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ABSTRACT In this work, a novel compact and accurate glucose concentration measurement system is
developed using the well-established photoacoustic Near Infra-Red spectroscopy. The proposed in-vitro
instrumentation methods are in a small form factor, making it a viable candidate and precursor for an
in-vivo non-invasive wearable blood glucose monitoring in the near future. The accuracy comes from the
phase sensitive detection of the electrical signal. This detection technique uses an off-the shelf modula-
tor/demodulator integrated circuit configured as a lock-in amplifier to increase the signal to noise ratio
multifold. No prior work on photoacoustic spectroscopy, has taken advantage of this detection methodology
in such a small form factor. The dimension of the lock-in-amplifier is 13mm x 10.65mm x 2.65mm. The
maximum linear dimension of the exciting laser is 5.6 mm. The acoustic sensor (transducer) has a dimension
of 42mm x 12mm. Furthermore, the measurement and analyses of the observed data uses multiple stochastic
and machine learning techniques to bring out the best correlation fit between the glucose concentration
and a specific feature of the electrical signal. With these methods and techniques, a strong correlation
was confirmed between the glucose concentration and the amplitude of the electrical signal. The computed
correlation coefficient between the signal amplitude and glucose concentration is 97% while the p-value is
5.6E-6. To the best of our knowledge, this is the first work to report photoacoustic spectroscopy for glucose
concentration measurement in a compact form, with lock-in amplifier and aided with machine learning
algorithms for future application as a wearable device.

INDEX TERMS Photoacoustic NIR spectroscopy, non-invasive glucose monitoring, lock-in-amplifier,
machine learning.

I. INTRODUCTION
The current standard of successful management and effective
treatment of diabetes relies on using an invasive finger prick-
ing approach. Besides pain, discomfort and cost, the finger
pricking protocol is prone to cause infection and produces
potentially unsafe bio-waste in the form of testing strips and
lancets. More importantly, drawing and testing blood requires
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pre-emptive action on the part of the patient or caretaker.
For patients with complex medical conditions and aggressive
forms of type-2 diabetes, continuous monitoring is desired so
that unexpected changes in blood glucose levels, known to
cause death due to sudden hypoglycemia during sleep, can
be detected. Very recently, multiple commercial devices on
continuous glucose monitoring have come up but none of
them are non-invasive and wearable and need to be period-
ically implanted subcutaneously [1]–[4]. Besides the painful
insertion and excessive cost (>∼$500), discomfort and the
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risk due to the presence of a foreign body under the skin
always remains active. Research findings thus far suggest
that a workable non-invasive solution is feasible and multiple
techniques using optical, electromagnetic, photoacoustic are
being pursued to build a glucose monitor that is accurate,
wearable as an accessory, low-cost (<$100) and continuous
(every 1-minute max). However, they falter in one or many
of these factors: size, portability, accuracy, reliability, cost,
limited sensitivity below 70 mg/dl, operational complexity,
and more [5]–[15].

In this paper, an in-vitro compact instrumentation for
glucose measurement using Near Infra-Red (NIR) photoa-
coustic spectroscopy (PAS) has been reported to mitigate
some of these above issues in in-vivo non-invasive blood
glucose monitoring. The clear need of a non-invasive blood
glucose monitoring device is what motivates the current
work. The phase sensitive detection of the experimental data
enhances accuracy, reliability and safety of the glucose mea-
surement system by increasing the SNR multifold, an inher-
ent quality attributed to phase sensitive detection. The phase
sensitive detection uses a modulator/demodulator integrated
circuit (IC) configured as a lock-in amplifier (LIA). It is
important to assert that no earlier study on PAS uses LIA in
this small form factor of an integrated circuit. The small form
factor of the proposed experimental method with the use of an
LIA IC is the basis for design of an accurate wearable in-vivo
non-invasive blood glucose monitoring device using photoa-
coustic spectroscopy in the near future. Moreover, the data
has been further measured and analyzed by a multitude of
stochastic and machine learning techniques to determine the
signal feature that has the highest correlation with the glucose
concentration. This systematic, comprehensive measurement
approach using a multitude of stochastic and machine learn-
ing techniques has not been not reported in the past for
similar experimental studies to the best of our knowledge. The
photoacoustic experimental technique is depicted in Figure 1.

