to take into account
camera models or related calibration issues.

More in detail, the main contributions of this work can be
summarized as follows:
• The development of FrameWO, an Android smartphone
application for the simultaneous acquisition of camera
images and their corresponding device orientation.

• The release of ROPISdataset, consisting of 22173 RGB
images/Euler angles samples acquired with FrameWO
application on eight different sea locations.

• A Deep Learning-based method to perform attitude
estimation using horizon-depicting frames; DOES is
specifically trained on the ROPIS dataset and provides
fast and reliable estimations, further encouraging to
operate for its deployment in real-time scenarios.

The paper is organized as follows: Section II gives a
brief overview on the existing literature on the orientation
estimation task exploited through different traditional, visual
and DL-based methods; Section III gives a theoretical
foundation to the subject, introducing the attitude estimation
problem to further describe the DL architectures which best
fit the task. In Section IV the ROPIS dataset will be presented,
highlighting the issues and solutions encountered during the
app creation and the data acquisitions. Section V details
the experiments performed on DOES whereas the obtained
results will be presented and discussed in Section VI; final
considerations and future objectives will conclude the work
in Section VII.

II. RELATED WORKS
The accurate measurement of the orientation plays a critical
role in a wide range of activities. AHRS sensors (i.e.
accelerometers, gyroscopes and magnetometers) provide
reliable measurements whose integration gives accurate
information about the pose (position and attitude) of any
object they are rigidly attached to. In the last decade,
traditional methods have seen a huge improvement due to the
integration with different kind of sensors, aiming at reducing
the inertial-related error accumulation and the costs whilst
enhancing the robustness of the methodology. As previously
mentioned, one of the most effective integration is made

through visual-based method, leveraging the potential of
visual features and the low-cost of the devices. The following
paragraphs give a concise review of the existing literature in
the field of orientation estimation.

A. INERTIAL-BASED METHODS
There exists a large amount of literature on the use of inertial
sensors for position and orientation estimation. The reason
for this is related to their robust algorithms and their accurate
solutions which makes them suitable for being used in several
fields. Interestingly, relatively simple position and orientation
estimation algorithms work quite well in practice, even if
the model choice can sensibly affect the accuracy of the
estimates [8].

There is a large and ever-growing number of application
areas for inertial sensors, as for example robotics and human
motion tracking [9], [10], bio-logging for animal behavior
research [11], aerial vehicles and aerospace [12], [13],
gaming, virtual reality and indoor pedestrian navigation [14]–
[16], etc. In fact, the use of accurate inertial sensors and
magnetic compasses was first introduced in the navigation
field, but along with the development of MEMS technology,
low-cost and small-size inertial and magnetic compass
sensors appeared in various kinds of consumer electronics,
game consoles, virtual reality applications and so on. The
orientation representations and sensor fusion still remain
the challenges to overcome [17]. Real-time orientation
estimation algorithms based on low-cost IMU are analyzed
in [18], where the approach is based on the relationships
between the quaternion representing the platform orientation
and the measurements of the sensors and the integration
is performed through an Extended Kalman Filter (EKF).
Researchers in [19] developed a low-cost and low-weight
attitude estimator for autonomous helicopters based on an
inclinometer and a gyroscope, while fusing the data coming
from the sensors through a classic complementary filter;
in [20] a gyro-free, quaternion-based attitude determination
system which exploits low cost sensors is presented. Refer-
ence [21] implemented a complementary filter able to infer
Micro Aerial Vehicle (MAV) attitude from observations of
gravity and magnetic field, with the final algorithm able to
work with both IMU and MARG sensors. Authors in [13]
exploited anAHRS device together with a Unscented Kalman
Filter algorithm to perform attitude estimation on UAVs. The
same filter has been used in [22], which developed a novel
navigation system for autonomous underwater vehicles that
works without the presence of a GPS device, not available
in underwater scenarios. Researchers in [23] proposed an
Adaptive Kalman Filter which is able to provide pose
estimations based on low-cost AHRS devices, whereas [24]
and [25] investigated the use of AHRS in smartphones as
cheap but reliable devices for angles estimation. A novel
error-state Kalman filter is presented in [26], which provides
highly accurate IMU orientation estimates which result to
be robust to fluctuations in the registered local magnetic
field or caused by abrupt movements. An indoor pedestrian
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navigation method based on shoe-mounted MEMS IMU
and ultra-wideband is discussed in [27], which used a
quaternion-based Kalman Filter to integrate the data and
to reduce the complexity of the method. In [28] a new
orientation estimation strategy for a non-accelerated platform
is presented. Based on a low-cost IMU, this method sees
a nonlinear Luenberger observer estimating the angles and
a recursive least-square algorithm calibrating the common
magnetometer offsets. Authors in [29] describes a calibration
method for MEMS IMU mounted on electric bicycles that
can be made in real-time thanks to its independence to sensor
biases and its a very low computation cost.

