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ABSTRACT This article contains all of the information needed to conduct a study on monocular facial depth
estimation problems. A brief literature review and applications on facial depth map research were offered
first, followed by a comprehensive evaluation of publicly available facial depth datasets and widely used
loss functions. The key properties and characteristics of each facial depth map dataset are described and
evaluated. Furthermore, facial depth maps loss functions are briefly discussed, which will make it easier
to train neural facial depth models on a variety of datasets for both short- and long-range depth maps.
The network’s design and components are essential, but its effectiveness is largely determined by how it is
trained, which necessitates a large dataset and a suitable loss function. Implementation details of how neural
depth networks work and their corresponding evaluation matrices are presented and explained. In addition,
an SoA neural model for facial depth estimation is proposed, along with a detailed comparison evaluation
and, where feasible, direct comparison of facial depth estimation methods to serve as a foundation for a
proposed model that is utilized. The model employed shows better performance compared with current
state-of-the-art methods when tested across four datasets. The new loss function used in the proposed method
helps the network to learn the facial regions resulting in an accurate depth prediction. The network is trained
on synthetic human facial depth datasets whereas for validation purposes real as well as synthetic facial
images are used. The results prove that the trained network outperforms current state-of-the-art networks
performances, thus setting up a new baseline method for facial depth estimations.

INDEX TERMS Facial depth datasets, loss functions, neural depth estimation, empirical and systematic
evaluation.

I. INTRODUCTION
The process of obtaining 3D information from a 2D frame is

interpretation to understand the objects in the image and the
scene behind them.

known as depth estimation. Depth estimation is used in diver-
sified computer vision applications such as augmented real-
ity, posture estimation, 3D reconstruction, object detection
and recognition, semantic segmentation and -human-machine
interaction, weather forecast, and autonomous vehicles. The
ground truth depth information used to estimate depth is
beneficial for developing reliable navigation systems for
intelligent vehicles, environmental reconstruction, and image
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Face depth estimation is a challenging subject that has
been explored in conjunction with face motion [1], facial
analysis, and facial recognition [2], [3]. Many methods for
estimating face depth have been presented in recent years,
notably 3D from stereo replicating [4], 3D morphable model-
based methods [5], [6], shape from shading (SfS) [5], [6],
shape from motion techniques (SfM) [6], [7], and statistical
techniques [8], [9]. Due to the facial symmetry of facial
areas, the stereo matching procedure for face depth estima-
tion is more complicated (regardless of utilizing the local or
global technique), particularly when the system is binocular
and therefore only one stereo pair is used. Stereo matching
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methods can estimate a reasonable depth or disparity map
for facial depth estimation, but these approaches are more
sophisticated, requiring the use of a local or global proce-
dure. Because of the similarity of the face areas, particularly
when using a binocular setup with only one pair of stereo
images. All stereo approaches are limited by the similarity
characteristics of the facial information. Furthermore, the
similarity of the pixels values results in more spikes, holes,
and particularly uncertain disparities in the depth map.

The computer vision field has conventionally approached
the field of depth maps in a variety of methods, such as
with stereo or multi-view cameras [10], [11], structure from
motion [12], [13], and depth from light diffusion & shad-
ing [14], [15]. The described methods face many difficul-
ties, such as missing pixel values and depth consistency,
which result in inconsistencies in depth maps. In addition, the
camera calibration, camera setup, and post-processing tech-
niques are computationally expensive and time-consuming.
The research community has explored the monocular depth
estimation task using only a single image which is much more
straightforward and suitable for consumer applications. The
credit goes to significant advances in machine learning-based
networks [16]-[20]. In the first part of the paper, we have
given a detailed evaluation of publicly available facial depth
datasets and widely used loss functions in facial depth esti-
mation networks, thus to better understanding the problem
of facial depth maps. The key characteristics and properties
of the facial depth datasets are presented and compared, fol-
lowed by the loss functions employed. The implementation
specifics of how neural depth networks work, as well as the
evaluation matrices that correlate to them, are shown and
described. A full comparison evaluation and, where possible,
direct comparison of facial depth estimation methods are
performed in the second phase of the paper to serve as a
foundation for a proposed model that is used. When tested
across four datasets, the proposed model outperforms current
state-of-the-art approaches. The suggested method’s unique
loss function aids the network in learning the facial areas,
resulting in an accurate depth prediction. The network is
trained using synthetic human facial depth datasets, and real
and synthetic facial images from four facial depth datasets are
used for validation.

A. RESEARCH CONTRIBUTIONS

Following thorough research over the previous few years,
image-based facial depth estimation using deep learning algo-
rithms has demonstrated promising results. However, the
field is still in its early stages, and more improvements are
expected to address issues and challenges such as data selec-
tion for training, generalization to unknown environments,
fine-scale depth estimation, reconstruction versus recogni-
tion, handling multiple objects in the presence of occlusions,
and cluttered backgrounds, data imbalance and how to select
an appropriate loss function and neural model for facial depth
estimation.
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This paper aims to provide all of the key information
for conducting a study on monocular facial depth estima-
tion challenges. First, a brief review of the literature and
applications of facial depth map research was presented,
followed by a detailed analysis of publicly available facial
depth datasets and commonly used loss functions. To better
understand the facial depth map problem, the facial depth
dataset’s key characteristics and properties are described and
evaluated, followed by the loss functions used. For each
dataset, the dataset description, metadata, ground truth, and
relevant data (year of publishing, ground truth information,
image size, type, objects per image, and several images)
are listed systematically. In addition, each loss function is
presented in such a way that the research community can
select the best loss function for their requirements. The imple-
mentation details of how neural depth networks work are
demonstrated and explained, as are the evaluation matrices
that correspond to them. In the second section of the paper,
a complete comparison evaluation and, where possible, direct
comparison of facial depth estimation methods are conducted
to serve as a foundation for a proposed model that is used.
The model outperforms current state-of-the-art techniques
when tested across four datasets. The unique loss function of
the suggested method supports the network in learning the
facial areas, resulting in an accurate depth prediction. The
network is trained with synthetic human facial depth datasets
and validated with real and synthetic facial images from four
facial depth datasets.

B. CHALLENGES AND DEVELOPMENTS

Monocular facial depth estimation based on deep learn-
ing (DL) has been intensively explored and advanced over
the last few years. However, still, several limitations need
to be addressed. This section covers the major issues and
discusses potential directions for monocular facial depth esti-
mation maps research. By utilizing a deep learning network,
we can extract many features simultaneously, such as seman-
tic information, optical flow features, and depth features.
While semantic segmentation will be incorporated into depth
estimation, it will remain a separate module that performs
autonomous tasks. Additionally, there are typically numerous
sub-networks capable of learning depth estimation, visual
odometry, and flow estimation. However, such networks are
not adequately connected, which results in a large set of
network parameters, which eventually requires an increased
memory footprint. How to improve the network’s integration
is a research direction that is worth exploring as the future
direction of this research work.

The quality of the training data has a significant impact
on the generalization and reliability of the deep learning
model. To increase facial depth estimation accuracy, more
data with higher quality and a wider variety of scene types
is required. However, the facial depth estimation datasets
currently available are quite small, and creating a new dataset
is time-intensive and expensive. At the moment, several
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researchers generate a large number of images for facial depth
estimation using a variety of software, but the quality is incon-
sistent. A future research goal will be to provide a dataset
for monocular facial depth estimation that is compatible with
deep learning models.

Realistic environments are frequently complex, having a
high amount of moving objects, occlusions, changing light
conditions, and changing weather. However, the majority of
existing facial depth estimation models assume an optimum
environment. Although some researchers have attempted to
address dynamic objects and occlusion scenarios and have
made considerable progress lately, the problem of improving
the facial depth estimation of complicated scenes for real-
world applications remains a key future research field.

Facial depth estimation is a challenging stage in the devel-
opment of practical applications such as augmented reality
(AR), virtual reality (VR), robotics and autonomous vehicles.
However, the resolution of the estimated facial depth is often
limited in most existing facial depth estimation algorithms to
maximize computational effectiveness.

The fundamental module of SLAM is image depth estima-
tion, which is deeply connected with commercial applications
such as autonomous driving. However, researchers frequently
design deeper networks with more parameters and constraints
to accomplish depth estimation, which needs more compu-
tational cost and hence does not fulfil the real-time require-
ments of modern applications. Thus, a future research area
will be to determine how to use a lighter network for real-
time estimation while maintaining prediction accuracy.

The rest of the paper is organized as follows: Section 2 dis-
cusses related work in the domain of facial depth estimation,
especially related studies, or surveys. Section 3 presents the
results of a bibliometric investigation, a thorough examina-
tion of depth datasets, and further discusses the most used
loss functions. Section 4 presents the implementation details
of how facial depth neural networks work followed by some
comparative analysis of the facial depth estimation methods.
Section 5 presents evaluation matrices and section 6 describes
and illustrates the most recent SoA depth estimation model,
which is discussed and chosen for facial depth estimation.
Section 7 shows the experimental results, discusses the train-
ing approach, and compares the trained model to SoA meth-
ods in a brief comparison study. Section 8§ includes a detailed
discussion of the experimental results while section 9 pro-
vides the conclusion and future research directions.

