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ABSTRACT This paper aims at providing a framework suitable for justification of classical convolution
integral and Fourier transform in many cases not covered by the usual definition of integral used for signal
theory applications. Generalized functions approach from functional analysis is used, simplifying it to be
approachable for engineers while retaining the rigor. The generalized functions approach results in an elegant
and applicable definition of integral known before in the mathematical literature which is readily applicable
in signal theory, justifying formulae usually seen as dubious and criticised for lack of rigor. The study offers
a rigorous, simple and understandable definition of integral for use in analog signal theory, helping the
formalization of engineering education by means of rigor. Main advantage of this approach is retaining the
classical notation used in signal theory as well as its straightforward justification of key formulae in signal
theory resulting from convolution and/or Fourier transform.

INDEX TERMS Analog signal theory, functional analysis, Schwartz distribution, generalized integral,
convolution, Fourier transform.

I. INTRODUCTION
The convolution integral and the Fourier transform are the
most frequently used tools in the linear system analysis in
time and frequency domain respectively [1]. Introduced early
in engineering education, these tools are usually explained
using notions from ordinary calculus. In such simplified inter-
pretation, leaps of faith sometimes replace rigorous inter-
pretations of intermediate steps in the process of integral
evaluation.

Recognizing this inconsistency, in this paper we formulate
a framework based on generalized functions approach from
functional analysis, which we then use to justify the classical
convolution and Fourier transform formulae. Once the frame-
work is in place, the usual notation of signal theory stays in
place, but with an expanded, rigorous meaning attached to it.
The extension to generalized functions, as we will see, is nec-
essary for many of the common properties of convolution and
Fourier transform to hold.

As noted earlier, elementary calculus definitions of these
tools can have limited applicability, However, in cases that
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often arise in theoretical considerations, such definitions
cannot be applied without certain special precautions. For
example, the classical definition of the convolution of two
functions f (t) and g(t) is usually given by the formula

f (t) ∗ g(t) =
∫
∞

−∞

f (u)g(t − u)du (1)

The ordinary calculus proposes that the integral in (1)
should be interpreted in Lebesgue sense, as it is probably
the most consistent interpretation of integrals with infinite
bounds. However, many important cases cannot be inter-
preted in this way [2]. For example, it is usually claimed that

sinω1t ∗ sinω2t = 0 for ω1 6= ω2 (2)

This result is usually derived using the Fourier transform and
the Convolution theorem, and it has an obvious physical inter-
pretation (the steady state response of an oscillatory linear
systemwith natural frequencyω1 to a harmonic stimulus with
frequency ω2 6= ω1 is zero). However, this result cannot be
derived from (1), because the integral in (1) diverges (in any
sense known from the classic calculus) when f (t) = sinω1t
and g(t) = sinω2t . Moreover, the derivation based on the
Fourier transform and the Convolution theorem as usually
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presented in engineering literature is not rigorous, because
the Fourier transform of sin ωt involves singular objects like
δ-function that cannot be treated rigorously in the framework
of the ordinary calculus.

Another important case when (1) cannot be applied directly
is one when either f (t) or g(t), or both, contain nonintegrable
singularities. For example, the well known Hilbert transform
which is defined by

f̂ (t) = H{f (t)} = f (t) ∗
1
π t

(3)

requires that the integral in (1) should be interpreted in a non-
usual way, as a Cauchy principal value of a divergent integral
in respect to nonintegrable singularity:

f̂ (t) = H{f (t)} =
1
π

v.p.
∫
∞

−∞

f (u)
t − u

du

=
1
π

lim
ε→0+

∫
|t−u|>ε

f (u)
t − u

du (4)

Similar situation is encountered in more general versions
of this convolution integral as well [3].

Another problematic (and very common in engineering
practice) exemplary case are integrals of f (t)tα w.r.t. t and
f (u)(t−u)α w.r.t. uwith a real parameter α ≤ −1. These have
non-integrable singularities for t = 0 and t = u, respectively;
the classical interpretation would demand their regularization
via Hadamard’s partie finie.

The classic formula for the convolution used with vari-
ous singular objects is also inexhaustible source for various
suspicious formulae usually seen in engineering literature.
For example, if a fact that δ(t) is the unit element for the
convolution is accepted, then relation δ(t) ∗ δ(t) = δ(t)
together with definition (1) gives∫

∞

−∞

δ(u)δ(t − u)du = δ(t) (5)

After a simple formal change of variables, (5) can be
written as ∫

∞

−∞

δ(t − a)δ(t − b)dt = δ(a− b) (6)

Both (5) and (6) cannot be interpreted classically, because
the result of the standard integration cannot be a singular
object like Dirac δ function. They cannot even be interpreted
as generalized inner product of a Schwartzian distribution and
an ordinary function, which is well known from the functional
analysis, because (5) and (6) involves product of two singu-
lar objects. Additionally, such inner product also produces
non-singular objects as the result. Formula (6) is sometimes
used as an example of inconsistency of usual engineering
formulae. However, in this paper, it will be shown that even
(6)may be interpreted quite rigorously and consistently, using
a proper definition of the integral.

The rigorousness of classic engineering definitions of the
Fourier and the inverse Fourier transform which are given by

formulae

F(ω) = F{f (t)} =
∫
∞

−∞

f (t)e−iωtdt (7)

f (t) = F−1{F(ω)} =
1
2π

∫
∞

−∞

F(ω)eiωtdω (8)

is even more dubious. There are a lot of important cases in
which integrals in (7) and (8) diverge and it is not uncom-
mon to meet them in practice [4]. For example, almost all
textbooks dedicated to the linear systems theory claim that
F{1} = 2πδ(ω) and F{sgn t} = 2/iω. Indeed, it is quite
easy to derive these relations indirectly. However, if someone
tries to derive these relations directly from (4), it will be
possible only if it is possible to somehow justify the following
relations: ∫

∞

0
cosωtdt = πδ(ω) (9)∫
∞

0
sinωtdt =

1
ω

(10)

Of course, both integrals in (9) and (10) are divergent
in any usual sense. Moreover, there is no chance that any
classic interpretation of the integration can produce a singular
object like δ(ω) from a regular function like cosωt . That
is why various different methods were introduced to justify
steps involving divergent integrals in the process of Fourier
transform determination, but they again rely on complex
mathematical apparatus [5].