B. VISION-BASED METHODS
The possibility to employ visual data to perform orientation
and in general pose estimation has been widely deepened
in the past decades. Many researches have been focused
on the horizon line detection, due to its relevance for
visual geo-localization, port security, etc. However, some
special features in real marine environments (e.g., clouds
clutter, sea glint and weather conditions) frequently result
in different kinds of interference in optical images. Authors
in [30] proposed a Sea-Sky Line (SSL) detection method
for USVs based on the computation of the gradient saliency,
through which the line features of the SSL are effectively
enhanced while other disturbances are attenuated. The SSL
identification is achieved according to regions contrast, line
segment length and orientation features, and optimal state
estimation of SSL detection is implemented by a cubature
Kalman filter. In [31] a fast method for detecting the horizon
line in maritime scenarios is presented. It combines a multi-
scale approach and a region-of-interest (ROI) detection,
which allows to efficiently reduce the required processing
information amount. A single edge map is then produced
and the Hough transform and a least-square method are
sequentially applied to accurately estimate the horizon line.
The Hough transform is also used in [32], which proposed
a sea-sky line detection system based on the local Otsu
segmentation; similarly, authors in [33] recognized the
horizon line in maritime images through a two-phase, coarse-
fine detection algorithm which increases the overall method
robustness. Another quick horizon line detection method is
proposed in [34], which extracts the horizon line in real
maritime imagewith improved reliability and faster execution
with respect to other competitors. The horizon detection
through vision sensors is also frequently exploited to obtain
redundant orientation information in the field of unmanned
aerial navigation. For example, authors in [35] proposed
two attitude estimation methods: the first one searches for
the best line fitting the horizon in thermal images, which
allows to further estimate the pitch and roll angles using
an infinite horizon line model. The second method exploits
a Convolutional Neural Network (CNN) which predicts the
angles on the basis of the raw pixel intensities from the same
kind of images.

However, these methods alone cannot be considered totally
robust and reliable, since the position and slope of the horizon
are strictly related to the camera intrinsic (i.e., focal length,
optical center, pixel aspect ratio and skew) and extrinsic
(rotation and translation) parameters and to the model
used to parametrize them. In [36] the authors surveyed a
plethora of methods which perform pose estimation by fusing
visual, inertial and magnetic measurements, integrating them
through the use of an EKF. The combined use of IMU
and vision information has been explored by [1], which
exploits SURF visual features together with accelerometer
and gyroscope data to retrieve the robot pose in an indoor
setting. A comprehensive analysis of the behaviour of these
features when used for visual odometry can be found in [37].

VO, VIO and SLAM algorithms have recently received
much attention for their efficient and accurate ego-motion
estimation in robotics. A VIO algorithm for the estimation
of the motion state of UAVs with high accuracy is presented
in [38]. Visual data and pre-integrated inertial measurements
are here integrated in an optimization framework; the stable
initialization of scale and gravity through pose constraints
together with a local scale parameter allowed to take into
account the uncertainty of the VIO initialization.

The use of stereo camera sensors for VO is a reliable
and low-cost way for attitude estimation, but may encounter
problems when deployed underwater. This setting is in
fact characterized by poor imaging and usually inconsistent
motion due to the water flow. This issue has been tackled
by [39], which proposed an AUV localization technique
based on a stereo underwater VO system to overcome the
aforementioned difficulties. In the context of underwater
robotics, [40] presented another VO method which demon-
strated to be robust to visual perturbations in many challeng-
ing scenarios. In [41] a novel key-frame based SLAM system
is proposed, where a robust initialization aims at refining
the scale through the use of depth measurements. Together
with an improved image quality and a fast preprocessing
step, this demonstrated to solve the localization drift and
loss issues. A monocular VI-SLAM algorithm providing
accurate and robust motion tracking is presented in [42].
This is developed in two parallel thread: the first one deals
with the EKF motion tracking updated through a consistent
map to reduce the drift. In the second one, a visual-inertial
bundle adjustment is performed on the obtained global maps
to optimize the overall results. ORB-SLAM3 [43] is another
worth mentioning method in this context. It allows to use
both stereo and monocular RGB-D cameras in the VI and
SLAM approach, ensuring a robust real-time operativity in
any kind of environment thanks to theMaximum-a-Posteriori
estimation.

The rise of Deep Learning, with powerful architectures
able to tackle complex tasks such as classification [44],
detection [45], segmentation [46], denoising [47], super
resolution [48], has definitely changed the way vision data
are exploited for pose estimation. Instead of relying on
engineered, fixed features (e.g. SIFT [49], SURF [50]),
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recent algorithms exploit deep networks as powerful features
extractors or by directly estimating the pose vector in an end-
to-end model, from input images to the output prediction.
For example, in order to estimate camera orientation, [51]
exploited a LSTM deep network together with a linear
Kalman Filter to combine IMU and camera data, whereas
in DeepVIO [5] the authors fused 2D optical flow features
together with standard inertial data, obtaining state of the
art results on KITTI [52] and EuRoC [53] datasets. The
combination of a traditional IMU with a LIDAR laser scan
has been proposed in [54], where a recurrent CNN perform
this aggregation on a scan-to-scan basis. In [55] researchers
proposed a method to estimate a camera six degrees of
freedom and absolute scale by exploiting unsupervised data,
getting good results in terms of pose accuracy on KITTI
benchmark. In [56], the authors developed a generative
framework able to exploit a GAN [57] model on unlabelled
RGB images for 6-DoF pose camera motion prediction,
demonstrating the efficacy of their approach both on KITTI
and Cityscapes [58] datasets. The former method has been
improved in [59] with a stack of GAN layers which
demonstrated to be effective on ego-motion estimation tasks.
A comprehensive review of the state of the art deep models
for pose estimation can be found in [60].