Il. RELATED WORKS

Datasets are the foundations for evaluating the behaviour
and validating the results of artificial intelligence networks,
and they play a critical role in scientific research. Another
important building block is to use an appropriate loss func-
tion to improve the deep network’s training performance.
An in-depth analysis of various facial depth datasets is per-
formed, and depth regression loss functions for both short and
long-range depth datasets are proposed in the next sections.
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This section focuses mostly on related facial depth estimation
research and applications.

A. FACIAL DEPTH ESTIMATION APPLICATIONS

Human face images are among the most common images,
and they play an important role in many visual interpreta-
tions. Since the facial parts separation in a human face is
well-known in human anthropometry, it is possible to find the
distance of a human focus from a single image frame with
good accuracy provided an understanding of the camera’s
field-of-view. The research community in today’s fast-paced
technological environment wants more realistic representa-
tions, thus 3D representations of 2D images are becoming
increasingly important. These methods are categorized into
the following primary categories based on their applications.

1) FEATURE EXTRACTION METHODS

The expressions on people’s faces reveal information about
individuals. Faces identify people, and one may infer how
others are feeling from their expressions. Face feature extrac-
tion can help in the improvement of face depth maps tasks.
In the realm of computer vision, facial feature depth estima-
tion and 3D reconstruction are popular topics. In computer
vision-related applications such as detection and recognition,
especially under shifting posture lighting, and expression, 3D
information gives significant benefits in overcoming diffi-
culties associated with 2D images (PIE) [14]. Methods have
been shown in the SOA to be a potential solution to several of
problems in facial depth maps [20]-[25].

2) FEATURE FUSION METHODS

Feature fusion offers a full description of image features’ rich
internal information, and following dimensionality reduc-
tion, compact representations of integrated features can be
obtained, resulting in decreased computational complexity
and better performance of facial depth maps. 3D reconstruc-
tion helps in the resolution of difficulties in 2D images as
well as the improvement in performance in a variety of
tasks. Several approaches have been offered in the last few
years [26]-[34] for facial depth estimation tasks.

3) IMAGE PROCESSING FILTRATION METHODS

For the successful application of depth information, quality is
critical. Visually undesirable rendered views are frequently
produced when a depth map is distorted by large feature-
less artefacts. A robust depth image post-filtering technique
should be considered for further 3D video transmission. Fil-
tering of depth maps has primarily been studied from the
viewpoint of increasing resolution [35]-[37]. There are a
variety of post-processing techniques for restoring natural
images [38]. Filtering algorithms included Gaussian smooth-
ing and the H.264 in-loop deblocking filter [39], as well as a
local polynomial approximation (LPA) [40] and bilateral fil-
tering [41], which use edge-preserving structure information
from the colour channel to refine rough depth maps [42].
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TABLE 1. Properties of feature, fusion, and image processing filtration methods.

Method Category | Methods | Strategy Category | Descriptions of the main block Uses
Feature Extraction | [14] Depth From Shading, | DL Light-Field Angular Function Depth Maps
[20] Defocus DL Adversarial Networks Depth Maps
[22] Face Depth CNN ML Surface Normal Direction Reconstructions
[23] Recovering Facial Shape ML Symmetric Self-Ratio Images Reconstructions
[25] Shape-From-Shading DL Feature Extractor Object Recognition
From Depth Maps CNN
Feature Fusion [26] Face Depth CNN DL Single Reference Face Shape 3D Face Reconstruction
[27] Face Depth CNN DL Multi-Level Feature Fusion 3D Reconstruction
[28] Autoencoder DL Stacked Contractive Autoencoder | Learning 3D Faces
[29] Single Facial Depth Map DL Multi-Level Feature Fusion Refinement
[30] Face From Depth DL Feature Fusion Extractor Driver Pose Estimation
[31] Face From Depth DL Feature Fusion Extractor Image Super-Resolution
[32] Pose DL Multi-Level Feature Fusion Pose Estimation
[33] 3D Blendshape DL Feature Fusion Extractor Facial Expression
[34] Learning Feature ML Multi-Level Feature Fusion Recognition
Aggregation
Image Processing | [36] Learning Feature ML Joint Bilateral Upsampling
Filtration [37] Depth ML Multistep Joint Bilateral Depth Upsampling
[38] Pointwise Shape-Adaptive ML High-Quality Filtration Denoising And Deblocking
[39] Pointwise Shape-Adaptive ML Filters Deblocking
[40] Local Approximation ML High-Quality Filtration Signal And Image Processing
[41] For Gray And Color Images DL Bilateral Filtering Signal And Image Processing
[42] Fused Deep Representation DL Light Field Face Recognition

Table 1 shows the corresponding methods categorized
into feature extraction, feature fusion, and image process-
ing filtration with their respective use cases and strategies
involved.

a: FACIAL DEPTH IN 3D FACE RECOGNITION

Face recognition (FR) has been used for human identification
for ages. With the advances of deep neural networks (DNNs),
both face identification (one-to-many) and face verification
(one-to-one) have achieved state-of-the-art results. Despite
these advances, there are still a few limitations due to external
conditions like viewing angles, human appearances like facial
expressions, occlusions, scene lightings. To overcome these
factors researchers, use other modalities like depth and sur-
face normal. The availability of low-cost RGB-D consumer
level sensors like Microsoft Kinect and Intel Real Sense
which simultaneously capture depth data of the scene and the
colour intensity make these multimodal data more accessible.
Depth information can be very useful in FR because it helps
to retrieve geometric information of the face in the form of
dense 3D points. RGB-D FR can be categorized broadly into
two classes — handcrafted feature-based method and deep
learning-based methods. Table 2 shows the corresponding
details of the listed methods for this subsection.

B. FACIAL DEPTH FROM STEREO AND MULTI-VIEW

Using two or more cameras, depth can be derived from stereo
or multi-view. A process known as stereo matching is used to
produce this map. The primary notion is that triangulation and
stereo matching can be used to estimate depth in a variety of
applications, including object grasping, collision avoidance,
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broadcasting, robotic navigation, and multimedia. The most
frequently used methods for measuring face depth from stereo
methods are designed on fitting the computed depth to a
generalized 3D model [49]-[51]. For facial depth estimation,
a passive stereo system for 3D human face reconstruction and
recognition at a distance method is introduced [52]. Using
a Kinect camera and a face detection algorithm, a method
was able to reliably locate the human head and estimate head
posture. To locate the detailed facial characteristics, a depth
AAM algorithm is designed [53]. In a passive stereo vision
system, a method for estimating facial depth is introduced.
The method relies on the fast creation of facial disparity maps,
which does not necessitate the use of expensive instruments
or generic face models. It entails including face attributes in
the disparity estimate process to improve 3D face reconstruc-
tion [54].

The primary drawbacks of these approaches are the long
processing times associated with the fitting phase (due to
the high computational complexity) and the need for human
setup, as seen in [51]. Another drawback of these approaches
is that the generated faces resemble the generic model rather
than their model. It’s also particularly sensitive to noise
because it calculates curves using the second derivative.

C. FACIAL DEPTH FROM 2D, MONOCULAR IMAGES

The monocular depth estimation method uses only a single
RGB image as input to predict the depth value of each pixel
or infer depth information. The following methods use a
monocular depth strategy. Monocular depth maps are simple
to set up, especially when it comes to camera calibration,
and only require a single image to estimate depth. It can also
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TABLE 2. Properties of facial recognition depth maps methods.

Methods | Feature Features extracted Strategy Method Descriptions  of | Uses
Type Category | the main block
[43] Geometric | Histogram Of Oriented Gradient (HOG) | Random Decision Forest Feature Entropy Map Recognition
(RDF) Classifier Extraction
DL
[44] Geometric | Local Binary Patterns (LBP Iterative Closest Point Feature Discriminant Color | Depth Maps
(ICP) And Extraction | Space (DCS)
DL
[45] Geometric | Signed Distance Function (SDF) ICP Feature 3D Face Model Depth Maps
Extraction
ML
[46] Statistical | Feature Space CNN Feature Autoencoder Depth Maps
Fusion
DL
[47] Spatial Feature Space Single Facial Depth Feature CNN VGG Depth Maps
Fusion &
Recognition
[48] Spatial Feature Space Face Recognition Accuracy | Feature Surface Normal, Recognition
and Extraction | Point Cloud; & Depth
Geometric Maps

give a variety of monocular visual cues, such as gradients and
texture variations, colour, and defocus, that have previously
been underutilized in such systems and can be used even in
texture fewer areas. Table 3 shows the corresponding details
of the listed methods from this section.

D. FACIAL DEPTH THROUGH DOMAIN TRANSLATION

The domain translation which is also known as image transla-
tion requires learning a parametric mapping function between
two separate domains. Per-pixel classification or regression
issues are frequently used to solve image-to-image translation
challenges [48]-[62]. Borghi er al. [30], [51] suggested a
method for computing the appearance of a face based on a
standard CNN that combines characteristics of autoencoders
and fully connected convolutional networks (FCN). Several
recent studies have investigated the image-to-image transla-
tion problem by developing a mapping between two frames
using conditional generative adversarial networks [52], [63].
Authors in [53] and [64], proposed an approach with the
pix2pix model, which synthesizes images from semantic
labelling and then reconstructs objects from edges and colour-
izes images. Aissaoui et al. [54], [65] provided a framework
of linked GANSs that can synthesize pairs of similar images
in two separate contexts. This research also focuses on the
domain translation problem to create visually attractive facial
depth maps with sufficient discriminative information for
face recognition.