In this introduction, some basic problems that arise from
the usual interpretation of the definitions of the convolution
and the Fourier transform are presented. A lot of other exam-
ples may be found in [6]–[8]. Before presenting the key points
of this paper, some basic facts from a highly advanced branch
of mathematics known as functional analysis related to these
problems will be recalled.

II. IMPORTANT FACTS FROM THE THEORY
OF DISTRIBUTIONS
The functional analysis is considered as a very abstract and
quite difficult branch of advanced mathematics, which can
be used for rigorous treatment of many objects that arise in
the linear systems theory. Theory of distributions, as a sub-
branch of the functional analysis, may be especially useful in
this field. Unfortunately, the functional analysis has its own
terminology, language and abstract operator based notation,
which is completely different from the usual engineering
notation, and even quite confusing for any non expert in
functional analysis [9], [10]. Therefore, any results based
on such notation are completely incomprehensible for an
average engineer. However, in this paper, we will show that
many engineering formulae which are usually considered
‘‘suspicious’’ and non-rigorous from the mathematical point
of view, may be interpreted completely rigorously without
introduction of any new notation, assuming different inter-
pretation of integrals that arise in these formulae. Before this,
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we need to present some basic facts from the functional anal-
ysis about the distributions, the convolution and the Fourier
transform. This presentation is maybe somewhat simplified
from the pure mathematical point of view, to be comprehen-
sible to non-experts in functional analysis, although it is still
perfectly correct and rigorous.

It is known from functional analysis that the Schwartzian
distribution T on Rn is a functional (operator) that assigns
a numeric value T [φ] to each infinitely smooth function
φ(x) which is identically equal to zero outside of a compact
subset of Rn (such functions are called test functions) [6],
[9]–[11]. For example, well-known Dirac δ function is in fact
a distribution on R that assigns to each test function φ(t)
on R a value δ[φ] = φ(0). If we want to be as rigorous as
possible, it is additionally requested that T as an operator
must be continuous with respect to appropriately constructed
topology. More precisely, here the continuity of T means that
if a sequence of test functions φn(x) is identically equal to
zero out of a fixed compact subset ofRn, and if φn(x) together
with its partial derivatives of any order converges uniformly to
φ(x) and according partial derivatives of φ(x), then T [φn] also
converges to T [φ] [6], [9], [10]. The space of test functions on
Rn is called D(Rn), and the space of associated distributions
on Rn (its topological dual space) is called D∗(Rn).

Any ordinary locally integrable function f (x), x ∈ Rn

may be regarded as a special case of distribution (such dis-
tributions are called regular distributions), using the ad hoc
definition

f [φ] = 〈f (x), φ(x)〉 =
∫
Rn
f (x)φ(x)dx (11)

where 〈f (x), φ(x)〉 is the usual inner (scalar) product of two
functions. Accordingly, it is possible to define a generalized
inner product using the relation

〈T (x), φ(x)〉 = T [φ] (12)

even in singular cases, i.e. in cases when T cannot be inter-
preted as an ordinary locally integrable function. For exam-
ple, we can take that 〈δ(t), φ(t)〉 = φ(0), which is, in fact,
nothing else but a more rigorous form of the well known
formula ∫

∞

−∞

δ(t)φ(t)dt = φ(0) (13)

although we will see that under the correct interpretation of
the integral, (13) can be quite rigorous as well. Note that T (x)
must be regarded as a purely symbolic object, not a function
of the argument x from Rn (regardless of the notation). That
is why the letter x, which arises in the formal expression T (x),
is called a formal argument of T .
Another important concept that should be introduced here

is the outer or tensor product of distributions. Assuming that
T1 and T2 are distributions on Rn and Rm respectively, their
tensor product T1T2 is the distribution onRn+m defined using
the relation

〈T1T2(x, y), φ(x, y)〉 = 〈T1(x), 〈T2(y), φ(x, y)〉〉 (14)

where x ∈ Rn and y ∈ Rm. Here, x in the inner expression
should be interpreted as a fixed parameter, so the result of the
inner expression 〈T2(y), φ(x, y)〉 is, in fact, a function of x.
The resulting tensor product T1T2(x, y) is usually formally
written as T1(x)T2(y), like an ordinary product. Note that
in this notation, distributions T1 and T2 are written using
different names of formal arguments.

For the correct interpretation of formulae that arise in
signal theory and other branches of applied mathematics,
we must define the meaning of the expression T (Ax + b)
where T is a distribution on Rn, A is a nonsingular n × n
matrix, and b is an n-dimensional vector. By the definition,
T (Ax + b) is again a distribution on Rn, whose action on a
test function φ(x) is given using the formula

〈T (Ax + b), φ(x)〉 =
1

| detA|
〈T (x), φ(A−1(x − b))〉 (15)

This formula (so-called linear change of the formal argu-
ments) is inspired by the fact that it reduces to the ordinary
formula for a linear change of variables x → Ax + b in
the integral whenever T is reducible to an ordinary locally
integrable function on Rn.
Now, we need to say something about the correct interpre-

tation of the expressions like δ(t−u). It is important to say that
this expression has two completely different interpretations
depending on whether only t is regarded as a variable and u
is regarded as a fixed parameter, or both t and u are regarded
as variables. When only t is regarded as a variable, δ(t − u)
should be interpreted as a distribution on R which is derived
from the distribution δ(t) using the linear change t → t − u.
More specifically, (15) for such case gives

〈δ(t − u, φ(t))〉 = φ(u) (16)