III. METHOD
This section aims at providing a theoretical background to
fully understand the fundamentals of the proposed work.
In particular, a general overview on the orientation estimation
process is given in subsection III-A, with some details on the
sensors embedded in an AHRS and on the coordinate frame
to which the smartphone device (and the related measures) is
referred. Subsection III-B presents in a concise but detailed
way the deep architecture models analysed and tested during
the work.

A. ORIENTATION ESTIMATION OVERVIEW
The orientation definition for a rigid body is generally made
through a transformation matrix containing a parametrization
of the Euler angles, unit quaternions, rotation vectors or
rotation matrices [61]. Among them, the Euler angles allow
for a more intuitive analysis in the 3D space and can be
defined as follows:
• φ is known as roll angle and defines the x axis rotation;
• θ (pitch angle) refers to the y axis rotation;
• ψ (yaw or heading angle) represents the z axis rotation.
The correct integration of the raw IMU data or of

the more cost-effective AHRS is at the basis of the
orientation estimation process. The accelerometer measures
the acceleration in m/s2 applied to a device, including
the force of gravity: velocity is determined if the linear
acceleration component is integrated once and position if
the integration is performed twice. The results can be of
poor accuracy due to the extensive noise and accumulated
drift from which it suffers. The rotation angles can be
obtained by the integration of the angular velocities in rad/s

provided by the gyroscope; even if they are sensible to sudden
and fast motion, these sensors generally experience major
drift issues due to the errors accumulation over long time.
For the aforementioned reasons, pose estimation is usually
exploited through gyroscopes and accelerometers fusion to
leverage their potential whilst attenuate their weaknesses.
The Earth’s magnetic field (µT ) measures provided by the
magnetometer can be joined to the previous ones to improve
the heading determination; however, they suffer from the
influence of metallic objects, which can heavily impact on
the accuracy of the data collection. Moreover, the overall drift
introduced by the sensors system causes errors accumulation:
this means that the navigation information reliability and
accuracy are guaranteed only within short times, with
their measurements precision decreasing throughout long
missions. For this reason, the integration of the measurements
provided by the three sensors aims at reducing the errors
accumulation caused by the single one; this is generally made
through filtering techniques and fusion methods. Moreover,
information provided by external devices can considerably
improve the accuracy of the estimations, especially when
low-cost sensors could facilitate the process and make it more
practical.

In this context, the objective of the present work is to
provide a supportive mean to improve the attitude estimations
obtained by common AHRS: DOES is a low-cost DL
architecture developed to recover orientation information
from the view of a camera pointing the horizon at sea, which
will be placed on the bow of a navigating vehicle in future
experiments. The training has been performed on the ROPIS
dataset, acquired using an application developed for the scope
on an Android smartphone which simultaneously collects the
frames and calculates the corresponding Ground Truth data
using the AHRS sensors.

The IMU-AHRS measurements of the smartphones are
generally expressed in a custom body reference frame.
The Android developer website defines its frame relative
to the device’s screen when the device is held in its
default orientation (see Fig. 2, [62]). In particular, the frame
originates in the center of the device with the horizontal x
axis pointing to the right, the vertical y axis pointing up and
the z axis points toward the outside of the screen face, so that
the coordinates behind the screen have negative Z values.
The related attitude information is then referred to the same
coordinates.

During the ROPIS dataset acquisition the smartphone has
been kept in landscape mode, recording the horizon view.
It has to be noticed that the coordinate frame does not change
its definition, so in this setting the z axis points in the user
direction, the y axis to his/her left and the x upwards.

B. DEEP LEARNING ARCHITECTURES
DOES model is composed of a pre-trained backbone CNN
and two additional Fully Connected (FC) layers to output
the roll and pitch estimates. Several, well established
architectures have been tested as backbone for the final
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FIGURE 2. Device coordinate system used by the Android Sensor API [62].

network, as for example the VGG16-19 [63] and ResNet18-
50-152 [64]; the resulting numerical comparison will be
reported in Section VI, Table 3.

The VGG-16 and VGG-19 networks are based on the
popular VGG architecture. They are composed of sev-
eral convolutional layers followed by a Rectified Linear
Unit (ReLU) activation function and interspersed by max
pooling layers. Two FC layers are concatenated in order to
produce the final features which are fed to a classification
layer. These two networks differ only by the quantity and
dimension of the convolutional layers employed, with a
total number of parameters equal to 138M and 144M
respectively. Despite being among the first developed deep
architectures, with a huge amount of trainable parameters
making them prone to overfitting, VGG models are still
incredibly widespread, thanks to their ease of use for fine-
tuning purposes on different tasks [65], [66].