The authors [66] present a novel framework for learn-
ing (1) RGB face parsing, (2) depth face parsing,
and (3) RGB-to-depth domain translation together for facial
depth maps. In [67], the authors suggest a new Deterministic
Conditional GAN that is efficient for face-to-face translation
from depth to RGB and is trained on labelled RGB-D face
datasets. Whereas the network cannot reconstruct the exact
somatic attributes of unknown focus on the individual, it can
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reconstruct plausible faces which is sufficient for use in
various pattern recognition applications. In [68] a method
proposes face from depth for head pose estimation on depth
images for estimating head and shoulder pose based solely
on depth images to create a complete end-to-end system.
The proposed method also incorporates head detection and
a localization module for facial depth estimation.

E. FACIAL DEPTH MAP DENOISING

Two forms of noise which include holes and spikes impact
the depth data generated by the face reconstruction process.
Pixels with unknown depth values are referred to as holes.
During the disparity estimation procedure, the disparity val-
ues for these pixels are set to zero. They arise when there is an
obstruction or poor light. Spikes are pixels having an incor-
rect depth estimation. They are mostly caused by incorrect
matching and occur inhomogeneous areas where pixels have
similar intensity values.

Various approaches for face depth map de-noising have
been presented in the literature. These methods are divided
into two categories: global and local. To eliminate spikes and
fill holes, global approaches apply noise reduction filters to
the hole depth image. For this, the median filter is frequently
used. Authors in [69] and [70], proposed a Gaussian filter
method that works to soften the data and eliminate spikes
in the z-coordinate. To eliminate spikes, fill tiny gaps, and
smooth the data, the authors in [71] utilized three median
filters with different variances. For minor noises, these types
of filters can produce optimal results. However, if the noisy
region is big, these filters will not be able to remove the
noise; instead, they will just modify the pixel values by their
surrounding pixels.

In [49] by processing the data row by row, with the first
and last non-zero pixels in each row being chosen by a sweep
of the depth images. This procedure is continued until no
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TABLE 3. Properties of facial depth from 2D monocular images methods.

Methods | Feature Features extracted Strategy Method Descriptions of | Uses
Type Category | the main block
[26] Geometric | Single Reference Face Shape Constrained Independent | Feature 3D Face Model 3D Face
Component Analysis Extraction Reconstruction
DL
[9] Spatial & | Constrained Independent Component | The Rotation and Feature Discriminant 3D Face
Geometric | Analysis Translation Process Extraction | Color Space Reconstruction
DL (DCS)
[7] Geometric | Similarity Transform & Feature | Deep Learning Feature 3D Face Model Depth Maps &
Space Extraction 3D Face
Reconstruction
[55] Statistical | End-To-End Learning Uses Single-View Depth Feature CNN Models Depth Maps
and Multi-View Pose Fusion Combined
Networks
[56] Spatial & | Canonical Correlation  Analysis | Surface Depth Feature Face Color Face Depth
Geometric | Surface Depth. Extraction | Texture And Maps
Surface Depth
[57] Spatial & | Feature Points, Feature Space Feature Points Similarity Feature Extracted To 3D Face
Geometric Analysis Extraction | Form The 2D-3D | Reconstruction
DL
[58] Geometric | Recovering The Depth Uses A Cascaded FCN Feature CNN Models Face Depth
And CNN Architecture Extraction | Combined Estimation
[59] Spatial & | Feature Space Uses A Combination of Feature CNN Encoder- Face Depth
Geometric Loss Function Extraction | Decoder Estimation

more pixels are produced. The filling process usually involves
utilizing an interpolation technique or a local median filter
after determining the hole’s boundaries. This method is more
accurate than the global method since it just processes noises
and leaves the non-noisy data alone. Since holes have a
known value (zero or undefined), it can only handle those;
spikes, on the other hand, have a random value, therefore it
can’t be used to eliminate them.

The authors [72] suggested an edge-guided deep neural
network for the super-resolution of a single facial depth map.
It is divided into two sub-networks: edge prediction and depth
reconstruction. The edge prediction sub-network generates an
edge guidance map that is used to guide the depth recon-
struction sub-network in recovering sharp edges and fine
constructions. Jovanov et al. [73] proposes a time-of-flight
depth camera-specific wavelet-based depth video denoising
approach based on multi hypothesis motion estimation for
facial depth maps. In [74] authors proposed a method and sys-
tem for super-solving and recovering the facial depth maps.
The main idea of this approach is to use a learning-based
technique to gather reliable face priors from a high-quality
facial depth map to improve the depth images.

Ill. PUBLICLY AVAILABLE FACIAL DEPTH ESTIMATION
DATASETS AND LOSS FUNCTIONS

This section provides an overview of the most commonly
used facial image depth datasets, including their respective
descriptions in tabular form.

There are several useful datasets available for training
depth estimation methods both multi-view and monocular
images of human faces. The collection’s general data con-
tains information on the number of objects, scenarios, and
RGB and depth images. Among the numerous types of data
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FIGURE 1. The number of facial depth datasets that are publically
available each year.

contained within every dataset, the ground truth contains
depth, mesh, cameras trajectories, videos, positions, point
cloud, semantics label, trajectories, and dense multi-class
labelling. As the field of face image depth estimation research
grows in popularity, more work is being put into creat-
ing higher and additional informative depth maps datasets.
Fig. 1 shows the number of new publicly available facial
depth maps datasets and their corresponding number of cita-
tions becoming available each year over the period for the last
ten (10) years. Table 4-6 tabulates a comparison analysis for
the data existing in each dataset.

A. FACIAL AND POSE DEPTH DATASETS
The depth camera sensor should be capable of faster human-
skeletal tracking in addition to being a low-cost camera sensor
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that outputs both RGB and depth information. This kind of
tracking can provide the precise position of human body
joints throughout a period, making comprehensive human
behaviour investigations easier and quicker. As a conse-
quence, there has been a lot of interest in inferring human
faces from depth images and synthesizing depth and RGB
images. Several new facial depths maps datasets have been
generated in recent years to assist in the confirmation of
humanoid facemask action analysis methods. The details of
these datasets are provided in the following section.

1) BIWI

This dataset [75] comprises 15K images of 20 different sub-
jects which included 6 female subjects and 14 male subjects
(4 people were recorded twice). Moreover, this dataset pro-
vides the depth image of 640 x 480 pixels resolution, the
corresponding visible image of 640 x 480 pixels size, and
lastly, it also offers the annotation for every image. The depth
data is captured using a Kinect v1 sensor. The dataset consist
of the head poses with the range of around +—75 degrees
yaw and +—60 degrees pitch. The overall dataset includes
the head’s 3D location and rotation as the ground truth data.

2) EURECOM KINECT FACE

This dataset provides multimodal facial data of 52 subjects
among which 14 are female, and 38 are male subjects. Eure-
com Kinect Face dataset [76] incorporates the depth data
which is acquired from Kinect vl sensor. This data was
gathered at different times in the form of two-fold intervals
with an average time gap of half month. The recorded data
in two different intervals provides the facial frames of each
subject in nine situations with various lighting and occlusion
conditions and facial expressions which include a neutral face
and smiling face.

The provided data incorporates facial data with open
mouth, and different occlusions such that strong illumination,
eyes occlusion by wearing sunglasses, mouth occlusion by
covering it with hand, face side occlusion by placing a paper.
The overall dataset provides the RGB colour images, the 3D
images, and the depth map which is provided in the forms of
the bitmap depth image and the text file containing the actual
depth levels acquired from the Kinect sensor. The dataset also
incorporates six distinct manual facial landmarks positions
which comprise of right and left eye, right and left corner of
the mouth, the tip of the nose, and the chin.

3) PANDORA

This dataset [30] provides a total of 250K full-resolution
RGB, their corresponding depth data, and their annota-
tions are also included in this dataset. The depth data is
acquired from a Kinect v2 sensor. The Pandora dataset is
frequently used for various computer vision tasks such that
head poses estimation, head centre localization, and shoulder
pose estimation.
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4) FACESCAPE

The FaceScape dataset [78] includes large-scale 3D facial
models, parametric models, and multi-view images all are
recorded in high-quality. The dataset also provides the
subject’s age and gender, as well as the camera settings
configuration. The dataset is made publicly available for
non-commercial research purposes. This dataset is consist-
ing of 3D faces acquired from 938 subjects. The overall
data comprises 18,760 textured 3D faces, with 20 distinct
facial expressions. The dataset provides topological infor-
mation in all the 3D models by processing pore-level facial
geometry. For rough shapes and intricate geometry, fine 3D
facial models can be expressed as a 3D morphable model,
it is represented as displacement maps. A unique methodol-
ogy is proposed that takes advantage of the large-scale and
high-accuracy dataset by utilizing a deep neural network to
extract expression-specific dynamic characteristics.

5) 3DMAD

The 3D Mask Attack Database [77] (3DMAD) contains
76500 frames of 17 different subjects captured using the
Kinect v1 depth sensor. Each frame is made up of a depth
image with an image dimension of 640 x 480 pixels — 1 x
11 bits, a matching RGB image with an image dimension of
640 x 480 pixels — 3 x 8 bits, and precisely labelled eye
locations (concerning the RGB image). Data is gathered in
three distinct sessions for each subject, with each session
consisting of five recordings with each recording including
300 frames. The overall data is recorded from the frontal
view with neutral expression in controlled environmental
conditions. The complete data is gathered in three different
sessions. The first two events are for real-world samples,
wherein people are recorded for two weeks. A single operator
collects 3D mask attacks in the third session (attacker).