From the other side, when both t and u are regarded as vari-
ables, δ(t−u) must be somehow interpreted as the distribution
on R2, i. e. the distribution that acts on the test functions
δ(t, u) on R2. There exist many different ways how such
distribution may be introduced [5], but fortunately, all of
them lead to the same expression. Here will be presented a
way based only on the tensor product and the linear change
of the formal arguments. We will start from the distribution
δ(t)1(u) on R2 that is the tensor product of the distribution
δ(t) and the distribution 1(u), which is nothing more than
distributional interpretation of the constant function 1(u) ≡ 1.
More concretely, we have

〈δ(t)1(u), φ(t, u)〉 = 〈δ(t), 〈1(u), φ(t, u)〉〉

=

〈
δ(t),

∫
∞

−∞

φ(t, u)du
〉
=

∫
∞

−∞

φ(0, u)du

(17)

The distribution δ(t)1(u) may be regarded as the distribu-
tion δ(t) lifted up from R to R2. Now, to define δ(t − u) as
a distribution on R2, we should introduce the linear change
(t, u) → (t, t − u) into δ(t)1(u). The resulting distribution
will be, in fact, δ(t − u)1(u), but it is equivalent to δ(t − u),
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as 1(u) is practically a constant in the world of distributions.
Using (15), the described procedure gives

〈δ(t − u), φ(t, u)〉 = 〈δ(t)1(u), , φ(u, u− t)〉

= 〈δ(t), 〈1(u), φ(u, u− t)〉〉

=

〈
δ(t),

∫
∞

−∞

φ(u, u− t)du
〉

=

∫
∞

−∞

φ(u, u)du=
1
√
2

∫
u=v

φ(u, v)ds

(18)

The last result is expressed using the line integral,
to emphasize the physical nature of the distribution δ(t − u).
Namely, when u is a constant parameter, δ(t−u) represents a
point mass concentrated at the point t = u on the t line. On the
contrary, when both t and u are variables, δ(t − u) represents
the line mass distributed uniformly along the line t = u in the
t − u plane.

III. TREATMENT OF THE CONVOLUTION AND
THE FOURIER TRANSFORM IN THE
FUNCTIONAL ANALYSIS
The functional analysis may be also used for rigorous def-
inition of the convolution. However, it is extremely hard
to give a good definition of the convolution, and there
exists no definition of it that is applicable in all cases.
That is why the literature is full of partial or even incor-
rect definitions. Two most general definitions are the def-
inition given by L. Schwartz [11] and the definition given
by V. S. Vladimirov [6]. Both definitions rely on the tensor
product of distributions. The definition given by Schwartz is
as follows:
Definition 1 (Convolution by Schwartz): The convolution

of distributions T1 and T2 on Rn is a distribution T1 ∗ T2 on
Rn given by formula

T1 ∗ T2[φ] = 〈T1(x)T2(y), φ(x + y)〉 (19)

assuming that the outer product T1T2 admits a continuous
extension onto a space of functions of type φ(x + y) (which
are not test functions on R2n, regardless of the fact that φ(x)
is a test function on Rn). If such continuous extension does
not exist, the convolution T1 ∗ T2 does not exist either.
A very similar but not identical definition, as it seems after a
superficial observation, is:

T1 ∗ T2[φ] = 〈T1(x), 〈T2(y), φ(x + y)〉〉 (20)

It is given byW. Rudin [9] and by A. Papoulis [8], although
Rudin wrote this definition in more abstract operator-based
form, and Papoulis wrote it in a less-formal integral like form.
However, this definition, although maybe somewhat simpler,
is even more restrictive than the definition given by Schwartz,
as it requires that the result of the inner product 〈T2(y), φ(x+
y)〉 must be again a test function.

The main problem in the definition given by Schwartz
is the assumption of the existence of a continuous extension of
the outer product T1T2 to a broader space than the space of

test functions. Another definition is given by Vladimirov [6],
which does not rely on such assumption. Vladimirov uses
so called unit sequences. A sequence ηk (x) of test functions
from D(Rn) is a unit sequence on Rn if for any compact set
K ⊂ Rn there exists a numberN = N (K ) such that ηk (x) = 1
for x ∈ K , k ≥ N , and if the functions ηk (x) and all their
partial derivatives of any order are uniformly bounded (i.e.
bounded with constants which do not depend of x). Now, it is
possible to present the definition of convolution in according
to Vladimirov.
Definition 2 (Convolution by Vladimirov): The convolu-

tion of distributions T1 and T2 on Rn is a distribution T1 ∗ T2
on Rn given by formula

T1 ∗ T2[φ] = lim
k→∞
〈T1(x)T2(y), φ(x + y)ηk (x, y)〉 (21)

assuming that the limit on the right side exists for any unit
sequence ηk (x, y) on R2n and that this limit does not depend
on a particular choice of sequence ηk (x, y). If these assump-
tions are not satisfied, then the convolution T1 ∗ T2 does not
exist.

It is proven that definitions of convolution given by
Schwartz and by Vladimirov are equivalent. Note that both
of these definitions of the convolution are extremely indirect,
especially if it is necessary to interpret the convolution as
an ordinary function when such interpretation is possible.
In addition, these definitions are complicated, and quite dif-
ferent than the usual definition (1).

Now, let us check how the Fourier transform is defined
in the functional analysis. We will limit our considerations
to the one-dimensional case, i.e. the functions and distri-
butions on R.The usual definitions (7) and (8) work only
for functions which are absolutely integrable on (−∞,∞),
so many Fourier transform pairs cannot be deduced from
them. Some such examples are given in the introductory
section of the paper. In fact, it is not possible to rigorously
apply (7) even to derive a very common Fourier Transform
pair F{sinc t} = π [u(ω + 1) − u(ω − 1)] where sinc t =
(sin t)/t for t 6= 0 and sinc 0 = 0. Namely, f (t) = sinc t
is not absolutely integrable on (−∞,∞) so the integral in
(7) does not converge properly (it exists only as a Riemann
improper integral). Therefore, functional analysis introduces
various more general definitions of the Fourier transform
that may be applied to more general class of functions, even
for purely symbolic non-function objects like Schwartzian
distributions. Unfortunately, as the generality of such defi-
nitions increases, they become more and more indirect and
unconstructive in nature. One of the most general definitions,
which is applicable to all ordinary functions and Schwartzian
distributions under some assumptions which will be stated
later, defines the Fourier Transform F{T (t)} of the distribu-
tion T (t) on R as another distribution T̂ (ω) which acts as a
functional that assigns to each test function φ(ω) the value
T [F{φ(ω)}], whereF{φ(ω)} is defined in the usual way using
(7). In other words,