ResNet is a family of deep models based on the residual
architecture. Differently from the VGG, the ResNet is
made of a series of residual blocks in which the feature
maps calculated by the convolutional layers are added
to the input, so that each residual block calculates an
update (hence residual) of the input feature maps. This
approach makes the network resilient to the vanish gradient
problem [67], improving convergence speed and the final
accuracy result. Moreover, all the ResNet models avoid
the use of the FC layers after the convolutional blocks,
reducing the total number of trainable parameters and thus
lessening the overfitting effect on training data. Authors of
ResNet developed three versions with different number of
layers (18, 50, 152) and with different number of visual
features before the classification step (512 for the former,
2048 for the others). The number of free parameters for
the 18, 50 and 152 layers models are 11M , 23M and 60M
respectively.

In the experiments presented in this work, all the networks
have been fine-tuned on the proposed ROPIS dataset starting
from the ImageNet [68] pre-trained weights. The ResNet18
has been chosen among the others as the default DOES
backbone since it produced the best accuracywhile keeping at
the same time a fast inference speed. Fig. 3 reports the DOES
network with the default ResNet18 backbone.

Two additional FC layers have been added as additional
branches on top of the highest set of visual features in the
backbone network to separately estimate the roll and pitch
angles; for example, in the case of the ResNet models,
this correspond to the global average pooling layer. Some
different estimation procedures have been experimented,
as the one described in [69]: it proposes to map the float angle
value to a set of fixed bins, which then undergo a standard
classification procedure with a final mapping back to the
float value. However, in this work it has been experimentally
found that this approach adds a layer of complexity without
increasing the overall performances; this led to the decision
to add a FC layer for each angle, which is able to accomplish
the regression task with a good accuracy. Both the backbone
network and the additional FC layers are jointly trained by
back-propagation with the use of a standard Mean Square
Error Loss (squared L2 norm). Two separated losses are
calculated for each of the two angles as reported in (1) for
roll (Lroll) and (2) for pitch (Lpitch), where y and ŷ are the
GT and predicted values respectively. The final loss Lfinal
is then obtained as a simple addition of the aforementioned
quantities, as shown in (3). The GT roll and pitch values have
undergone a prior normalization process, which subtracts to
each of them the mean and divides by the variance, both
calculated over the entire dataset.

Lroll(yroll, ŷroll) =
1
n

n∑
i=1

(yroll − ŷiroll)
2 (1)

Lpitch(ypitch, ŷpitch) =
1
n

n∑
i=1

(ypitch − ŷipitch)
2 (2)

Lfinal = Lroll(yroll, ŷroll)+ Lpitch(ypitch, ŷpitch)

(3)

IV. ROPIS DATA ACQUISITION PROCESS
The lack of datasets designed for DL-based orientation
estimation at sea lead to the necessity of searching for
methods to acquire a set of data for the scope. In the following
section, the development of the Android application and the
obtained ROPIS dataset will be described in detail.

A. DEVICE INTERNAL SENSORS AND CHARACTERISTICS
In order to train the model, the dataset needs to contain a large
amount of images showing the horizon and the corresponding
GT data in terms of roll and pitch angles. The latter needs
to be given with the best possible accuracy, as the learning
process results will depend on it, which is strictly related to
the instrumentation employed for the acquisition. With the
aim of producing a low-cost and flexible solution, in this work
the authors avoided the use of costly, high-end IMU devices
and developed the FrameWOAndroid application to acquire
the dataset through a common smartphone. The presented
ROPIS dataset in its first release has been totally collected
through a OnePlus Nord smartphone, equipped with the most
common sensors (Table 1) and characterized by an average
price.
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FIGURE 3. DOES architecture with default ResNet18 backbone network.

TABLE 1. OnePlus Nord smartphone general specifics [72].

TheOnePlus Nordmounts a BMI260 IMU, which contains
a 16-bit tri-axial gyroscope (G) and accelerometer (A) pro-
viding fast, precise inertial sensing in smartphones and
Human-Machine Interface (HMI) applications (i.e., advanced
gesture, activity and context recognition, etc.). The IMU is
characterized by a noise density of 160µg/

√
Hz (A) and

0.008 dps/
√
Hz (G), a Zero-g/Zero-rate offset of ±20 mg

(A) and ±0.5 dps (G) and an output data rate up to 1.6 kHz
(A) and 6.4 kHz (G). Moreover, it mounts the industry’s first
self-calibrating gyroscope with motionless Component Re-
Trimming (CRT) functionality, which compensates MEMS
typical soldering drifts, ensuring post-soldering sensitivity
errors down to ±0.4% [70].