6) SYN HUMAN FACE
The SYN Human FACE [59] includes extensive high-quality
3D face models and their corresponding 2D RGB, pixel-
accurate ground truth depth images. The suggested frame-
work works as follows: In Character Creator, a collection
of virtual human models is built using the real 100 head
models. To generate additional data variations, the texture
and morphology of the models are modified. These models
are then imported to iClone for incorporating the data with
five different facial expressions. The mesh, textures, and
animation keyframes for the completed iClone models with
individual face emotions are then exported in FBX format.
In the next phase head movement (yaw, roll, and pitch)
was applied on all the models in Blender to acquire the
head pose. The FBX files are then imported and scaled in
the Blender world coordinate system. To replicate the real
work environment, lights and cameras are included in the
scene, whose properties are then adjusted accordingly. The
camera sensor near and far clips have been set at 0.01 meters
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TABLE 4. Comparison between data representations.

« RGB: Images of the visible light spectrum in two dimensions.

« Depth: The term "depth map" refers to a map of per-pixel data that includes depth-related information. The
distance to an object at each pixel is specified by a depth map (e.g., distance from the camera).

« Video: This type of data displays a series of temporally consecutive visual readings.

+ Point cloud: A 3-dimensional shape is represented by a collection of points, each of which has at least one X, vy,
and z coordinate.

« Mesh: It's a polygon-based representation of 3-dimensional objects that captures topological and shape surfaces
directly.

« Scene: It's a form of data that are collected in a specific environment, such as a room or various indoor/outdoor
scenarios.

< Semantic: Labels that relate some data to an ontology class (e.g., human, vehicle, etc.).

« Object: Object properties such as form, and motion are captured in data. appropriate for tasks such as tracking or

object categorization.

Camera: This information can be used to track the geometrical properties of the camera.

Action: This information is made up of videotapes of people performing specified actions.

Trajectory: It is a sort of data that records the course of motion or activity taken by a particular object or entity.

Pose: data describing human characteristics, such as head position.

Texture map: Texture maps are used to produce repeating textures, patterns, and distinctive visual effects on the

surfaces of 3D models. These can be utilized to define precise aspects such as hair, clothing, and skin to any 3D

models.

R/
0.0

R/
0.0

R/
0.0

X3

*

X3

*

>

% UV map: A UV map is a flat representation of a 3D model's surface that is used to wrap textures simply. UV
unwrapping is the method of creating a UV map. The term U and V relate to the horizontal and vertical axes of the
2D space.

DATA TYPE |DIMENSION |SHAPE MEMORY PROFICIENCY|COMPUTATION |USAGE
INFORMATION PROFICIENCY
RGB 2-D High Low Moderate Images are detected, represented, and|

shown in electrical devices like
televisions and computers.
Depth 2.5-D High Low Moderate Simulating the impact of dense semi-|
transparent material in a scene, such as|
fog, smoke, or significant amounts of|
|water.
Mesh 3-D Low High Moderate To form shapes with height, width, and|
depth, 3D meshes use reference points|
on the X, Y, and Z axes.

Voxel 3-D High Moderate High [Volumetric imaging in medical and|
landscape representation in games and|
simulations.

Point cloud 3-D Moderate High High from construction and engineering to
lhighway planning and self-driving car
[development.

Octree 3-D High Moderate Moderate to recursively subdivide a three-|
[dimensional space into eight octants in|
order to partition it.

TSDF 3-D Moderate High Moderate [based on a hand-held laser line scanne
as a fast, precise, and adaptable
igeometric fusion method in the 3D|
reconstruction of industrial products.

Stixel 2.5-D High Low Low Segmentation, Object tracking.

Texture map  |3-D High High High Generate textures, patterns, or special
visual effects.

UV map 3-D High Moderate High Converting a 3D mesh to a 2D space

from a 3D model.

and 5 meters, correspondingly. The sensor size and field of mesh has pivoted those bones, and the keyframes are stored
view (FOV) is set to 60 degrees and 36 mm, accordingly. to apply the rotation.

The render layer’s RGB and Z-pass outputs are then set Finally, the RGB and depth images are created by ren-
up in the compositor to produce the final result. In posture dering all of the keyframes. The matching head position
mode, the head and shoulder joints are recognized, the head (yaw, pitch, and roll) is produced using the Blender soft-
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TABLE 5. Datasets of facial depth, pose, and recognition.

Kinectv [76]

Expressions, Marker
Point Positions,
Illumination, Occlusion

Expressions, Poses

Examples of face images Dataset Labelling Description camera parameters |APPLICATIONS
Biwi [75] 3d Position Of The Head |People Moving Their Heads In |Intrinsic + Automatic Head
{1 f; And Its Rotation Different Directions Extrinsic Pose, Depth,
= O ST 7 Estimation, Gaze
< i i Estimation
Eure Com Facial Variations, Performing Various Intrinsic + Face Recognition,

Extrinsic, Focal
Length

Pose Estimation,
Depth Facial
Landmark Detection

3dmad [77]

Spoofing Is Occurring,
Eye Positions

3 Different Sessions For All
Subjects And Each Session 5
Videos Of 300 Frames Are
Captured, Neutral Expression

Intrinsic +
Extrinsic

Biometric (Face)
Spoofing, Facial
Depth Estimation

Pandora [30]

Head Position And Its

People Doing Different Poses

Intrinsic +

Pose, Facial Depth

Geometry, Expressions,
Mash, Motion Map,
Disparity Map, Texture

With 20 Specific Expressions

Rotation, Features For In Front Of A Camera Poses Extrinsic Estimation
The Face Verification

Facescape [78] | Textured 3d Face Models | Textured 3d Faces, Captured |Intrinsic + Predict Elaborate Rig
With Pore-Level From 938 Subjects And Each  |Extrinsic, Focal Gable 3d Face

Length

Models, Facial Depth
Estimation

Syn Human Expression And Pose, 5 Expressions Performed By Camera Matrix Facial Depth
Face [59] Expressions, Meshes, 3d |One Face, Poses, Lighting, Intrinsic + Estimation, Pose
Position Of The Head Head And Camera Rotation, Extrinsic, Focal Estimation
And Its Rotation, Translation Length
Lighting

4 Baracca
| Dataset [79]

Measures Of Distance,
Age, Weight, Variations,
Expressions

In-Car And Outside Views,
Human Body Measurements

Intrinsic +
Extrinsic

Thermal, Facial
Depth Estimation

Lock3DFace
(80]

Changes In Facial
Expression, Pose,
Occlusion, And Time-
Lapse

People Moving Their Heads In
Different Directions

Intrinsic +
Extrinsic

Pose, Facial Depth
Estimation, 3D Face
Analysis

Curtinfaces

Facial Variations,

Performing Various

Camera Matrix

Pose, Facial Depth

[81] Expressions Expressions, Poses, Intrinsic + Estimation, Face
Extrinsic Recognition

liit-D Rgb-D  |Head Position And Its Performing Various Camera Matrix Face Recognition,

[82] Rotation Expressions Poses, Intrinsic + Facial Depth
Extrinsic Estimation

Kasparov [46]

Variations, Expressions

Poses, Lighting, Head And
Camera Rotation

Intrinsic +
Extrinsic

Pose, Facial Depth
Estimation

ware’s python module. For each frame, the RGB images are
rendered with a resolution size of 640 x 480 pixels which
are then stored in jpg format. Whereas the corresponding
depth data is saved in a raw file (.exr format). Moreover, the
head poses information for each frame is documented and
stored in a text (.txt) file. The rendering process for each 2D
frame nearly takes an average time duration of 26.3 seconds
which is done using the Cycle Rendering Engine, provided
in Blender software which is a type of physically-based path
tracer for production rendering. The overall dataset consists

VOLUME 10, 2022

of around 3,500k frames, with around 3.5k 2D frames per
person.

The data is stored in a separate folder where each folder
contains the data of 100 face models. Each face model’s
produced RGB images, as well as the resulting depth and
head posture, are saved in three separate routes for three
different backgrounds: plain, textured, and sophisticated. The
synthetic dataset was used to create the sample images, which
included ground truth depth images and various backdrops
(basic, textured, and sophisticated).
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7) BARACCA DATASET

The recent interest and growth in depth sensors have sup-
ported different methods to instinctively assess the anthropo-
metric measurements, rather than utilising manual procedures
and expensive 3D scanners. Normally, the application of
depth data is limited due to the lack of depth-based public
datasets including accurate anthropometric annotations. As a
result, the authors [79] introduced a better dataset, Baracca,
that was constructed specifically for the anthropometric mea-
surements and vehicle perspective, including both in-cabin
and outside views. This is a type of multimodal dataset that
was created with synchronized depth, infrared, thermal, and
RGB cameras to meet the needs of the automobile industry.
The depth data is recorded using the Pico Zense DCAM710
depth sensor. The spatial resolution of the RGB sensor is
1920 x 1080 pixels, whereas the infrared/depth sensor has a
resolution of 640 x 480 pixels. A total of 30 subjects (26 male,
and 4 female) took part in the data acquisition process.