T̂ [φ] = F{T }[φ] = T [F{φ}] (22)
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Alternatively, using the notation which uses the generalized
inner product, this definition may be expressed using the
relation

〈T̂ (ω), φ(ω)〉=〈F{T (t)}(ω), φ(ω)〉=〈f (t),F{φ(ω)}(t)〉
(23)

The inverse Fourier transformation is defined analogously,
using the relations

T [φ] = F−1{T̂ }[φ] = T [F−1{φ}] (24)

or

〈T (t), φ(t)〉 = 〈F−1{T̂ (ω)}(t), φ(t)〉
= 〈T̂ (ω),F−1{φ(t)}(ω)〉 (25)

In these definitions, usual definitions of the Fourier and
the inverse Fourier transform are applied on test functions
φ. However, the Fourier transform F{φ} of any test function
is not again a test function. Therefore, definitions (22) and
(24) must be restricted to such distributions which admit a
continuous extension to some broader space than the space
of test functions. It is well known that these definitions are
valid for so-called tempered distributions (i.e. distributions
with a limited rate of growth), which admit an extension to
the space of rapidly decreasing functions, which are similar
to the test functions, but which do not necessary vanish out
of a compact subset of R. Instead, they must tend towards 0
together with all their derivatives more rapidly than a recipro-
cal of any polynomial when |t| → ∞ (for example, as e−|t|).
The space of such functions is called S(R), and the space
of tempered distributions associated to it is called S∗(R).
In general, it is possible to define the Fourier transform even
for all distributions using more complicated formulae. How-
ever, such generalization requires an introduction of more
general objects than the Schwartzian distributions, so called
ultradistributions [12], so this possibility will not be discussed
here.

Definitions based on (22) and (24) may look rather sim-
ple, but this simplicity is just an illusion. In fact, they are
extremely indirect due to their strong dependence of the oper-
ator notation. Moreover, it is almost impossible to apply these
definitions for actual calculation of the Fourier transform, i.e.
to express the Fourier transform of some function using other
common functions (ordinary or Schwartzian distributions),
except in very simple cases. In addition, this definition is quite
different from the common definition of the Fourier transform
used in analog signal theory.

In this section, the basic facts from the functional analysis
about the convolution and the Fourier transform have pre-
sented briefly. It is obvious that presented formulae are quite
different than formulae that are usually used in the linear sys-
tems theory, and probably quite incomprehensible for most
users of this theory. In the next section, it will be shown that
usual definitions of the convolution and the Fourier transform
known from the engineering literature may be regarded as
perfectly valid ones if the interpretation of integrals in these
formulas is changed from the usual interpretation.

IV. GENERALIZED INTEGRAL AND ITS RELATION TO THE
CONVOLUTION AND THE FOURIER TRANSFORM
It is not hard to recognize that the main problem with the
engineering formulae arises from the various non-convergent
integrals, or integrals which are applied to the nonintegrable
objects. Careful examination shows that it is very often pos-
sible to find an interpretation of a divergent integral which
depends of a parameter (like integrals in formulae (9) and
(10)) as a distribution in which this parameter is just a formal
argument. However, it is not easy to find an universal frame-
work for such treatment. In this paper, we will show that the
following definition gives a quite universal and rigorous way
for such interpretation in many different contexts:
Definition 3 (Generalized integral): The generalized inte-

gral of a distribution T (x, y) onRn+m (where both x and y are
formal arguments) in respect to the formal argument x on Rn

is a distribution T0 on Rm given by the formula

T0[φ] = lim
k→∞
〈T (x, y), φ(y)ηk (x, y)〉 (26)

assuming that the limit on the right side exists for any unit
sequence ηk (x, y) onRn+m and that this limit does not depend
on a particular choice of the sequence ηk (x, y). In this case,
it is possible to simply write∫

Rn
T (x, y)dx = T0(y) (27)

In other words, we have〈∫
Rn
T (x, y)dx, φ(y)

〉
= lim

k→∞
〈T (x, y), φ(y)ηk (x, y)〉 (28)

If such assumptions are not valid, then the generalized
integral does not exist.

Sometimes, the result of the generalized integration may
be expressed as an ordinary function, i. e. if exist an ordinary
function such that 〈f (y), φ(y)〉 = T0(y) (in such cases, f (y)
is the result of the integration). Moreover, this definition is
applicable even when m = 0. In such cases, the result of the
integration is an ordinary number, and we can write∫

Rn
T (x)dx = lim

k→∞
〈T (x), ηk (x)〉 (29)

assuming that the limit on the right side exists for any unit
sequence ηk (x) on Rn and that this limit does not depend on
a particular choice of the sequence ηk (x).

The concept of the generalized integral, as given above,
is introduced by Vladimirov [6]. It is probably introduced
to allow more consistent treatment of the convolution, as it
will be shown later that it is quite related to the convolution.
Although it is not a new concept, it is quite uncommon, even
in the mathematical literature. However, it will be shown in
the paper that it is a very useful concept for the rigorous inter-
pretation of the various formulae that arise in the engineering
literature.