FIGURE 1. The proposed compact instrumentation for the in-vitro glucose
measurement with phase sensitive detection using PAS. All the
instruments are portable and can be replicated for wearable in-vivo
glucose monitoring.

II. RELATED WORK
Almost all prior works in PAS have used benchtop measure-
ment instruments and/or the expensive mid-IR spectroscopic
approach to determine the glucose concentration such as the

one reported by Zhang [16]. In [5], the signal detection uses
a wideband low-noise amplifier (LNA), which can be sus-
ceptible to noise, unlike the phase sensitive lock-in amplifier
IC used in this paper. Very recently, multiple stochastic and
machine learning techniques have been reported for NIR opti-
cal spectroscopy [17]–[20] but none of them was extended
to the photoacoustic approach. The machine learning tech-
niques reported in [17] mentions using complex algorithms
such as Random Forest Regression, Extra Trees Regression,
Support Vector Machine (SVM) Regression, etc. Similarly,
convolutional neural network (CNN) was used for NIR sig-
nal classification for different glucose concentration in the
range of 50 – 430mg/dl as reported in [18]. NIR spectroscopy
was used in combination with SVM to study the changes
in water absorption for the early diagnosis of diabetes [20].
When compared to these reported articles, ordinary linear
least squares (LLS) regression technique has been success-
fully used in this paper to model the relationship between
the glucose concentrations and the voltage outputs of the
designed circuit. The simple LS model, was chosen to be
appropriate in this case due to the data collected from the
experiments were suitable for such simple modelling. Also,
the validation is modelling has been made robust using stan-
dard train / test splits made the associated model more robust.
Additionally, the usage of simple machine learning technique
such as LS enables the future embedding of such models
within a wearable device due to its low complexity (hence low
computations costs, thereby resulting in low power require-
ments). Further discussions on related work are continued
in Section VII by including numerical data of the physical
dimensions and experimental results from stochastic analysis
in Table 8.

III. FUNDAMENTALS OF PAS AND LIA
The premise of the current study is primarily based upon the
applications of PAS for detection of glucose concentration
and LIA for high accuracy electrical signal detection. The fol-
lowing two subsections elaborate on the fundamental theory
and properties of these two applications.

A. PAS AND DETECTION OF GLUCOSE CONCENTRATION
PAS is a hybrid technique which can be applied to determine
the concentration of glucose in a solution. Unlike NIR optical
spectroscopy, the NIR PAS is an ultra-sensitive method that
can be used to study weak bulk and surface absorption in liq-
uids, to evaluate the level of absorbed energy. This approach
uses optical excitation and mechanical detection where the
optical energy is converted into an acoustic energy by a
multistage energy conversion process [21]. A laser pulsed
at a high frequency is allowed to fall on the glucose solu-
tion for the optical excitation of the glucose molecules. The
absorbed optical energy, determined by the optical absorp-
tion coefficient, from the laser leads to the localized heating
of the solution, which produces a small temperature rise,
resulting in the volumetric thermal expansion of the optical
interaction region. The associated ultrasonic pressure pulse is
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then measured by an ultrasonic piezoelectric transducer. The
optical absorption coefficient has a strong correlationwith the
level of glucose concentration at a wavelength of 980 nm,
where glucose molecules have strong overtones [21].