8) LOCK3DFACE

The Lock3DFace dataset [80] contains 5671 RGBD facial
videos from 509 people, each with a unique facial expression,
position, occluded, and moments. The database was collected
throughout two periods. The very first event’s neutral images
are used as training examples, while the final three variations
are used to create the 3 test procedures for position, occluded,
and expressions. All the images from the second run, in all
variants, make up a fourth validation set.

9) CURTINFACES

CurtinFaces [81] is a well-know RGBD face database that
includes over 5000 co-registered RGBD images of 52 par-
ticipants taken using a Microsoft Kinect. The front left, and
right postures are the initial three images for each person.
The remaining 49 images include 35 images with 5 different
illumination variations and 7 different emotions, as well as
7 distinct positions captured with 7 facial variations. Images
with sunglasses and arm occluded are also included in this
collection.

10) IIT-D RGB-D

The HIT-D RGB-D dataset [82] includes 4605 RGBD images
from 106 people collected for two periods using a Microsoft
Kinect. Each participant was captured with modifications
in attitude, emotion, and glasses under typical illumination
conditions. The datasets which were before the procedure,
which included a 5 cross-validation approach, in the tests set.
The head is cropped for each image in the data.

11) KASPAROV

The KaspAROV dataset [46], which comprises automatic
facial videos from 108 participants is captured by Microsoft
Kinect vl and v2 cameras. Every subject is shown in videos,
each shot at a separate time. A total of 432 videos with
117,831 images are included in the dataset. Because the
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Kinect v2 sensor data had higher Rgbd image registration
than the Kinect v1 sensor information.

B. FACIAL DEPTH ESTIMATION LOSS FUNCTIONS

On the reference depth map, deep learning-based algorithms
commonly improve a regression model. The key problem for
the SoA approaches in deep regression problems is determin-
ing a suitable loss function. Neural networks make use of
optimization algorithms.

This error is calculated using the loss function that eval-
uates how well or badly the model behaves. Neural depth
models have been used to estimate depth from one or many
2-D images using a variety of interesting loss functions for
depth estimation challenges. This section lists the common
loss functions that are used to estimate facial depth maps from
one or multi 2D frame images.

1) ADVERSARIAL LOSS FUNCTION
The binary categorical cross-entropy loss function, which is

used for face depth estimation in adversarial training mod-
els [20], [21], is defined as follows:

1 N
Locey, 1) = =32 D Irilogyi+ (1 = ri) log (1 = y)]
(0

The discriminator output is subjected to y; = D(I;), where y;
is the prediction discriminator for the i-th input depth map
and rj is the corresponding ground truth. The goal of the
generator model is to create images similar to the GT depth
and the discriminator model. The mean squared error (MSE)
loss function is used to achieve the first goal.
N

Luse (#407) = v S0 IG0H {3 @
where y2 and y9 are the input images and the output depth
map. In the second stage of the network, feed created depth
images into the discriminator and use the adversarial loss
on the discriminator predictions to see if the generated
images can trick the discriminator model. Next, while main-
taining the discriminator weights constant, back-propagate
the gradients up to the generator model input and modify
the generator parameters. As a result, the goal of solving the
back-propagation problem is to minimize:

~

O, = arg ming, Lg (yg, ¥l ) 3)

where LG is a balanced sum of two components and can be
defined as:

Lg (yg,)’d) = A Luse (ygdd) + Lpeee (G (%), 1) (4)

in which A is a weighting parameter that controls the influ-
ence.

2) GAN LOSS FUNCTION

The loss function [20], [21] in the GAN-based facial depth
model is divided into two parts: 1) Generator Loss: The gen-
erator loss is the sigmoid cross-entropy loss of the generated
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TABLE 6. Publicly available depth datasets and properties for faces and poses.

DATASET RGB |DEPTH |VIDEO |POINT-CLOUD | MESH | SCENE | SEMANTIC | OBJECT |CAMERA | ACTION | TRAJECTOR |POS
Y E
BIWI [75] \/ X X X \/ X X \/ X X N

EURECOMKINECT [76]

3DMAD [77]

PANDORA [30]

FACESCAPE [78]

SYN HUMAN FACE [59]

BARACCA DATASET [79]

LOCK3DFACE [80]

CURTINFACES [81]

<2
X
X
X
X
X
<_ <_ <_ <_ <_

< | L L | 22| 2| 2| 2| =<2| =<2| <
< | 2 2| 2| 2| <2 | < | <2| < =

< < < < < < <
X
<

IIT-D RGB-D [82] X X X X X X X \
KASPAROV [46] \/ X X X X X \/ X N
No | Dataset Name Year | Gt Labeling Dimension | Objects Subject/Type | No Diversity | Annotation
Images
1. BIWI [75] 2011 | Depth Expression, 640 x 480 Multiple | 20/realistic 15K Medium Real RGB-
Pose, 2D D
Skeleton
Positions
2. 3DMAD [77] 2013 | Depth Expression, 640 x 480 Multiple | realistic 76K Medium Real RGB-
Pose, 3D D
Positions of
The  Head
and its
Rotation
3. CURTINFACES | 2013 | Depth, Expression, 640 x 480 Multiple | 52/realistic >5K High Real RGB-
[81] Pose Pose, 2D D
Skeleton
Positions
4. IIIT-D RGB-D 2013 | Depth, Expression, 640 x 480 Multiple | 106/realistic 46K High Real RGB-
[82] Pose Pose D
5. EURECOM 2014 | Depth Expression 256 x 256 Multiple | realistic 20K Medium Real RGB-
KINECT [76] type, Pose, D
2D Rotation
6. LOCK3DFACE 2016 | Depth Expression 512 x 424 Multiple | 509/realistic >6K High Real RGB-
[80] type, Pose, D
3D Position
of The Head
and Its
Rotation
7. KASPAROV 2016 | Depth Expression 64 x 64 Multiple | 108/realistic 101K Medium Real RGB-
[46] type, Pose, D
2D Rotation
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TABLE 6. (Continued.) Publicly available depth datasets and properties for faces and poses.

8. PANDORA [30] | 2017 | Depth Expression, 256 x 256 Multiple | 20/ realistic 11K High Real RGB-
Pose, 2D D
Skeleton
Positions
9. FACESCAPE 2020 | 2D, 3D 3D Position | 4096 x Multiple | 938/Extracted | 8K High Synthetic,
[78] Landmarks, | of The Head | 4096 3D, RGB-B
Depth and Its
Rotation
10. | BARACCA 2020 | Depth Expression, 640x480 Multiple | 30/ realistic >10k Medium Real RGB-
DATASET [79] Pose D
11. | SYN HUMAN 2021 | 2D, 3D 3D Position 640 x 480 Multiple 100/ 350K High Synthetic,
FACE [59] Landmarks, | of The Head Extracted 3D, RGB-B
Depth and Its
Rotation

images and an array of ones. The L1 loss function (MAE)
is utilized to calculate the absolute difference between the
target and generated images. This determines how similar
the anticipated image is to the actual image. The following
formula can be used to compute the total generator loss:

LGen_loss = Gan_loss + A x L1 _loss 5)

Here A is set as 100.

1\ <«
MAE = (Z) Zi:l |ri — il (©6)

where rj is the prediction and t; are the true value. 2) Discrimi-
nator Loss: The discriminator takes real images and generated
images as its input. The sigmoid cross-entropy loss of the real
images and an array of ones is called real loss. Then the total
loss can be calculated by the summation of real loss and the
generated loss:

T_loss = Real_loss + Generated _loss (7)

3) STRUCTURAL SIMILARITY (SSIM) LOSS

SSIM [81] is used to determine the perceived differences
between the two similar images. (L_SSIM) represents the loss
function for the structural similarity index measure (SSIM)
and can be defined as:

®)

LSSIM(r, 1) = (M)

MaxDepth

4) SCALE SHIFT-INVARIANT LOSS

For a single ag image, the scale-shift-invariant loss [81] is
defined as

1
Lssi(r )= 55 37 p(r1) ©

where (p is the scale-invariant loss).

5) PRE-PIXEL SMOOTHNESS LOSS

Because image gradients commonly have depth inconsisten-
cies, a per-pixel smoothness loss [83] is used in conjunction
with the L_SL reprojection loss to make the inverse depth
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prediction better. The following formula is used to determine
the (L_SL) loss:

N
Lsi(r,t) = Zi 3xdte—3x(r,t) + aydte—?)y(r,t) (10)

where N denotes the number of valid pixels, dd denotes the
disparity gradient, and e ~9*Y( denotes the edges.

6) RECONSTRUCTION LOSS

When training, the network estimates disparity, and the input
image is generated using the bilinear samples, utilized to
recreate the image. At the local level, the bilinear sampler
is completely differentiable and easily integrated into a net-
work. A Lpyper and SSIM is represented as follows: which
computes the inconsistencies between both the input image
and the regenerated image when coupled as a photometric
image reconstruction loss [19].

1 ZN 1 — Lgsim(r, 1)

Lg(r,1) = N i > + (1 — )L Huper ((r, 1))

(11)

7) SCALE-INVARIANT LOSS

When training the model, depth estimation methods use the
GT depth y and the predicted log depth maps. Scale-invariant
loss function [81] (Lsy) can be represented by (Lgy) for the
depth values and is defined as:

1 N 2
Lsi(r,0) =~ (log () — log (1)

A N 2 1
-5 (Z,- log (ri)—log(ti)) (12)

where A refers to the balance factor.