The MMC5603 is a monolithic complete 3-axis
Anisotropic Magnetoresistance Effect (AMR) magnetic
sensor. It has an on-chip automatic degaussing with built-in
SET/RESET function which eliminates the thermal variation-
induced offset error and clears the residual magnetization
deriving from strong external fields. Its true frequency
response is up to 1KHz and can measure magnetic fields
in a range of ±30Gauss (G) with 2mG total Root Mean
Square (RMS) noise level, enabling heading accuracy of
±1deg in electronic compass applications [71].
The Sony IMX586 stacked CMOS image sensor is

mounted as the main camera of the OnePlus Nord, and
features 48 effective megapixels with an ultra-compact pixel
size of 0.8µm. The sensor uses the Quad Bayer color
filter array, where adjacent 2 × 2 pixels come in the same
color, making high-sensitivity shooting possible. During low
light shooting, the signals from the four adjacent pixels are
added, raising the sensitivity to a level equivalent to that of
1.6µm pixels (12 megapixels), resulting in bright, low noise
images [73].

B. FrameWO APPLICATION DEVELOPMENT
The FrameWO app has been developed in a free Open
Source environment, the B4X suite [74], which supports
the majority of PC, smartphones and embedding operating
systems (e.g., Android, iOS, Windows, MacOS, Linux,
Arduino, RaspberryPI) and uses a modern version of Visual
Basic as programming language. The Android version (B4A)
allows to wrap existing Java code as an external library and
then to reference it from the B4A IDE, obtaining in release
mode performances similar to those of Java. The size of a
simple app is generally around 100 KB.

As previously mentioned, the necessary prerequisite for
the dataset to meet the scope of this study is to associate
to each frame the corresponding GT; however, the images
size is much more larger than that of the IMU data, thus
introducing a delay in their storage which affected their
simultaneity. For this reason, the app captures the frames in
YUV format (allowing for a better compression of the image)
and converts them in JPEG only at the end of the process;
this also avoids to run out of memory during the acquisition.
A detailed overview on the YUVmodel can be found in [75].
Furthermore, several tests have been performed to determine
an acquisition frequency value suitable for both the high-rate
IMU data and the low-rate camera frames: the application
offers in fact the possibility to set the camera acquisition
frequency in msec to choose the best option for the needs.
As regards the GT, the API of Android [62] has been used

to work on the raw measures read by the sensors and to
obtain the Euler angles of interest. The getRotationMatrix
function allows for a coordinate systems transformation
(from the device to the world one in this case) and takes as
input the gravity and geomagnetic field in vector form to
compute the inclination matrix I and the rotation matrix R.
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FIGURE 4. ROPIS dataset samples. Fig. 4a to 4e belong to the training set, Fig. 4f to the test set.

By definition, I is the rotation around the X axis which
converts the geomagnetic vector into the gravity coordinate
space, whereas R defines the identity matrix of the device
aligned with the same world coordinate system: in this
setting, the device faces the sky with the X axis pointing
the East and the Y axis the North Pole (see (4), where g
is the magnitude of gravity and m is the magnitude of the
geomagnetic field).[

0 0 g
]
= R ∗ gravity[

0 m 0
]
= I ∗ R ∗ geomagneticfield (4)

In order to isolate the gravity vector, a discrete-time low-
pass filter with a smoothing factor α = 0.2 has been
applied to the accelerometer measurements. The Euler angles
are recovered through the getOrientation function, which
calculates them from the elements of the rotation matrix
R [62], [76].

The measurements are updated at the fastest rate provided
by the Android API, which is in the order of fewmilliseconds.
The time sampling has been set equal to 100msec, that
means that 10 times in a second the device simultaneously
registers the orientation and the corresponding image. As a
final result, data are saved in a directory named with the date
and time of the specific acquisition, which is further renamed
to specify the scenario characteristics of the moment. This
directory contains all the frames, saved as n_YYYY-MM-
DD_HHMMSS.jpg, and a data.txt file which lists the frame
name, its index n, and the related GT.

C. DATASET STRUCTURE
The ROPIS dataset in its first release has been mainly
acquired in Italy, in the cities of Gaeta (Lazio) and Racale
(Puglia). It consists of 22173 sRGB TrueColor JPEG images,
with resolution set to 2592 × 1168, for a total dimension
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FIGURE 5. Detailed DOES workflow, showing the data acquisition and the train/test phases.

of 42.3 GB. Six different subsets have been acquired in as
many locations, each presenting different characteristics in
terms of scenarios and meteo-marine conditions; five of them
have been chosen for the training set, from which a total of
100 frames has been separated for the validation set, and
the last acquisition has been used as test set. The use of
a dedicated test set with images coming from a separate
location allows to verify the ability of DOES to generalize
to new, different scenes with respect to the training and
validation set. More in the specific, in each place eight
different acquisitions have been made trying to simulate the
behaviour of a ship in navigation in both static and dynamic
conditions: this aims at emulating the induced oscillations
which resemble the true motion of the ship. To improve
the generalization ability of the model, the data have been
acquired at different day times and with sunny and cloudy
sky; Fig. 4 shows different samples of the ROPIS dataset.
Some aspects of these data need to be highlighted:
• The point of view of the ROPIS images presents some
differences with respect to the acquisitions taken on
board the ship, since it adds parts of the land in the image
foreground, such as sand, rocks, etc. However, this does
not affect the learning procedure as the DL networks
are able to recognize useful and useless image features,
discarding the latter.