It is proven in [6] that the definition of the generalized inte-
gral given above reduces to the classic definition of Lebesgue
integral whenever T (x, y) is an ordinary integrable function in
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respect to variable x (y is interpreted as a parameter), so that
this definition is really a generalization of the classic concept
of the integral. However, this definition gives a meaning to
many integrals which are divergent in usual Lebesgue sense,
or even in a Riemann improper or Cauchy principal value
sense. The next theorem states that this concept gives the
rigorous interpretation of (9) and (10)
Theorem 4: Both formulae (9) and (10) are valid if the

integrals that arise in them are interpreted as generalized
integrals of [cos(ωt)]U (t) and [sin(ωt)]U (t) in respect to t on
qmathbbR, whereU (t) is the Heaviside step function. In other
words, we have ∫

R
cosωtU (t)dt = πδ(ω) (30)∫

R
sinωtU (t)dt =

1
ω

(31)

where both integrals are generalized ones. Additionally, 1/ω
in the second integral should be interpreted as a distribu-
tion using Cauchy principal value, which is a well known
way of its interpretation in the theory of distributions. More
concretely,〈
1
ω
, φ(ω)

〉
= v.p.

∫
∞

−∞

φ(ω)
ω

dω= lim
ε→0+

∫
|t|>ε

φ(ω)
ω

dω (32)

The proof of this theorem is given in the appendix at the
end of the paper. It is interesting that the proof uses the
Fourier transform. This can give a hint that the generalized
integral may somehow be used for the rigorous treatment of
the Fourier transform as well. More about this conclusion will
be presented later in the paper.

Returning to another integration issue raised in the intro-
duction, we can offer a rigorous interpretation of integrat-
ing f (t)tα w.r.t. t and f (u)(t − u)α w.r.t. u. These should
be observed as generalised integrals, where, in case of a
bilateral integral from −∞ to +∞, tα and (t − u)α are
interpreted as Pf tα and Pf (t − u)α , respectively; here, Pf
(pseudofunction) denotes the distributional extension of func-
tions non-integrable in Lebesgue sense. If the integration is
unilateral, from 0 to +∞, the relevant pseudofunctions are
Pf tα+ and Pf (t−u)

α
+, respectively. Alternatively, we can write

Pf tαU (t) and Pf (t−u)αU (t−u), whereU (t) is the Heaviside
step function. The former notation is more common in func-
tional analysis, while the latter is closer to the engineering
community.

The next interesting fact is that the generalized integral can
give rigorous interpretation of the generalized inner product
written in the integral-like form, as stated in the following
theorem:
Theorem 5: Each distribution T from Rn allows the inte-

gral representation

T [φ] = 〈T (x), φ(x)〉 =
∫
Rn
T (x)φ(x)dx (33)

assuming that T (x)φ(x) is interpreted as the product of the
Schwartzian distribution T (x) with the smooth function φ(x)

using the well-known rule from the theory of distributions

〈T (x)φ(x), ψ(x)〉 = 〈T (x), φ(x)ψ(x)〉 (34)

where ψ(x) is an another test function, and assuming that the
integral in the above formula is interpreted as the generalized
integral of the product T (x)φ(x) on Rn in respect to x.
The proof of this theorem is given in the appendix at the

end of the paper. This theorem is enough to give rigorous
interpretation of the engineering formulae like∫

∞

−∞

f (t)δ(t − a)dt = f (a) (35)

assuming that f (t) is an ordinary function and that a is a fixed
parameter (i.e. a constant). The key point is the interpretation
of the integral in the above formula as the generalized inte-
gral. Note that even Schwartz [11] says that (35) is wrong or,
at least, purely formal. Such belief is present even in much
modern approaches to the theory of generalized functions,
as in [12] or [13]. Now, we can see that such belief is not quite
correct. From the other side, in the linear systems theory, it is
usually assumed that (35) is valid even without the assump-
tions stated above, e.g. when a is a variable and/or when f (t)
is not an ordinary function but a distribution. In many cases,
the generalized integral can give rigorous treatment of such
formula as well. For example, the following theorem states
that even (6) is valid under very relaxed conditions:
Theorem 6: Taking the concept of the generalized integral

into the consideration, the formula (6) may be regarded as
completely valid assuming that at least one of the quantities a
and b is not treated as a constant. If both quantities a and b are
variables, the expression δ(t−a)δ(t−b) should be interpreted
as a distribution onR3 that acts on the test functions φ(t, a, b)
on R3, which is derived from the distribution δ(u)δ(v)1(w)
using the linear change (u, v,w)→ (t − a, t − b, t), and the
result of the integration δ(a− b) is the distribution on R2 that
acts on the test functions φ(a, b) in a sense described earlier.
If one of the quantities a or b is constant, say b, the expression
δ(t − a)δ(t − b) should be interpreted as a distribution on
R2 that acts on the test functions φ(t, a) on R2, which is
derived from the distribution δ(u)δ(v) using the linear change
(u, v) → (t − a, t − b), and the result of the integration
δ(a − b) is a distribution on R that acts on test functions
φ(a). Moreover, (6) is valid even if both a and b are constants,
assuming that a 6= b.
The proof of this theorem is given in the appendix at the end

of the paper. Note that the generalized integral introduced in
this paper cannot validate (6) assuming that both a and b are
constants and a = b. To see why, let assume that, for example,
a = b = 0. Then, we have δ(t)2 under the integral in (6), and
the result of the integration is δ(0). However, it is well known
that both δ(t)2 and δ(0) have no any sensible interpretation
in the theory of distributions [6], [12], [14]. On the other
hand, they can be consistently interpreted in the framework
of Colombeau generalized functions [12] or in the framework
of the nonstandard analysis [15]. Therefore, it is very likely
that using the appropriate concept of the integral, (6) can be
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rigorously interpreted in these frameworks even when both a
and b are constants and a = b. In fact, to validate (6) when
both a and b are constants and a = b, it is enough to validate
δ(t)2 = δ(0)δ(t), whatever it means.
We already said that the presented definition of the gener-

alized integral is closely related to the convolution. Indeed,
both the definition of the convolution by Vladimirov and
the definition of the generalized integral are based on the
unit sequences, and both of them are defined using quite
similar expressions. Additionally, it is proven in [6] that
the generalized integral T0(y) of T (x, y) with respect to the
formal argument x on Rn exists if and only if the convolution
T (x, y) ∗ [δ(y)1(x)] exists, and that in such case, this con-
volution is just equal to T0(y)1(x). What is not proved there
is that the usual engineering formula (1) for the convolution
becomes absolutely correct under the correct interpretation
that includes the concept of the generalized integral, as stated
in the following theorem:
Theorem 7: Usual definition of the convolution, as pre-

sented in many engineering textbooks, is absolutely correct
and rigorous even in singular cases (more precise, in all
cases when definitions given by Schwartz or by Vladimirov
are valid), assuming that the integral in this definition is
interpreted as the generalized integral defined in this paper.
In other words, the formula