8) BERHU LOSS

The OLS estimator is effective in the circumstance of check-
ing for data with outliers or massive errors. Berhu loss, on the
other hand, is designed to preserve good attributes in the face
of Gaussian noise. Berhu loss function [81] (Lg,7,) is defined
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TABLE 7. Loss functions categorized in terms of the use case applications.

Loss Function

Purpose Of Usage in Terms of Depth Estimation

Other Use Cases

Adversarial Loss

The matching feature vectors of distinct identities are linked together to expand the discriminative

Segmentation, 3D

Function [20], [21] characteristics between them. The goal is to change the distance between two facial depth image feature | reconstruction,
vectors and predict the final depth maps. Synthetic Data
generation
Gan Loss Function This loss function can be used to penalize inter-subject similarities to force the estimated depth image to | Segmentation, 3D
[22], [23] preserve as much subject discriminative information as feasible. reconstruction,
Synthetic Data
generation
Structural Similarity v' The (Structural Similarity Index) loss function is used with the BerHu loss function to use the | Classification,
(SSIM) Loss [81] input image structure and associated features. Regression,
v' The perceptual difference between two similar images is measured by the SSIM loss. Details | Segmentation
about structural loss come from relatively adjacent pixels with a deeper connection.
v These pixels contain vital information about the structure of the visual scene's objects.
Scale Shift-Invariant v' The loss function with the extra term would create a considerably smaller error because the | Regression,
Loss [39] major issue is to preserve relative depth relationships between pixels. Segmentation, Stereo
v It can also help in a diverse scene such as unknown and inconsistent scales and baselines | Depth Maps
dataset compatibility. This will allow for data to be trained on from a variety of sensing
modalities, including stereo cameras (with potentially unknown calibration), laser scanners,
and structured light sensors.
Pre-Pixel v' This loss function estimates the similarity between the actual and predicted depth map. Regression,
Smoothness Loss v Ttalso benefits the estimated depth-perceptual map's quality. Segmentation, Stereo
Depth Maps

Reconstruction Loss
[19]

This loss function can be used to make the projected left-view disparity map equal to the projected right-
view disparity map, resulting in more realistic disparity maps.

Segmentation, 3D
reconstruction,

Synthetic Data
generation

Scale-Invariant Loss v Regardless of the absolute global size, scale-invariant loss helps in the measurement of | Regression,

[39] relationships between points in the scene. Segmentation, Stereo

v' The average deviation between each pixel depth prediction and the ground truth depth is all | Depth Maps
that is measured.

Berhu Loss [40] v" BerHu Loss has an advantage since it uses MSE (or L2) loss to give pixels with greater | Regression,
residuals more weight. At the same time, it allows smaller residuals to have a larger effect on | Segmentation, Stereo
gradients than MAE loss. Depth Maps

v' BerHu's loss function simply combines MAE and MSE, enhancing the whole training process
and resulting in more smooth and accurate depth predictions.

Huber Loss [40] v' By balancing the MSE and MAE together, the Huber Loss provides the best of both worlds. | Regression,

v' Itis less sensitive to outliers in data and can predict more accurate depth maps. Segmentation, Stereo
Depth Maps
as: IV. IMPLEMENTATION DETAILS OF NEURAL DEPTH
(ri—1t) if ri—t)<c, ESTIMATION NETWORKS

Lpernu(r, 1) = (ri — l‘,’)2 + 2 (13)

e if (ri—1t)>c,

where r;, t; are ground truth and predicted depth maps.

9) HUBER LOSS

MSE is thought to be better at detecting outliers in a dataset,
but MAE is expected to be better at preventing them. Data
that appear to be outliers, on the other hand, should not be
studied, and those points must not be assigned much weight.
As aresult, the Huber loss function [81] (L_Huber) is defined
as:

(ri — 1)) if (i—1t)>c,
Lyuper(r,t) = F—1;)? 2 14
ruter (- 1) it + e t; te if i—1t) <ec, (1
c

where 1j, t; are ground truth and predicted depth maps.

Table 7 shows the loss function categorized according to
their use in depth estimation and their respective use case
applications.
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Convolutional neural networks (CNN) are the form of a
learning algorithm for data processing with a uniform grid,
such as images, that is intended to acquire provides scalable
features from low- to high-level structures efficiently and
adaptively. Convolution, pooling, and fully connected layers
are the three types of layers (or building blocks) that make up
CNNs. Convolution and pooling layers are the initial layers
that extract features, while the third, a fully connected layer,
transmits these characteristics into the final output, such as
classification or multiple regression analysis. A convolution
layer is an important part of CNN, which is made up of a
stack of mathematical computations like convolution, which
is a specific sort of linear operation. Because a feature can
appear everywhere in a digital image, image pixels are saved
in a two-dimensional (2D) grid, i.e., an array of numbers and a
small grid of parameters called the kernel, and an optimizable
feature extractor, is implemented at every image position,
CNNs are extremely efficient for image analysis. Features
extracted can evolve hierarchical structures and progressively
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TABLE 8. Performance evaluation of monocular depth estimation based deep learning models on 11IT-D RGB-D [82], KASPAROV [46], CURTIN FACES [81],

and LOCK3DFACE [80].

DATASETS PARAMETERS ACCUR
EEI];ERE YEAR NETWORK LAYERS | INPUT/OUTPUT [ ‘fr-o0
IIIT-D RGB-D 47M CNN, FC,
[46] 2016 AUTOENCODER [82] SOFTMA | RGB/DEPTH 98.7
X
KASPAROV 32M CNN, FC,
[84] 2014 VGG-16 [46] SOFTMA RGB/DEPTH 94.4
X
IIIT-D RGB-D 68M CNN, FC,
[85] 2016 RESNET-50 [82] SOFTMA RGB/DEPTH 95.8
X
CURTIN 86M CNN, FC,
[86] 2017 SE-RESNET-50 FACES [81] SOFTMA | RGB/DEPTH 97.8
X
LOCK3DFACE 73M CNN, FC,
[58] 2018 INCEPTION-V2 [80] SOFTMA | RGB/DEPTH 71.7
X
IIT-D RGB-D 84M CNN. FC
[47] 2020 VGG + DEPTH (82] SOFTMA | RGB/DEPTH 99.6
X

more complicated as one layer passes its results into the next
layer. Training is the process of adjusting parameters such as
kernels to reduce the disparity between outputs and ground
truth labels using optimization algorithms like backpropaga-
tion and gradient descent. Fig. 2 illustrates the comprehensive
implementation details.

The performance of 2D facial depth estimation has been
greatly enhanced because of the use of Deep Learning CNNss.
Facial depth maps are learned directly from 2D RGB-D
facial images by training deep neural networks on large
datasets. Different deep learning models (i.e; VGG, Autoen-
coder, ResNet, encoder-decoder, inception, DenseNet) are
used for facial depth maps which are trained on 2D face
depth images. These models typically consist of CNN, FC,
SoftMax layers followed by an appropriate loss function that
can minimize the errors of the training networks. Weights of
the networks are mostly randomly initialized. The datasets
can be augmented in several ways (pose augmentation, reso-
lution, transformation, rotation, cropping, and flipping) using
arange of images to enlarge training datasets and can achieve
better accuracy. Table 8, shows some comparison analysis
of the deep learning-based models for facial depth estima-
tion on iiit-d rgb-d [82], kasparov [46], curtin faces [81]
and lock3dface [80] datasets. Note that we were unable to
compare other qualitative evaluation metrics mentioned in
Table 8 due to technical difficulties with publicly avail-
able codes and a lack of instructions for these methods
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listed in Table 8, and the accuracy results are obtained
from their related articles. A CNN-based system has three
major components, a training phase, data pre-processing,
and model design. To train the model, deep learning-based
techniques usually require a significant number of datasets.
In CNN-based facial depth maps research, a shortage of
large-scale realistic face depth datasets remains an outstand-
ing topic. Because CNN has a lower tolerance for pose
changes, suitable data preparation or synthetic data can
enhance accuracy before transmitting the data to the model.
In addition, selecting an appropriate CNN and loss function
are critical.

V. EVALUATION METRICS FOR FACIAL DEPTH
ESTIMATION

The most used quantitative metrics for evaluating the perfor-
mance of monocular facial depth estimation methods are pro-
vided in Table 9. These are not limited to 8 metrics, however,
most of the published articles used these quantitative metrics
to analyze the performance of the trained depth estimation
models.

VI. FACIAL DEPTH ESTIMATION MODEL

Many consumer applications including robotics, augmented
reality and advanced driving monitoring systems can benefit
from facial depth estimation neural depth networks from
single images. A methodology for creating depth maps from
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FIGURE 2. A look at the design of a CNN and how it’s trained for facial depth estimation. Convolution layers, pooling layers (e.g., max-pooling), and
fully connected (FC) layers are the building components that make up a CNN. The success of a model with certain kernels and weights is evaluated
using a loss function and forward propagation on a training dataset, and learning parameters, such as kernels and weights, are adjusted using the
gradient descent process. The term “corrected linear unit” refers to a linear unit that has been rectified.

TABLE 9. Quantitative metrics used for performance evaluation of
monocular facial depth estimation.