• A frame representing the real view from a navigating
vehicle should depict some elements in the scene, such
as the bow structures and some part of the bridge floor
from a ship, or some of the USV sections. Although
these specific features do not appear in ROPIS, DOES
demonstrated its robustness to similar images cluttering
present in the frames. Further experiments will be made
to precisely assess their impact on the learning process.

• The data acquisition has been made with the camera at
a roughly fixed height of 1.5m with slight oscillations
around this value: this considers, among the different
vehicle movements, also the linear vertical -up/down-
motion along the z axis (heave), corresponding to the
smartphone x axis. It should be remarked that the pitch
estimation is strictly related to the horizon height and
thus to the camera axis and view; for this reason, the
horizon line should be obviously always visible in the
frame.

Fig. 5 shows the workflow of DOES in its three main
phases: the data acquisition, the training with its specific data
augmentation process and the test which finally allows to
calculate the evaluation metrics.

The ROPIS dataset is intended to be further enhanced.
The use of other low-cost cameras (to take into account the
differences in the camera parameters and lens distortion) and
the setting of a range of different camera height values aim
at considering their impact on the training phase. Moreover,
the acquisitions will be made in different scenarios, which
will include adverse meteo-marine conditions and locations
as ships bridge and USV platforms. The heterogeneity of the
data fed to the network will enhance the model capability
to generalize over more complex data and realistic settings,
making it invariant to these parameters.

V. EXPERIMENTAL SETUP
In this section some details on the training process will
be given, together with a brief overview of the evaluation
metrics used to appraise the performance of DOES. Finally,
the problem related to the comparison of DOES with other
methods will be discussed.
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A. TRAINING DETAILS
DOES has been developed in Python programming language
using the Pytorch framework; the code is publicly available.1

DOES has been trained using a standard fine-tuning proce-
dure: the backbone convolutional kernels were pre-trained on
ImageNet while the additional FC layers have been initialized
with random values drawn upon Pytorch default uniform
distribution. Both convolutional and FC layers have been
trained using the Adam optimizer [77] and a fixed learning
rate set to 0.001. DOES has been trained on the ROPIS
training set for a total of 10 epochs: it has in fact been noticed
that a larger number of epochs led to an increase of the
overfitting without any improvement of the accuracy.

The images have been squared to a preliminary
2592 × 2592 resolution by the application of a zero-
padding; this operation adds black bands to the smallest
dimension to obtain a squared input whilst preventing the
loss of information. The images have then been resized to
a final resolution of 224 × 224; a zero mean-unit variance
normalization has been applied to both the images and the
GT sets, with the correspondingmean and variance calculated
over the specific training data.

The data augmentation process consisted of random
changes in the colours of the images, using the ColorJitter
transformation function of Pytorch which allows to set
different values of brightness, contrast, saturation and hue:
this resulted in an increase of the training dataset which
further enhanced the generalization abilities of DOES.
No random cropping nor image flipping have been applied
during this process: in fact, the former would have caused
the neglecting of the relative sea height information given by
the images whereas the latter could have changed the correct
roll angle perception of the network. The data augmentation
procedure has naturally been deactivated during the testing
phase, whereas the zero-padding and resize processes have
been applied also to the test images; furthermore, the
predicted roll and pitch values have been de-normalized
before calculating the evaluation metrics presented in the
following paragraph V-B. The selected data augmentation
values (brightness and hue equal to 0.5, contrast and
saturation equal to 5), as well as all the other training hyper-
parameters, have been tuned on the validation set.

B. EVALUATION METRICS
DOES has been evaluated on the basis of the regression met-
rics implemented by the Scikit library in the sklearn.metrics
module, which contains the most common utility functions to
measure the regression performance.

The Mean Absolute Error (MAE) computes a risk metric
corresponding to the expected value of the absolute error (5);
it is the average absolute difference between the predicted and
the true value, expressed in the same scale as the data being
measured. Each error contributes to MAE in proportion to its

1https://github.com/fabidicia/does

absolute value.

MAE(y, ŷ) =
1
n

n−1∑
i=0

|yi − ŷi| (5)

The Root Mean Square Error (RMSE) represents the
square root of the second sample moment of the differences
between predicted values and the observed values (or the
quadratic mean of these differences, also called residuals).
It is a measure of accuracy and it is sensitive to outliers (6).
In fact, since the errors are squared before they are averaged,
the RMSE gives a relatively high weight to large errors,
making it more useful when large errors are particularly
undesirable. RMSE does not necessarily increase with the
variance of the errors, growing instead with the variance of
the frequency distribution of error magnitudes.

RMSE(y, ŷ) =
1
n

√√√√n−1∑
i=0

(yi − ŷi)2 (6)

The Standard Deviation (STD) is a measure of the amount
of dispersion (or variation) of the samples. A low standard
deviation indicates that the values tend to be close to the mean
µ (also called the expected value) of the set, whereas a high
standard deviation indicates that the values are spread out
over a wider range (7).

σ (ŷ) =

√√√√1
n

n∑
i=1

(yi − µ)2 (7)

Finally, the Median Absolute Error (MedAE) is calculated
by taking the median of all the absolute differences between
the GT and the prediction (8). It is a non-negative floating
point with best value of 0.0, robust to outliers since the
median is not affected by values at the tails.