B. LOCK-IN AMPLIFIER
LIAs require a frequency reference and use the technique of
phase-sensitive detection (PSD) to single out the component
of the signal at that specific reference frequency and phase.
The PSD can detect the signal with an extremely narrow
bandwidth (< 1 Hz) which increases the overall Signal to
Noise Ratio (SNR) of the incoming signal. This makes possi-
ble to detect a signal with very high accuracy as investigated
in this paper. An input signal of xsig = Vsigsin(ωsigt + θsig)
and a reference signal of xref = Vref sin(ωref t+θref ) has been
assumed, where the symbols have their usual meanings. The
LIA amplifies the signal and then multiplies it by the lock-in
reference using a modulator circuit. The resulted PSD signal
is the product of the above two signals and is given by:

xpsd = VsigVref sin(ωsigt + θsig)sin(ωref t + θref ) (1)

Using trigonometric identities eqn. (1) can be written as,

xpsd =
1
2
VsigVref cos([ωsigt − ωref t]+ θsig − θref )

−
1
2
VsigVref cos([ωsigt + ωref t]+ θsig + θref ) (2)

After choosing the reference frequency equal to the signal
frequency and low pass filtering, the retrieved PSD signal
from eqn. (2) becomes

xpsd =
1
2
VsigVref cos(θsig − θref ) (3)

The resultant signal from eqn. (3) is observed for the detection
of glucose level.

IV. PROPOSED INSTRUMENTATION
AND DETECTION METHOD
The setup of these components is explained in detail in the
following sub-sections.

A. IN-VITRO EXPERIMENTAL THEORY AND METHOD
In this work (See Fig. 1), the laser diode at a wavelength
of 980 nm is pulsed at 1 MHz using a timer IC. The laser
beam is then directed into a glucose solution contained within
a quartz cuvette from a distance of ∼4 mm. The cuvette
sits on a Polydimethylsiloxane (PDMS) layer, which itself
sits on an ultrasonic transducer. The PDMS layer acts as a
transfer medium for the acoustic waves within the glucose
solution to pass through to the transducer from the cuvette.
The ultrasonic transducer then converts the acoustic waves
into electrical signals, which are then sent to the LIA IC for
signal detection with minimized interference from uncorre-
lated noise sources. The analog signals obtained from the out-
put of the LIA IC are then observed on a digital oscilloscope
after sampling. The digital data are then imported from the

oscilloscope to a computer (microcontroller unit) for digital
signal processing and stochastic data analyses. It is important
to re-assert that, the analog signal detecting instrument in
this experimental set-up uses a LIA in the form of an IC,
replacing the traditional desk top based LIA that is primarily
used for astronomical computations thus making it suitable
for potential wearable applications of non-invasive in− vivo
blood glucose detection.

B. ELECTRONIC CIRCUIT DESIGN
The schematic of the circuit used to excite the glucose solu-
tion as well as detect the amplitude of the electrical sig-
nal for different glucose concentrations is shown in Fig. 2.
A timer IC is configured to produce optical pulses via a
laser diode at a frequency of 1 MHz as the transducer used
for the experiment has a peak resonance at this frequency.
This is an astable configuration where the output voltage
alternates between VCC and 0 volts continuously. Since the
timer equations do not accurately model the duty cycle and
frequency observed experimentally, values for Ra, Rb, C1,
and C2 were determined through trial and error with variable
resistors and different capacitors. The final combination of
resistance and capacitance that yields the desired results can
be seen in Table 1. The matching of the pulsed frequency of
the timer with the peak observed frequency of the transducer
ensured a strong signal was observed.

FIGURE 2. The electronics circuit for the optical stimulation and the phase
sensitive detection of the proposed compact instrumentation system. The
LIA IC is shown as AD630 in the diagram. (Tinker Cad Diagram).

TABLE 1. Resistor and Capacitor Values for CMOS Timer.

The laser diode has a NIR wavelength of 980 nm and a
power output of 10 mW. The pulsed beam is directed at a

VOLUME 10, 2022 31887



F. Shaikh et al.: Compact Instrumentation for Accurate Detection and Measurement of Glucose Concentration

FIGURE 3. LMC555 CMOS Timer Setup.