S.No | Quantitative Metrics | Formula
Name
1@ |di-d]
1 AbsRel NZ @
1 *
2 RMSE ;Z|di_di|z
3 RMSE (log) 1
< llogd; — log d; 2
*12
4 SqRel lz 1di — di|*
N d;
5 Accuracies % of d;max(d;/g;) = 8 thr
6 L1 Z?=1 |Ytrue — Ypredicted |
n 2
7 L2 Zi:l (ytrue — Ypredicted )
8 NRMSE
where d; and d; are the ground truth and predicted depth at pixel i and
N is the total number of pixels.

single images of human faces is presented in this section,
which utilizes the source face depth and corresponding
ground truth depth using neural networks.

Existing facial depth map algorithms may produce depth
maps with comparable accuracy, but they suffer from diffi-
culties such as missing values and depth similarities, which
result in holes in depth images. As an alternative, the model
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used in this study automates the collection of optimal param-
eters, reducing model complexity during the training process
for facial depth estimation.

A recent SoA LapDepth [68] model is chosen to accom-
plish high-quality facial depth estimation from a single 2D
frame. By applying the Laplacian pyramid-based decom-
position technique to the decoding process, the suggested
method intends to successfully restore local details (i.e., depth
boundaries) as well as the global layout of the depth map.
The depth residual including local details, which suitably
describe depth attributes of different scale-spaces, is created
using Laplacian residuals of the input colour image guidance
encoded features. To improve the efficiency of this decoding
process, the authors [87] introduce weight standardization to
the pre-activation convolution block, which greatly helps in
estimating depth residuals. First, describe the overall archi-
tecture of the proposed decoder for monocular facial depth
estimation in this section. The entire decoding procedure will
then be detailed, including the influence of weight standard-
ization. Finally, the loss functions utilized to train the model
architecture are discussed.

A. ARCHITECTURE DETAILS

The proposed neural depth network for single image facial
depth maps mechanism is provided in this section, as well as
the suggested loss function for improving the training process
over the training data.

1) ENCODER MODEL
The proposed method’s general architecture is demonstrated

in Fig. 3 [87]. The suggested decoder for restoring depth
residuals is connected to the pre-trained encoder in the
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network. ResNextl0 [56] is used in the encoder phase,
which has been pre-trained for image classification. The
input colour image is compressed as latent information using
densely layered convolution blocks on the encoder. The spa-
tial size of such features shrinks to a fraction of the origi-
nal resolution, but they compactly contain the colour-depth
relationship in the embedding space, which is learned from
various scene geometries. For the convolution block of the
encoder, the authors utilize the Dense ASPP approach [88]
with four dilation rates of 3, 6, 12, and 18 to extract more
dense contextual information.

The suggested decoder is separated into many Lapla-
cian pyramid branches. One branch, which is in charge of
the Laplacian pyramid’s topmost level, undertakes decoding
work to restore the depth map’s global layout. The depth
residuals are generated by other branches using latent features
led by Laplacian residuals of the input colour image at the
matching scale. Using point-wise addition, this depth residual
is gradually integrated with the middle depth map, which
is the result of the higher level of the Laplacian pyramid.
The decoding technique is based on a five-level Laplacian
pyramid. All convolution layers in the decoder have a filter
size of 3 x 3.

B. DECODER MODEL

The laplacian residual of the input colour image is derived
in the first phase. For all scaling methods in the suggested
methodology, downsampling the initial input image, upsam-
pling, and bilinear interpolation are used. Concatenated fea-
tures are input into layered convolution blocks, and the output
is added pixel-by-pixel. The one-channel output, which is
made up of stacked convolution blocks, has the same spatial
resolution as the input colour image. It’s important to note that
input guides the decoding process to precisely restore local
characteristics of various size areas, which aids in revealing
depth boundaries without distortions. Finally, starting at the
top of the Laplacian pyramid, the depth map is gradually
recreated. The weight standardization in the pre-activation
convolution block, which is the core module of the decoder,
is made to produce the decoding process for monocular facial
depth estimation more effectively. Because the depth map is
reconstructed using an iterative accumulation of depth resid-
uals, it is preferable for the projected depth residual to have
a balancing of negative and positive values to estimate depth
information reliably and accurately. During backpropagation,
which is calculated from each layer of the laplacian pyramid,
the decoder is capable of improving the flow of gradient
by normalizing them. This is preferable for maintaining the
colour-to-depth translation’s stability based on residual infor-
mation. The procedure is anticipated to be able to effectively
understand the important connection between colour and
depth values for facial images by combining this benefit with
the Laplacian pyramid-based decomposition technique.

C. LOSS FUNCTION

The facial depth estimation task’s final goal is to find a
function that predicts the depth from an input image. (Lyilog)
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is the most common loss function that is found in the lit-
erature more helpful for depth estimation, The network’s
trainable parameters are tuned based on the loss function,
which employs properly scaling the loss function’s range
can improve converging and training outputs while putting
a stronger focus A on decreasing error variance, leading in a
Silog loss function [89]. (Lyig) is defined:

1 N
L(di, d}) = 3" (log(di) — log(d;))”

A N .
=5, logld) —log@) (1)

where A is the balance factor and N is the number of pixels.
By rewriting the equation. 15:

1 N 1 i
Lsitog(di, d}) = > (log(d)~log(@) =) (di—d})’

1 i 2
+H=R)5 D (@di—d)
(16)

In log space, the combined Silog loss is defined as:

Lsilug(di, d,*) = 0/ Lsilog(div dl*) (17)

VII. EXPERIMENTAL RESULTS

The experimental results are presented in this section show
how well the proposed model performs. The purpose of these
experiments is to see how well synthetic facial depth data
can be used to estimate facial depth estimation. A set of SoA
depth estimation single image neural networks is used to ana-
lyze and compare the human facial depth estimation. Further-
more, the model is first trained on a synthetic human facial
depth dataset, after which it is evaluated against four different
datasets (Pandora, Eurecom Kinect Face, Biwi Kinect Head
Pose, and Synthetic human face datasets) explained in section
3. After that, there is a brief comparison analysis (evaluation
results of the SOA to the proposed model) is presented. The
experiments show that a model trained on a large and diverse
set of facial depth images, along with the appropriate training
methods, produce SoA results in a variety of scenarios. The
zero-shot cross-dataset transfer technique is used to demon-
strate this process.

A. TRANING METHODOLOGY

The proposed approach is designed in the PyTorch tool. The
suggested decoder’s parameters (i.e., the network’s weights)
are all initialized using the approach described in [88]. The
proposed decoder has group normalization in each layer,
which is known to be batch size independent. The model is
trained on a synthetic human facial depth dataset (described in
section 3), which was divided into training and validation sets
with 0.8 and 0.2 ratios for facial depth estimation. The net-
work is trained using the Adam optimizer for 50 epochs with
a batch size of 6, with power and momentum set to 0.9 and
0.999, respectively. For the encoder and decoder, the weight
decaying factor is set to 0.0005 and 0. Using a polynomial
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FIGURE 3. The overall architecture of the proposed method for monocular facial depth estimation.

decay with the power of 0.5, the learning rate is first set to
10~* and then gradually decreased until it reaches 107>, The
overall training process is conducted on a machine equipped
with two TITAN 1080 GPUs, which takes a time duration
of 72 hours. The model has 73M parameters and to avoid
overfitting, the online data augmentation method is used in
the training process. For the SYN HUMAN FACE dataset,
training samples are randomly cropped to 512 x 416 pixels
before being randomly rotated in the range of [3, 3] degrees.
With aratio of 0.5, input images are also horizontally flipped.
Furthermore, the scale factor picked from the range of
[0.9, 1.1] is used to alter the brightness, colour, and gamma
values of the input colour images.

B. EXPERIMENTAL DETAILS AND RESULTS

The first phase of this subsection explains the training dataset
that was used to train the neural depth model for facial depth
estimation. The second part explains the testing and evalua-
tion process used to evaluate the model’s generalization per-
formance. For evaluations, Root Mean Square Error (RMSE),
log Root Mean Square Error (RMSE (log)), Absolute Relative
difference (AbsRel), Square Relative error (SqRel) and Accu-
racies are used defined in Table 9. Four test datasets were
chosen based on the diversity and accuracy of their ground
truth. The model’s performance is compared to existing SOA
approaches in the final phase. Table 10 summarizes all of the
information from this study’s experiments.

1) MODEL TRAINING DATASET

The synthetic human facial dataset having various variations
including camera location, light position, body-pose, facial
animations, scene illuminations, and pixel-accurate ground
truth depth is used for training the proposed neural depth
model for facial depth maps. This dataset is briefly explained
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TABLE 10. Information about how experiments have been conducted.

Method LapDepth [87]
Tools/Software PyTorch, Open3d
Training Time 72 hours

Input 512x416

Output 512x416

Type CNN (Encoder-Decoder)
Optimizer Adam

Learning Rate 10°

Environment 2XTITAN 1080 GPUs 2.5Ghz Python
Memory 16x2GB

Epochs 50

Parameters 73M

in (section 3-part A subsection 6. Before conducting any
experiments, the training data is processed and split into three
sets: training set 80%, validation set 20%, and test set 10%,
each having its ground truth depth.

2) TEST DATASETS

For comparison purposes, the zero-shot cross-dataset transfer
protocol is utilized. The model was trained on a single dataset
before being tested on unseen test datasets. The four datasets
described in (section 3-part A) were chosen for testing and
evaluation (i.e, Pandora, Eurecom Kinect Face, Biwi Kinect
Head Pose, and Synthetic human face datasets).