MedAE(y, ŷ) = median(|yi − ŷi|, . . . , |yn − ŷn| (8)

C. METHODOLOGY COMPARISON
The comparison between DOES and other state of the art
methods turned out to be a non trivial task for several
reasons; among the others, the Deep Learning based solutions
currently developed for the estimation of roll and pitch
are either released without source code (as for example
in [35]) or employed for very different tasks (e.g., head pose
estimation [69]), thus making the comparison not properly
correct or practically impossible. Generally speaking, tradi-
tional Horizon Line Detection (HLD) algorithms can be used
as a proxy for this kind of estimations; the roll and pitch
angles can in fact be correlated to the slope and position
of the horizon line. However, as previously mentioned, this
would require the correct knowledge of the intrinsic and
extrinsic camera parameters and of the transformation matrix
between the camera and the smartphone reference systems.
To address this problem, a Linear Least Squares method has
been applied to calibrate the HLD algorithms on the basis
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FIGURE 6. Graphical distribution of the errors for the estimation of the roll angle.

of the minimization of the squared error calculated between
their output predictions and the GT values.

Two of the most renowned HLD algorithms by the
scientific community have been selected to perform this
comparison and are briefly described in the following lines.

The Otsu method [78] is a popular technique used to
threshold the image between sky and non-sky regions. It is
a reasonable fast and simple algorithm which performs
fairly well on heterogeneous sets of data. The thresh-
old value T is automatically computed by the algorithm
through the assumption that the grayscale histogram of the
image pixels intensities is bi-modal; the threshold is set
so that the distance between the two histogram peaks is
maximized.

Ettinger et al. [79] is a computer vision-based HLD
algorithm that performs exhaustive search in the 2D line
parameters space over the whole image looking at the best
values which separate sky from terrain. However, being a
slow algorithm on high resolution images, a modified version
has been implemented that uses a two-stage objective: the
global one searches for a narrow range of combinations of
the pitch and roll horizon line angles corresponding to a
half-plane that likely subdivides the sky from the rest of the
image. The local one aims at searching exhaustively through
these combinations to find the half-plane that maximizes the
difference (in average intensity) of the two half-planes in
their immediate vicinity. This method assumes that the sky
pixels have higher intensity values than the ground pixels
(higher mean), and that the sky has higher consistency of
representation (lower variance).

VI. RESULTS AND DISCUSSION
This section contains an assessment of the results provided
by DOES. Table 2 shows DOES performances with respect
to the selected horizon line detection algorithms. DOES is
able to achieve sensible better results both on roll and pitch

TABLE 2. DOES performances compared to those of the two HLD
methods.

angles, with a Mean Absolute Error close to 1.5◦, as opposed
to the other methods which exhibit worse performance on all
the indicators.

The MAE and the RMSE can be used together to diagnose
the variation in the errors in a set of predictions. The RMSE
is generally higher than the MAE, and the greater is the
difference between them, the greater will be the variance
in the individual errors of the samples; moreover, if the
RMSE is close to the MAE, then all the errors are of the
same magnitude. In the case of the current comparison,
the small gap between RMSE and MAE demonstrates the
ability of DOES to produce fewer outliers than Otsu and
Ettinger. In addition, the STD values of the three methods
show that the results obtained by DOES are significantly
more clustered than the others, meaning that they are closer to
the mean value and as such can be considered more reliable.
The good performances of DOES are further confirmed
by the MedAE value, which is sensibly lower than the
counterparts. These findings can be summarized in Fig. 6,
which shows the MAE behaviour analysing the outputs
percentage belonging to different MAE intervals (Fig. 6a)
together with the empirical cumulative distribution (Fig. 6b)
for the roll angle. The same evaluation can be made for the
pitch angle (Fig. 7), which exhibits similar performances to
the roll angle. Another important consideration related to this
comparison regards the inference time of DOES; the average
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FIGURE 7. Graphical distribution of the errors for the estimation of the pitch angle.

TABLE 3. Comparative results on different DOES backbones. TP indicates the number of trainable parameters.

estimation time on a single image is 100-150msec with any
of the tested backbones, whereas Otsu and Ettinger inference
time is comprised between 100 and 11000 msec, making
them unsuitable for real-time applications on high-resolution
images.

Table 3 shows a detailed comparison between DOES with
its default proposed network and some alternative backbones:
DOES is able to produce good performances with all the
residual networks, whereas both VGG-19 and VGG-19bn
struggle to produce reasonable results. More in detail, the
MAE and RMSE results of ResNet18 are slightly better
then the 50- and 152-layers versions, with the powerful
DenseNet161 model able to produce a similar accuracy
only on the roll angle. The performing results obtained
by the ResNet18, together with the fastest training and
inference speed (due to the smaller number of trainable
parameters TP with respect to the other architectures), make
ResNet18 the first choice for the deployment of DOES as
long as new models specifically developed for the scope
will be released. Future work will focus on the use of
lighter architectures developed for the specific use on low-
resources embedded hardware (e.g., MobileNet, [80]); this
will lay the foundation for the deployment of the proposed
model on embedded devices (e.g., Nvidia Jetson, [81]) in
real-time scenarios, in accordance with the aim of making
DOES a supportive smart technology to improve the attitude
estimations provided by low-cost sensors.