TABLE 2. Sample Concentration.

quartz cuvette containing glucose solutions of various con-
centrations. Mechanical vibrations induced by photoacoustic
effects are transformed into electrical signals through a trans-
ducer, which is then detected by a modulator/demodulator
integrated circuit that is configured to work as a lock-in
amplifier for phase sensitive detection. The lock-in-amplifier
takes in a reference signal directly from the timer at 1 MHz
and correlates with the input signal received from the trans-
ducer at the same frequency for the phase sensitive detection.
To reiterate, the lock-in amplifier which improves the signal
to noise ratio multifold using this phase sensitive detection
approach has not been used before for such photoacoustic
signal detection in the form factor of an IC. The physi-
cal dimensions of the exciting laser, transducer and lock-in
amplifier are specified in Table 8.

C. PREPARATION OF GLUCOSE SOLUTION
A fixture is designed, and 3D printed to hold the laser diode
near the quartz cuvette as depicted in Fig. 4. The cuvette
is not in place in Fig 4a to give an unobscured view of
the PDMS. The cuvette can be seen in place in Fig. 4b.
Variable samples of glucose (dextrose) solutions are created
by mixing deionized (DI) water and powdered glucose to
prepare concentration ranging from 0 mg/dL to 300 mg/dL.
The DI water was measured to 2 dL and heated on a hot-
plate to 50◦C. Glucose was added in increments to achieve
the specific concentrations as seen in Table 2. A total of
15 trials were conducted for each concentration for greater
reliability.

A magnetic stirring rod was used to mix the solution at
360 rpm. The magnetic stirring rod was used in conjunction
with the hotplate to allow for continuous mixing without
direct user intervention. Glucose solutions are stored inside
quartz cuvettes which sit above a 5 mm PDMS transfer layer.
After all voltages are recorded for each specific concentra-
tion, the solution in the 4mL cuvette was added back to the
main solution and allowed to remix to keep future concentra-
tions accurate.

FIGURE 4. Holder in different configurations.

D. INSTRUMENTS DESCRIPTION
This procedure utilizes many different instruments to acquire
pertinent data. Each instrument is defined by its specific
application and some characteristics below.
• SIGLENT SPD3303X-E programmable direct cur-
rent(DC) power supply
– Power supply for Timer, LNA, and Laser Diode
– Key Specifications
∗ 100/120/220/230 V compatible design to meet

the needs of different power grids
∗ Intelligent temperature-controlled fan effectively

reduces fan noise
• LMC555 CMOS Timer

– Sends periodic current to LP980P010 laser diode
using a clock cycle

– Key Specifications
∗ Industry’s Fastest Astable Frequency of 3 MHz
∗ Output Fully Compatible With TTL and CMOS

Logic at 5 V Supply
• LMF56 diode mount

– Post-Mountable Laser Diode Mount for Ø5.6 mm
Packages, 8-32 Tap

• L980PO10 Laser Diode
– Sends a pulsating beam into a concentrated glu-

cose solution made of DI water and glucose
sugar

– Key Specifications
∗ Wavelength 980 nm
∗ Output Power 0.01 W
∗ Operating Voltage 1.5 to 2.2 V
∗ Operating Current 0.025 to 0.04 A

• 4mL LAB4US standard quartz cuvette
– Solution container
– Key Specifications
∗ Spectral Range: 190-2500 nm
∗ Volume: 3.5 mL
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• PDMS Transfer Layer
– Transfer medium for acoustic waves
– Key Specifications

∗ Cured from SYLCAP 284-F silicone elastomer
kit

• Steiner and Martins, Inc. ultrasonic transducer
– Converts acoustic signals into electrical signals
– Key Specifications

∗ 1 MHz resonant frequency
∗ Resonant impedance Zm: ≤ 20 �

• AD630Modulator/Demodulator configured as Lock-
in Amplifier [22]
– Improves SNR of output signal

∗ 2 MHz channel bandwidth
∗ 2 differential input stages
∗ Can recover signal from 100 dB noise
∗ 100 µV channel offset