3) MODEL PERFORMANCE EVALUATION
The performance of the facial depth estimation model
LapDepth [87] is compared to the SoA models (i.e., MiDaS
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FIGURE 4. Qualitative results in a sample of the synthetic human facial test dataset that was not used for training or validation. Input RGB images,
ground truth images, predicted depth images, predicted depth images (Greys), and predicted depth images are shown from left to right.

[90], DPT [91], and BTS [89]) on the synthetic human facial
dataset in Fig. 4 and Table 11. All of the training and testing
experiments in this work have been coded and are available
on Github. The network achieves SoA results, as shown in
Table 11. The proposed model qualitative results against SOA
approaches are shown in Fig. 5 and Fig. 6. As shown in
Fig. 5, the results demonstrated a details information and
consistency, indicating that the proposed chosen approach
works better at facial depth estimation. The model outper-
formed SoA both numerically and qualitatively in tests across
a variety of real and synthetic images and set a new SoA for
facial depth estimation.

In comparison to other SoA methods, the LapDepth
approach performed best in terms of accuracy and depth
range, according to the comparison analysis Table 11 and
Fig. 6. As shown in Table 11, the network achieved
0.0281 RMSE and 0.9976 threshold accuracy on a synthetic
human facial dataset (row 8). For better visualization, the
results are shown in the different colour maps. Note that,
predicted depth images (Greys) indicate the inverse depth
map Fig 4.

As mentioned before the most commonly used quantitative
metrics for evaluating the performance of trained monocular
facial depth estimation methods are provided in Table 9.
Based on the metrics in Table 11 i.e.; RMSE, RMSElog,
SqRel, AbsRel, and accuracies one can compare and decide
which method performance is better.

The model is compared with the SoA models (i.e.;
MiDaS [90], DPT [91], and BTS [89]) for comparison, and
the qualitative results are shown in Fig. 5. We were unable to
train the techniques (i.e. MiDaS, DPT) from scratch due to
unavailability of the training codes and a lack of instructions,
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and hence simply fine-tuned the model checkpoint for testing
and validation purposes. The method BTS is initially trained
on a training dataset before being put to the test on four
different datasets. The suggested method has an advantage
over the BTS and other SoA methods, as shown in Fig. 5.
The model can recover fine details such as facial information
and backgrounds since it is trained on pixel-accurate ground
truth depth facial data. Pandora, Eurecom Kinect Face, and
Biwi Kinect Head Pose are among the datasets that rarely
capture those datils. It is difficult to learn when training neural
depth networks due to a very sparse ground truth depth. It is
noticed that the method LapDepth successfully preserves the
facial depth information even with complicated geometries
as compared to the rest of the SoA approaches. As can
be seen in Fig. 6, the results show improved information
and consistency, demonstrating that the works were better at
depth estimation on real facial depth datasets. The network
was not used for training or validation, and the method was
exclusively trained on synthetic human facial depth datasets
and tested on real datasets. In fig. 5, the results in the 40
column predicted depth images (Greys) indicate the inverse
depth maps that is originally used by MiDaS [90]. The rest
of the comparison results are respectively calculated with the
same scale while predicting the depth estimation models.

VIil. DISCUSSION
The results presented in the previous section are discussed in
the following section.

1. The model is trained by using only the Synthetic
Human Facial Depth Dataset and evaluated against
four different datasets, including the Pandora dataset,
Eurecom Kinect Face dataset, Biwi Kinect Head Pose
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TABLE 11. Quantitative evaluations on the SNY human face dataset [59].

No. Methods AbsRel SqRel RMSE RMSElog § <1.25 § < 1.252 § < 1.25%
1. DenseDepth-169 [92] 0.0296 0.0096 0.0373 0.0129 0.9890 0.9920 0.9981

2. ResNet-101 [59] 0.0123 0.0210 0.0306 0.0089 0.9938 0.9965 0.9980
3. EfficientNet-B0 [93] 0.0145 0.0280 0.0360 0.0154 0.9912 0.9934 0.9978

4. BTS [89] 0.0165 0.0092 0.0206 0.0102 0.9830 0.9943 0.9956

5. UNet-simple [94] 0.0103 0.0207 0.0281 0.0089 0.9960 0.9976 0.9987

6. MiDaS [90] 0.0146 0.0204 0.03560 0.0323 0.9665 0.9902 0.9956
7. DPT [91] 0.0156 0.0106 0.0394 0.0184 0.9567 0.9646 0.9943
8. LapDepth [87] 0.0145 0.0041 0.0204 0.3614 0.9545 0.9857 0.99582

1%

2
4

dataset, and the test Synthetic Human Facial Depth
Dataset, as well as real images, in the testing phase. The
results demonstrate that the trained model outperforms
the other SoA approaches MiDaS, DPT, and BTS. It is
important to mention that the low size and diversity
of the Pandora dataset, Eurecom Kinect Face dataset,
Biwi Kinect Head Pose dataset do not perform well on
the generalization performance of the studied models,
as shown in Fig. 6. Furthermore, most depth GT are
error-prone due to practical restrictions in data gather-
ing. The depth GT data is particularly prone to mistakes
in these datasets that make it difficult for models to
learn robust facial depth information.

. Synthetic facial data will, of course, lack the same
level of detail in terms of skin features as compared
to real-world image data. However, considering the
numerous advantages of utilizing synthetic data to train
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FIGURE 5. From left to right, qualitative results of facial monocular depth estimation algorithms (Input: input RGB images; GT: ground truth images; Ours:
LapDepth [87], MiDa$S [90], DPT [91], and BTS [89] applied to the Synthetic human facial dataset [59]).

a neural depth model, it acquires comparable accuracy
to real-world data as shown in Fig. 6.

. When the new loss function is utilized in the final

set of experiments, the model outperforms SoA when
the network is trained entirely on synthetic data. As a
result, it is rational to assume that employing a scalable
loss function and training technique helps in acquiring
greater accuracy and facial depth information.

. The model measure how effectively the created faces

preserve the individual visual features of the subjects,
which requires both high and low-level features to
work effectively. The suggested model allows for the
maximum test accuracy and outperforms the previous
models that have been examined. Based on the results,
the model can estimate both high-level and low-level
aspects of facial depth maps, resulting in realistic and
discriminative results.
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FIGURE 6. The results of a facial monocular depth estimation method’s qualitative evaluation. It demonstrates how to use data from several,
independent sources to estimate facial depth in a single view, despite changing and unknown depth range and scale. The method allows for broad
generalization across datasets. Input images at the top. Middle: depth maps predicted by the approach provided. Bottom: corresponding point clouds
as seen from a different perspective. Open3D [95] was used to render point clouds. Images from the Synthetic human facial dataset, the Pandora
dataset, the Eurecom Kinect Face dataset, and the Biwi Kinect Head Pose dataset, as well as a real image of the main authors that were not seen
during training.

5.
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Using the model predicted depth maps, as shown in
Fig. 6 (row 3 and 6), the corresponding point clouds
can be generated from a different perspective. Many
developing visual applications require quick, direct,
and exact depth information, which points clouds
deliver. To localize and navigate, autonomous tech-
nologies such as robots, augmented reality devices,
and self-driving cars rely on depth. In high-end smart-
phones, depth also enables computational photography
functions like auto focus and portrait mode, which are
especially useful at night when depth is difficult to
obtain with traditional cameras but is readily available
from a LiDAR.

IX. CONCLUSION AND FUTURE RESEARCH

This paper investigated the comprehensive details of facial
depth datasets and loss functions generated in the field of
computer vision for facial depth estimation problems. In var-
ious facial depth map tasks based on deep learning net-
works, publicly available facial depth datasets and facial
depth-based loss functions have obtained robust results. The
facial depth datasets are utilized in a variety of applications,
including person detection and action recognition, face and
pose detection, and biomedical applications. Implementation
details of how neural depth networks work, as well as their
associated evaluation matrices, are presented in this study.
In addition to this, SoA neural architecture for facial depth
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estimation is proposed, along with a comparison evaluation.
The proposed model outperforms current SoA techniques
when tested against four different datasets. The proposed
method’s unique loss function helps the network in learning
information aspects more robustly thus providing a detailed
prediction. The training is done using synthetic human facial
depth datasets, while the evaluation is done with real as
well as synthetic facial images. The results prove that the
proposed neural model outperforms current SoA networks,
thus establishing a new benchmark for facial depth mapping
and research aspects. Also, the achieved results presented in
this paper can be utilized as a reference for better facial depth
estimation model design and validation purposes.

Future research can be focused on developing more robust
neural networks, as well as paying more attention to the
newly developed facial depth datasets to obtain pixel-accurate
ground truth depth maps. Because the currently available
datasets have issues, particularly with realistic human faces,
they can be employed in a range of real-world applications
such as in-cabin driver monitoring, robotics, and 3D face
reconstructions if these difficulties are addressed.

Finally, the available SoA depth estimation models can be
reconsidered for the prediction of facial depth maps because
they are mostly used for indoor and outdoor scene tasks and
have not been extensively studied for human faces. They can
also be investigated for other tasks such as single view facial
recognition and surface normal prediction, 3D reconstruc-
tions, and while training on datasets both real and synthetic.
The GitHub code is available online and can be found at
this URL https://github.com/khan9048/LapDepth-for-Facial-
depth-estimation-.
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