Furthermore, the ROPIS dataset has been used for an
additional test in which a 1.33x zoom has been applied to
the frames to simulate different camera parameters. In some
cases, this corresponded to a crop in the image which
removed the horizon line, thus making DOES unable to
correctly estimate the angles. This reflects in a slight decrease
of the performances: the roll MAE is equal to 2.10◦, with
a RMSE of 2.81◦, whereas the pitch angle exhibits a 2.02◦

MAE and a 2.90◦ RMSE.
Finally, a separated test (with no prior training or specific

tuning) has beenmade on a set of 191 images presenting three
main variations with respect to the ROPIS train and test data:
• The device: a smartphone Huawei P9 [82] has been
used, with the FrameWO App, to collect the data.
The mounted dual-lens Leica camera has different
characteristics with respect to the OnePlus Nord Sony
camera: the P9 Leica 12 MP has in fact an aperture size
of f /2.2, a focal length of 27mm (wide), a sensor size of
1/2.9′′ and a pixel size of 1.25µm.

• The location: the acquisition has beenmade in a different
area of the Racale city (LE).

• The environment setting: the data have been collected
rightly after the sunset, in a low-light condition which
highly reduced the contrast in the frame, resulting in a
very challenging scenario.

Despite these substantial changes in the sensor and in
the overall acquisition, DOES obtained remarkable results,
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FIGURE 8. A frame from the low-light condition separated set.

performing a 2.17◦ MAE and a 2.70◦ RMSE for the
roll angle and a 2.22◦ MAE and a 2.71◦ RMSE for the
pitch angle. This demonstrates that DOES can successfully
generalize over various conditions and camera parameters,
confirming its potential for more challenging settings and
further employment as inertial systems support and visual-
based odometry tasks.

It is worth mentioning that the accuracy of the results is
proportioned to the precision of the GT data and thus of
the systems employed to acquire it. In this case, the overall
accuracy is strictly connected to the use of a smartphone
AHRS which, although being limited to the low-cost sensors
mounted on it, is still able to provide reliable and accurate
measurements. The use of high-end and more expensive
devices would in fact ensure a higher grade of GT accuracy
with consequent improvements in the DOES performances.

VII. CONCLUSION
This paper presents a novel Deep Learning-based approach
to the attitude estimation problem, which has been developed
and intensively tested on a new dataset (the ROPIS dataset)
specifically built for the scope and released in the context of
this work. Deep Orientation (of roll and pitch) Estimation
at Sea (DOES) is able to predict the attitude of the device
in terms of roll and pitch angles by analysing the frames
recorded by the camera pointing towards the sea horizon.
DOES has been tested using several known architectures
(e.g., ResNet152, ResNet18, VGG19) and with different
configurations and hyper-parameters, obtaining excellent
results. Unlike other visual-based methods, DOES is able
to produce the output without the explicit knowledge of the
camera intrinsic and extrinsic parameters or the distortions
introduced by the camera lens. There is in fact no necessity
to make any assumption on the use of specific models
to parametrize the camera, since the model training only
depends on the dataset given as input; the latter generally
provides different sampling characteristics, thus making the
network able to learn and then estimate the attitude regardless
of the camera specifics.

The ROPIS dataset has been created for this particular task
and is here presented in its first release; the lack of public

datasets suitable for DL applications made it necessary to
search for a valid alternative for the experiments conduction.
For this reason, the FrameWO Android application has
been developed using the Open Source B4A platform and
will be made publicly available online. This app allows to
simultaneously acquire the frames to be fed to the model
as input, and the attitude estimations measured through the
internal sensors of the smartphone, which will be used as
Ground Truth in the training/testing phases.

ROPIS dataset is intended to be further improved by the
introduction of more subsets of data collected in different
scenarios (i.e., during the dusk/dawn, rainy days, etc) and
environments (e.g., different cities coastlines, onboard of
a vessels), using different acquisition devices. This will
improve the DOES ability to generalize over heterogeneous
data, making it even more invariant to the camera configu-
rations, the acquisition condition and cluttering factors, thus
providing better results in any kind of situation in which the
vehicle will be navigating. In this regard, the authors wish
to encourage the users to download and test the FrameWO
application with the aim of enhancing the ROPIS and its
usage among the scientific community, to give a concrete
contribution to this task.

The objective of this project is to develop a supportive
technology to be integrated to the existing low-cost method-
ologies employed for the attitude estimation task. In fact,
it has to be noticed that this approach has been specifically
designed using affordable devices and applications and,
as such, its results are not intended (at least in its preliminary
version) to reach the accuracy provided by high-precision
modern sensors. Further experiments will be made to test
other light-weight DL architectures, which could be deployed
on low-resources embedded hardware with the aim of
providing better accuracy results in real-time applications on
autonomous vehicles. These enhancements will make DOES
a robust system to be integrated in visual and visual-inertial
odometry methodologies.
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