• RIGOL DS1054 UltraVision oscilloscope
– Signal analysis tool to visualize output signal
– Key Specifications

∗ Up to 30,000 wfms/s Waveform capture rate
∗ 4 Channels, 50 MHz Bandwidth

Other equipment used includes a hot plate, magnetic stir-
ring rod, 200 mL beaker, 10 mL beaker, sonicator, desic-
cation chamber, fume hood, and an enclosed weigh-scale.
Variable resistors, capacitors, and numerous wires are also
used to connect and configure the electronic circuit used
in this procedure. The electronic circuit includes a modu-
lator/demodulator IC as a LIA for signal detection brings a
major innovation to this work.

V. EXPERIMENTAL RESULTS
The electrical data captured from the output of the LIA IC is
observed in an oscilloscope as depicted in Fig. 5. The sampled
data obtained from the oscilloscope are recorded for stochas-
tic analysis. Each observed wavelet corresponds to a single
laser pulse. The time axis below spans six microseconds,
during which time the cuvette experienced six laser pulses.

FIGURE 5. The electrical signal from the LIA output as observed in the
Oscilloscope.

To bring out the best correlation efficiency between the sig-
nal and the glucose concentration, five different attributes
of the signal were initially considered. These five attributes
of the signal are the Amplitude (Max), Root Mean Square
(RMS), Minimum (Min), Range and DC Average (Mean).
The observed results of these five attributes are recorded in
Table 3. It is important to note that each measurement of the
signal attributes at a specific concentration is an aggregate
of 15 trials. The consideration of multiple signal attributes
and repetition of the experiment multiple times is to validate
the accuracy and reliability of the proposed instrumentation
system.

TABLE 3. Observed voltage at the oscilloscope of the five different signal
attributes (Each measurement of the signal attributes at a specific
concentration is an aggregate of 15 trials).

VI. DATA MEASUREMENT AND STOCHASTIC ANALYSIS
The features of the observed experimental data were extracted
in the beginning. After that multiple models using ordinary
linear-least squares(OLS) regression were fitted for analysis.
Firstly, the OLS regression method was used to determine
any preliminary correlations between glucose concentration
and the output voltage. Secondly, the data was separated into
training and testing sets, tomeasure unbiased correlations and
test the trained model. These separate datasets, commonly
used in the field of machine learning, were used to check the
robustness of the trained regressionmodel generated. Thirdly,
a p-value test is conducted to determine probability of null
hypotheses occurring within the scope of the experiment.
With these methods and techniques, a strong correlation was
confirmed between the glucose concentration and the signal
amplitude.

A. FEATURE EXTRACTION
As stated above, 15 pre-processed data points were recorded
for each concentration measured. The output voltage devi-
ation over the set of 15 trials at 0 mg/dL is illustrated in
Fig. 6. The red line in the shaded area represents the average
voltage over 15 trials whereas the shaded area represents the
voltage spread for all trials. The voltage of ‘Min’ remained
relatively constant with changes in solution concentration
and is believed to represent the undisturbed baseline signal
output of the system and hence it is not considered for further
analysis. Since ’Min’ does not show a trend, ’Range’ is not
considered for further analysis as it also depends upon ’Min’.
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FIGURE 6. Deviation in the signal voltage.

TABLE 4. Standard deviation of the extracted signal attributes.

Therefore, only the three signal attributes: Max, Mean and
RMS voltages of the wavelet were extracted from the signal
for each data-set and considered for further stochastic studies.
Table 4 shows the standard deviations of these attributes for
each concentration obtained from the mean of 15 trials. The
highest standard deviations are obtained for the ‘Max’ for all
concentrations while ‘Mean’ and ‘RMS’ are comparatively
less. Alongside standard deviations, error bar plots are devel-
oped as seen in Fig. 7. Although the standard deviation for
‘Max’ was little too high, considering the observations from
the error bar plots, ‘Max’ was considered for the next level of
stochastic analysis alongside ‘Mean’ and ‘RMS’.