T1 ∗ T2(x) =
∫
Rn
T1(y)T2(x − y)dy (36)

is valid even if the ordinary integral does not exist, or even
when T1 and/or T2 are not ordinary functions but Schwartzian
distributions, if the integral given above is interpreted as a
generalized integral of the distribution T1(z)T2(x − z) with
respect to the formal argument z on Rm. The expression
T1(z)T2(x−z) should be interpreted as the distribution derived
from the tensor product T1(z)T2(x) using the linear change
(z, x)→ (z, x − z).

The proof of this theorem is given in the appendix at the
end of the paper. It may be not particularly surprising, due
to the close relationship between the generalized integral
and the convolution. In other words, the given definition
of the generalized integral might be treated just as an ad
hoc definition introduced only to justify the validity of the
familiar definition of the convolution. However, the fact that
introduced generalized integral may be used for rigorous
interpretation of many other integral-based formulae from the
linear systems theory, even those that are not related to convo-
lution in any way, is much more surprising. For example, the
following theorem shows that the concept of the generalized
integral also provides correctness and rigorousness to the
widely used engineer formulas for the direct and inverse
Fourier transform:
Theorem 8: Usual definitions of the Fourier and inverse

Fourier transform (7) and (8), as presented in many engineer-
ing books, are absolutely correct and rigorous even in singular
cases (more precise, for all tempered distributions), assuming
that the integrals in these definitions are interpreted as the

generalized integrals defined in this paper. In other words,
formulae

T̂ (ω) = F{T (t)} =
∫
R
T (t)e−iωtdt (37)

T (ω) = F−1{T̂ (ω)} =
1
2π

∫
R
T̂ (ω)eiωtdω (38)

are valid even if ordinary integrals do not exist, or even when
T and/or T̂ are not ordinary functions, assuming that the inte-
grals in these formulae are interpreted as generalized integrals
of the distributions T (t, ω) = T (t) e−iωt and T̂ (ω, t) =
T̂ (ω)eiωt in respect to the formal arguments t and ω on R,
respectively.

The proof of this theorem is given in the appendix at the
end of the paper.

V. CONCLUSION
In this paper, some problems which arise with the usual
interpretation of the convolution and the Fourier transform
are presented. After the basic introduction, various concepts
from the functional analysis that deal with these problems are
explained. Given that the notation and the terminology of the
functional analysis is quite tedious for an average user of the
linear systems theory, we have made an effort to provide an
interpretation of the functional analysis concepts in a manner
closer to the engineering community.

We have been motivated by the desire to retain as much
as possible from the existing notation in signal theory, while
providing themissing rigor for it. The fact that definitions like
(1), (7) and (8) are not correct under the usual interpretation
is often exaggerated in many books dedicated to the pure
mathematics, where such definitions are a priori rejected
as incorrect ones. However, these definitions should not be
treated as incorrect, because they can become correct under
the appropriate interpretation, as shown in this paper.

The main advantage of the method for correct interpreta-
tion of the convolution and the Fourier transform presented
in this paper is the localization of the troubles. In fact, the
main source of troubles arises from the integrals that are
not convergent in the usual sense, and this paper presents a
method for their correct interpretation even in singular cases.
This means that we can continue using widely accepted and
familiar formulae. Such approach is much more natural for
the usage in the linear systems theory than adapting to the
completely different definitions and notations taken from the
functional analysis, which are often quite abstract, tedious
and incomprehensible. In other words, the conclusion of this
paper is that it is better to redefine only the interpretation of
some fundamental concepts from the classical calculus (like
the concept of integration) than to redefine the interpretation
of nearly all concepts from the linear systems theory (as
performed in the functional analysis).

Nevertheless, the definition of the generalized integral
itself is not simple at all. It is abstract, indirect, and may
appear confusing. However, this definition may be reduced to
much simpler, more obvious andmore intuitive concepts (like
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cancellation of rapidly oscillating components in divergent
integrals) in many cases that arise in the linear systems theory.
In some special cases, such integral may be calculated easily
using much simpler concepts, for example using weak limits,
as shown in [16]. While elaboration of this goes well beyond
the scope of this paper, it may be useful for both users
and teachers of the linear system theory to know that the
interpretation of the integral that ensures perfect validity of
the familiar formulae exists, even if they do not know what
this interpretation means exactly.

APPENDIX—PROOFS OF STATED THEOREMS
This appendix contains the proofs of all stated theorems. Note
that this appendix requires a bit deeper knowledge of the
functional analysis than the rest of the paper.

Proof of Theorem 4: Let us take φ(ω) ∈ D(R) and let
ηk (t, ω) ∈ D(R2) be an arbitrary unit sequence on R2. From
the definition of the unit sequence and from the compactness
of the support of φ(ω), it follows that there exists a unit
sequence µk (t) ∈ D(R) on R such that ηk (t, ω)φ(ω) =
µk (t)φ(ω) for large enough k . Moreover, from the definition
of the generalized integral, it is obvious that it is a linear
operator and that it is invariant to the linear change t → −t .
Based on these considerations, we can write:〈∫

R
cosωtU (t)dt, φ(ω)

〉
=

1
2

〈∫
R
(eiωt + e−iωt )U (t)dt, φ(ω)

〉
=

1
2

〈∫
R
eiωtU (t)dt +

∫
R
e−iωtU (t)dt, φ(ω)

〉
=

1
2

〈∫
R
e−iωtU (−t)dt +

∫
R
e−iωtU (t)dt, φ(ω)