B. LEAST SQUARES REGRESSION
The processed dataset used for the linear regression model is
illustrated in Fig. 8. The OLS regression was implemented
using scikit-learn module in Python [23] to fit the training
data to create the model. Then the concentrations from the
test data was predicted using the fitted (trained) model. The
regression model considered concentration level as the inde-
pendent variable (x-axis), and the five signal attributes calcu-
lated from the raw voltage output as the dependent variables
(y-axis).

Table 5 provides the correlation coefficients of the ordi-
nary least-squared models utilizing three different signal
attributes: ‘Max’, ‘RMS’ & ‘Mean’. These correlations were
computed using the function r2_score built within scikit-
learn module. This is given in equation 2, where yi represents
the processed y values and ŷ represents the predicted y-value.

FIGURE 7. Error Bar Plots for the three signal attributes: (a) Max,
(b) RMS & (c) Mean.

TABLE 5. Correlation Coefficients.

Equation 3 gives the least square regression.

ȳ =
1
n
6n
i=1yi (4)

6n
i=1(y− ŷi)

2
= 6n

i=1ε
2
i (5)

R2(y, ŷ) = 1−
6n
i=1(y− ŷ)

2

6n
i=1(yi − ȳ)

2 (6)

The red dots show the processed measurements recorded
while the blue line represents the best-fit according to the
least-square regression models previously established.
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FIGURE 8. Linear regression calculations using three signal attributes: (a) Max, (b) Mean & (c) RMS.

TABLE 6. Correlation between the concentration and the independent
variables extracted from the signals.

Interestingly, the correlation coefficient for the ‘Max’ was
found to be highest at around 97% followed by ‘RMS’ at 93%
and ‘Mean’ at 87%. Hence, the signal amplitude is identified
to be the best candidate among the three extracted signal
features from this study. After conducting linear regression
tests, the processed data-set is separated into train and test
sets to develop a second model to support the results obtained
from this study of least-squares regression model. In this
approach, the ‘Mean’ performed poorly and not taken into
consideration for further analysis.

C. TRAIN/TEST SPLIT OF CORRELATIONS
The scikit-learn module had an inbuilt function to split the
data into training and testing, which was used to separate the
data into a 80:20 split (i.e. 80% training and 20% testing sets).
The majority of the available data was used for training and
a smaller portion of the data is used for testing [24]. Table 6
shows the un-biased coefficients where the model is tested
against the test data.

The coefficients for the Max and RMS demonstrate a
strong linear correlation with concentration. As can be

TABLE 7. p-value.

observed from Table 6, the ‘Max’ gives the strongest correla-
tion, conforming to the least squares regression study.

D. CALCULATED PROBABILITY
In addition to linear regression and train and split modeling,
p-value statistics were used to estimate whether the correla-
tions held true to an asserted hypothesis as it is an important
indicator of whether the correlations between two variables
are due to chance or whether there is enough evidence to
disprove the opposing side. In our case, p-value statistics are
based upon hypothesis testing of the experiments [25], within
which, the null hypothesis ’no correlation exists between any
of the four signal attributes and varying glucose concen-
tration’ is tested against the alternate hypothesis. The alter-
nate hypothesis states that there is some form of correlation
between varying glucose concentration and the four signal
attributes. Noting the threshold of significance of 0.05 [26],
the p-values seen in Table 7 provide support for the alternative
hypothesis as they both fall well below this threshold value,
with ‘Max’ falling by four orders ofmagnitude. Hence, ‘Max’
or the signal amplitude was confirmed to be the chosen
feature of the signal for obtaining the glucose concentration.
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E. EXTENDED STOCHASTIC ANALYSIS
In order to remove any form of algorithmic bias, four addi-
tional regression algorithms were implemented to check the
correlation between the glucose concentration (treated as the
independent variable) and the three extracted features (Max,
RMS and Mean - treated as the target variable). These addi-
tional methods are:

Support Vector Regression(SVR) - uses the same prin-
ciples as the SVM for classification, and introduces the con-
straint for the maximum error allowed in the predicted value
of each of the training data point not to exceed ε [30]–[32].
Support Vector Regression problem formulation is

often best derived from a geometrical perspective, the
continuous-valued function being approximated can be writ-
ten as seen in equation 7.

y = f (x) =< w, x > +b

=

M∑
j=1

wjxj; b ∈ R; x,w ∈ RM (7)

For multidimensional input data, the following multivari-
ate equation 8 is used.

f (x) =
(
w
b

)T (x
1

)
= wT x + b; x,w ∈ RM+1 (8)

The objective is to minimize the error between the pre-
dicted value and the actual output for a given input. SVR
adopts an ε-insensitive loss function, which penalizes predic-
tions for being farther than ε from the ideal output.

K-nearest neighbor regression – similar to K-NN for
classification, the predicted values are based on the average
of the neighbors. In this case, the number of neighbors chosen
were two as default [33], [34].

K-NN regression uses the same distance functions
as K-NN classification, that is Euclidean, Manhattan or
Minkowski for continuous variables. In our case, Euclidean
distance was chosen as default.

Least Absolute Shrinkage and Selection Opera-
tor (LASSO) Regression – this is a type of linear regression
where the data values shrink to the center or mean to avoid
overfitting the data [35].

In Lasso regression, a L1 regularization which introduces
additional information to prevent overfitting is employed.
Consequently, a model containing all possible predictors
can be fitted and lasso can be used to perform vari-
able selection by regularizing the coefficient estimates
(shrinks the towards zero). The objective is to minimize both
the residual sum of squares (RSS) and the sum of the absolute
value of coefficients. This minimization is shown below in
equation 9.

n∑
i=1

(yi − (β0 +
p∑
j=1

βjxij))2 + α
p∑
j=1

|βj|

= RSS + α
p∑
j=1

|βj (9)

Here, n represents the number of observations, p denotes
the number of variables that are available in the dataset. xij
represents the value of the jth variable for the ith observation,
where i = 1,2,3. . . n, and j = 1,2,3. . . p. α takes a range
of values between 0 to ∞, with an increase in its value
reducing the flexibility of the lasso regression fit. This leads
to decreased variance but increased bias.

Bayesian Ridge Regression – Bayesian Ridge Regres-
sion (BRR), also known as Tikhonov Regularization, is a
classical regularization technique and is essentially an OLS
linear regressionmethod but with a tuneable additive L2 norm
penalty term embedded within the function. In BRR, the out-
put y is assumed to be drawn from a probability distribution
rather than estimated as a single value such as in OLS. This
involves estimating a probabilistic model of the regression,
where the coefficient weights are near to zero for stability of
the model [36]. Mathematically, y is assumed to be normally
distributed around as seen in equation 10.

p(y|X ,w, α = N (y|Xw, α) (10)

The prior for the coefficient is given by the Gaussian
relation seen in equation 11.

p(w|α) = Nw|0, α−1Ip (11)

Here, α ≥ 0 is the complexity parameter which controls
the amount of shrinkage affecting the coefficient’s robust-
ness to collinearity. The parameters w,α, λ are estimated
jointly while fitting the model, and α, λ (the regularization
parameters) are estimated by maximizing the log marginal
likelihood [37].

Along with these four additional regression algorithms,
the test samples were varied between one and four. That is,
the train-test split was increased in steps to 40:60, thereby
reducing the samples used for training. This was done to
check the suitability of the models in terms of less training
samples, their robustness to bias and an understanding of
which method / algorithm can be taken up as a future work
for building the prototype.