〉
=

1
2

〈∫
R
e−iωt (U (−t)+ U (t))dt, φ(ω)

〉
=

1
2

〈∫
R
e−iωtdt, φ(ω)

〉
=

1
2

lim
k→∞
〈e−iωt , φ(ω)ηk (t, ω)〉

=
1
2

lim
k→∞
〈e−iωt , φ(ω)µk (t)〉

=
1
2

lim
k→∞

∫
R2
e−iωtφ(ω)µk (t)dωdt

=
1
2

lim
k→∞

∫
R

[∫
R
e−iωtφ(ω)dω

]
µk (t)dt

=
1
2

lim
k→∞

〈
1(t), µk (t)

∫
R
e−iωtφ(ω)dω

〉
=

1
2
〈1(t), µk (t)F[φ](t)〉 =

1
2
〈1(t),F[φ](t)〉

=
1
2
〈F[1](ω), φ(ω)〉 = 〈πδ(ω), φ(ω)〉 (39)

As the last result does not depend of the particular choice
of the unit sequence ηk (t, ω), it follows that the generalized
integral of cosωtU (t) in respect to t on R exists, and equal
to πδ(ω). Here we used the fact that F[φ] ∈ S(R), i.e. that
F[φ] is rapidly decreasing function for each test function

φ(ω) ∈ D(R) [6], and the obvious facts that the constant
distribution 1(t) is tempered so it can be applied to F[φ],
and finally, that the product µk (t)ψ(t) converges to ψ(t) for
each rapidly decreasing function ψ(t) ∈ S(R). Also, we used
the well known fact that F[1](ω) = 2πδ(ω), which can be
derived rigorously using (22) [17]. Now, the formula (30) is
proven.

To prove (31), we will use the similar derivation:〈∫
R
sinωtU (t)dt, φ(ω)

〉
=

1
2i

〈∫
R
(eiωt − e−iωt )U (t)dt, φ(ω)

〉
=

1
2i

〈∫
R
eiωtU (t)dt −

∫
R
e−iωtU (t)dt, φ(ω)

〉
=

1
2i

〈∫
R
e−iωtU (−t)dt −

∫
R
e−iωtU (t)dt, φ(ω)

〉
= −

1
2i

〈∫
R
e−iωt (U (−t)− U (t))dt, φ(ω)

〉
= −

1
2i

〈∫
R
e−iωtsgntdt, φ(ω)

〉
= −

1
2i

lim
k→∞
〈e−iωtsgn t, φ(ω)ηk (t, ω)〉

= −
1
2i

lim
k→∞
〈e−iωtsgn t, φ(ω)µk (t)〉

= −
1
2i

lim
k→∞

∫
R2
e−iωtsgn tφ(ω)µk (t)dωdt

= −
1
2i

lim
k→∞

∫
R

[∫
R
e−iωtφ(ω)dω

]
sgn tµk (t)dt

= −
1
2i

lim
k→∞

〈
sgn t, µk (t)

∫
R
e−iωtφ(ω)dω

〉
= −

1
2i
〈sgn t, µk (t)F[φ](t)〉 = −

1
2i
〈sgn t,F[φ](t)〉

= −
1
2i
〈F[sgn t](ω), φ(ω)〉 = 〈

1
ω
, φ(ω)〉 (40)

Now, it follows that the generalized integral of sinωtU (t)
with respect to t on R exists, and equal to 1/ω. In addition to
the previously mentioned fact, we also used the known fact
that F[sgn t](ω) = 2/iω, which also can be derived using
(22). The proof is now completed.

Proof of Theorem 5: As φ(x) is a test function, we have
φ(x) ≡ 0 outside of some compact set K . Let ηk (x) be an
arbitrary unit sequence on Rn. From the definition of the unit
sequence, it follows that exists N such that ηk (x) = 1 for
x ∈ K and k ≥ N . In other words, we have φ(x)ηk (x) = φ(x)
for k ≥ N . So, we have∫

Rn
T (x)φ(x)dx = lim

k→∞
〈T (x)φ(x), ηk (x)〉

= lim
k→∞
〈T (x), ηk (x)φ(x)〉=〈T (x), φ(x)〉

(41)

This concludes the proof.
Proof of Theorem 6: First, we will consider the case

when both a and b are variables. We said that in such case the
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expression δ(t−a)δ(t−b) should be interpreted as the distri-
bution onR3 that is derived from the distribution δ(u)δ(v)1(w)
using the linear change (u, v,w) → (t − a, t − b, t). Using
the derivation similar to (18), we can derive that

〈δ(t − a)δ(t − b), φ(t, a, b)〉 =
∫
∞

−∞

φ(τ, τ, τ )dτ (42)

Let?s take an arbitrary test function φ(a, b) ∈ D(R2). From
the definition of the unit sequence and the compactness of
the support of φ(a, b), it follows that for each unit sequence
ηk (t, a, b) on R3 there exists N such that φ(t, t)ηk (t, t, t) =
φ(t, t) for k ≥ N . Now, from the definition of the generalized
integral, we have〈∫

R
δ(t − a)δ(t − b)dt, φ(a, b)

〉
= lim

k→∞
〈δ(t − a)δ(t − b), φ(a, b)ηk (a, b, t)〉

= lim
k→∞

∫
∞

−∞

φ(τ, τ )ηk (τ, τ, τ )dτ

=

∫
∞

−∞

φ(τ, τ )dτ = 〈δ(a− b), φ(a, b)〉 (43)

As the last result does not depend of the particular choice
of the unit sequence ηk (t, a, b), it follows that the generalized
integral of δ(t − a)δ(t − b) as a distribution on R3 in respect
to t on R exists, and equal to δ(a − b). Here we used the
interpretation of δ(a− b) as a distribution on R2 with formal
arguments a and b that is explained earlier. This proves (6)
for the case when both a and b are variables.
Suppose now that one of the quantities a or b, say b,

is constant. Then, δ(t − a)δ(t − b) should be interpreted
as a distribution on R2 with formal arguments t and a that
acts on the test functions φ(t, a) onR2, which is derived from
the distribution δ(u)δ(v) using the linear change (u, v) →
(t − a, t − b). The derivation similar to (18) gives