These results in terms of accuracy, as shown in Figure 9,
was calculated by comparing the actual vs. predicted value
of the target variable (i.e. Max, RMS or Mean). The total
accuracy was summed over all the number of test samples.
That is, the results report how many test samples were
correctly predicted out of the total test samples provided.
Thus, as an example – Lasso could only predict 2/3 test
samples correctly using RMS as target variable, Bayesian
Ridge could predict 3/3 test samples correctly when using
Max as target variable and so on. From all of these sub-
figures, it can be concluded that K-NN, Lasso and Bayesian
Ridge regression shows a robust performance with 100%
accuracy for ‘Max’ as a predicted variable for all test samples.
This extended analysis thus validates further ‘Max’ to be
the chosen feature of the signal for obtaining the glucose
concentration.
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FIGURE 9. Additional regression algorithms using (a) One Test Sample, (b) Two test samples, (c) Three test samples. Additional regression
algorithms using (a) One Test Sample, (b) Two test samples, (c) Three test samples. The accuracy on the y-axis shows how many test samples were
correctly predicted out of the total given test samples.

TABLE 8. Comparison of Glucose Concentration Detection Methods using NIR Photoacoustic and Optical Spectroscopy Techniques.

VII. COMPARATIVE ANALYSIS
To bring out the advantage and better understand the com-
pactness of the proposed experimental method, Table 8 is
included for comparative analysis. As can be seen from the
table, the dimensions of the experimental components used
in this work are significantly smaller than similar works

earlier reported. The form factor of this work makes the
experimental approach applicable to design a wearable blood
glucose measurement device in the future. Two recent works
on PAS [28], [29] used LIA, albeit with bench-top experi-
mental instruments thus making it not viable for wearable
applications. Two other recent works on PAS [5], [16] neither
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use an LIA nor the dimensions are of smaller scale to that
of the wearable form factor. Out of these, two have used
LS regression only, while a third one did not use any for
data measurement analysis. The stochastic coefficient of 97%
reported in this work is comparable to earlier works. The
physical dimensions of the laser is also significantly smaller
in this work and of the wearable form factor. The comparison
of the laser dimension include two very recent works on NIR
optical spectroscopy (NIR-Op) [17], [27] as well. The phys-
ical dimension of 42mm (diameter) x 12mm (height) of the
acoustic sensor (transducer) also conforms to the wearable
form factor.

VIII. CONCLUSION AND FUTURE WORK
An in-vitro glucose measurement system is developed using
PAS NIR spectroscopy. The detection mechanism of the elec-
trical signal uses the phase sensitive LIA in the form-factor of
an integrated circuit to increase the SNR for better accuracy
and reliability. No prior work on PAS, has taken advantage
of this detection methodology in such a small form factor,
thus making it a potential candidate for an in-vivo accu-
rate non-invasive wearable glucose monitoring device. The
dimension of the lock-in-amplifier and the maximum linear
dimension of the laser are 13mm x 10.65mm x 2.65mm and
5.6 mm respectively. The dimension of 42mm x 12mm of the
transducer also conforms to the wearable form factor.

The measurement and data analyses use a multitude of
stochastic and machine-learning techniques to determine the
signal amplitude (‘Max’) as the signal feature that has the
highest correlation with the glucose concentration. The mea-
sured correlation coefficient between the signal amplitude
and glucose concentration is 97%while the p-value is 5.6E-6.
To the best of our knowledge, this is the first work to report
photoacoustic spectroscopy for glucose concentration mea-
surement in a compact form, with lock-in amplifier and aided
with machine learning algorithms for future application as a
wearable device.

To develop the proposed instrumentation into an
in-vivo wearable biomedical device for continuous glucose
monitoring addressing all the safety protocols and medical
standardization rules, the use of light-emitting-diodes (LED)
replacing lasers are currently being investigated. Besides
safety, to make the device energy efficient, affordable, and
wearable, low power microcontrollers are considered for data
processing and analyses. The design will be similar to a
wristwatch andwill provide enough space for the components
used in this procedure to integrate as a wearable biomedical
device. The laser diode, the crystal cuvette containing glucose
solution, the computer are to be substituted with LED, user’s
wrist/fingertip and a microcontroller respectively.

CODE, DATA AND MATERIALS
Datasets and code used and analyzed for this work can be
made available from the corresponding author upon request.
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