〈δ(t − a)δ(t − b), φ(t, a)〉 = φ(b, b) (44)

Now, using the similar reasoning as when both a and b are
variables, we have〈∫

R
δ(t − a)δ(t − b)dt, φ(a)

〉
= lim

k→∞
〈δ(t − a)δ(t − b), φ(a)ηk (t, a)〉

= lim
k→∞

φ(b)ηk (b, b) = φ(b) = 〈δ(a− b), φ(a)〉 (45)

At the end, we used the interpretation of δ(a − b) as a
distribution on R with formal argument a that is explained
earlier. This proves (6) for the case when one of the quantities
a or b are constant.
Finally, suppose that both a and b are constants, so that

both δ(t − a) and δ(t − b) are distributions on R. It is quite
hard and even not always possible to consistently define the
product of two distributions onRwhich is again a distribution
onR, but all such definitions (which are not always consistent
mutually) agree that δ(t−a)δ(t−b) ≡ 0when a 6= b [6], [12],
[14]. So, the left side of (6) is zero in such case. The right side

of (6) is then δ(λ) where λ = a−b is a fixed nonzero number.
However, all possible interpretations of eventual point values
of distributions agree that δ(x) is zero for x 6= 0, which
validates (6) for the case in the consideration. Moreover, even
without any definition of the point values of the distributions,
it is conventionally accepted that δ(x) ≡ 0 for x 6= 0, with
the interpretation that δ[φ] = 0 for any test function φ whose
support does not include the point x = 0. This concludes the
proof of the theorem.

Proof of Theorem 7: We will first consider a somewhat
simplified case when T1(t) ∈ D∗(R) i T2(t) ∈ D∗(R), i.e.
when both distributions are one-dimensional. Then, it is easy
to check that we have

〈T1(u)T2(t − u), φ(u, t)〉 = 〈T1(u)T2(t), φ(u, u+ t)〉 (46)

Suppose now that the convolution T1∗T2(t) exists.We need
to prove that this implies that the integral on the right side
of (36) exists too, and that it is equal to this convolution.
Indeed, let ηk (u, t) be an arbitrary unit sequence on R2.
Then, ηk (u, u+ t) is also a unit sequence on R2. Now, using
the definition of the generalized integral, the definition of
the convolution, and the assumption that T1 ∗ T2(t) exists,
we have:〈∫

R
T1(u)T2(t − u)du

〉
= lim

k→∞
〈T1(u)T2(t − u), φ(t)ηk (u, t)〉

= lim
k→∞
〈T1(u)T2(t), φ(u+ t)ηk (u, u+ t)〉

= 〈T1 ∗ T2(t), φ(t)〉 (47)

for any test function φ(t) ∈ D(R). As the result does not
depend of the particular choice of the sequence ηk (t, u),
we can conclude that the generalized integral exists too, and
that it is equal to T1 ∗ T2(t).
Suppose now that the generalized integral exists. Using the

similar reasoning, we have:

〈T1 ∗ T2(t), φ(t)〉 = lim
k→∞
〈T1(u)T2(t), φ(u+ t)ηk (u, t)〉

= lim
k→∞
〈T1(u)T2(t − u), φ(t)ηk (u, t − u)〉

=

〈∫
R
T1(u)T2(t − u)du, φ(t)

〉
(48)

As the sequence ηk (t, t − u) is obviously an unit sequence
whenever ηk (t, u) is, and as the both ηk (t, u) and φ(t) are
arbitrary, we can conclude that the convolution exists too,
and that it is equal to the generalized integral on the right
side of (36).
This concludes the proof for the case of distributions from

D∗(R). The proof for the distributions from D∗(Rn), i.e. for
the multidimensional case, is completely analogous to the
presented proof.

Proof of Theorem 8: To prove (37), we need to show
that the following relation is valid for each rapidly decreasing
function φ(ω) ∈ S(R):〈∫

R
T (t)e−iωtdt, φ(ω)

〉
= 〈F[T ](ω), φ(ω)〉 (49)

VOLUME 10, 2022 29459



Z. Juric, H. Siljak: Rigorous Interpretation of Engineering Formulae for Convolution and Fourier Transform

As the topological space D(R) is dense in the topological
space S(R) [6], [9], [10] and as the functionals T and F[T ]
are continuous on S(R), it is enough to prove (49) for all test
functions φ(ω) ∈ D(R). Let φ(ω) be an arbitrary test function
and let ηk (t, ω) be an arbitrary unit sequence on R2. As the
support of φ(ω) is compact, from the definition of the unit
sequence it follows that there exists an unit sequence µk (t) ∈
D(R) such that we have ηk (t, ω)φ(ω) = µk (t)φ(ω) for large
enough k . Furthermore, it is obvious that for each rapidly
decreasing functionψ(t) ∈ S(R) we have µk (t)ψ(t)→ ψ(t)
for k → ∞ in a sense of the topology in S(R). As F[φ] ∈
S(R), we can conclude that µk (t)F[φ](t) → F[φ](t) for
k →∞ in a sense of the topology in S(R) as well. Now, from
the definition of the generalized integral and all preparations
stated above, we can write〈∫

R
T (t)e−iωtdt, φ(ω)

〉
= lim

k→∞
〈T (t)e−iωt , φ(ω)ηk (t, ω)〉

= lim
k→∞
〈T (t)e−iωt , φ(ω)µk (t)〉

= lim
k→∞
〈T (t)1(ω), e−iωtφ(ω)µk (t)〉

= lim
k→∞

〈
T (t), µk (t)

∫
∞

−∞

φ(ω)e−iωtdω
〉

= lim
k→∞
〈T (t), µk (t)F[φ](t)〉

= 〈T (t),F[φ](t)〉 = 〈F[T ](ω), φ(ω)〉 (50)

The proof of (37) is now completed. The proof of (38) is
completely analogous.
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