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ABSTRACT Physiological signal measurement and processing are increasingly becoming popular in the
ambulatory setting as the hospital-centric treatment is moving towards wearable and ubiquitous monitoring.
Most of the physiological signals are highly susceptible to various types of noises, especially movement
artifacts. The electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals are
no exception to motion artifacts, which become prominent in the ambulatory setting. Since successful
detection of various neurological disorders is greatly dependent upon clean EEG and fNIRS signals, it is
a matter of utmost importance to remove motion artifacts from these two signal modalities using reliable
and robust methods. This paper proposes three novel multiresolution analysis techniques: i) Variational
mode decomposition (VMD), ii) VMD in combination with principal component analysis (VMD-PCA), and
iii) VMD in combination with canonical correlation analysis (VMD-CCA), for motion artifact correction
from single-channel EEG and fNIRS signals. The efficacy of these novel techniques is validated by
computing the difference in the signal to noise ratio (1SNR) and percentage reduction in motion artifacts (η).
Among the three proposed novel methods, VMD-CCA decomposed with 15 intrinsic mode functions (IMFs)
has shown the best denoising performance for EEG signals producing an average 1SNR and η values of
23.81 dB and 57.01%, respectively for all 23 EEG recordings. On the other hand, for the available 16 fNIRS
recordings, VMD-CCA decomposed with 10 IMFs produced an average 1SNR and η values of 15.97 dB
and 39.01%, respectively. The results reported using the proposed methods outperform most of the existing
state-of-the-art techniques.

INDEX TERMS Motion artifact, electroencephalogram (EEG), functional near-infrared spectroscopy
(fNIRS), variational mode decomposition (VMD), principal component analysis (PCA), canonical corre-
lation analysis (CCA).

I. INTRODUCTION
Electroencephalography (EEG) measures the electrical activ-
ity of the human brain quantitatively originating from the
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firing of neurons [1]. Generally, such action is recorded using
several electrodes which are positioned in different areas
of the scalp [2]. The use of EEG, in the area of epileptic
seizure detection, is the most stereotypical usage among its
several utilizations [3], [4]. As epileptic activity is typically
problematic to identify due to the unpredictability of the
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exact time of the occurrence, long-term monitoring is fre-
quently being used to enhance the possibility of detection.
This continuous monitoring for an extended period brings
discomfort to the patients as they must stay stationary dur-
ing the process. An in-home recording of the EEG and/or
personal healthcare domain will elongate recording durations
while ensuring more accuracy of the recording signal. Fur-
thermore, such facilities can proliferate the user’s level of
comfort. Additional noteworthy utilization of EEG includes
the measurement of drowsiness levels [5]–[8], emotion detec-
tion [9], cognitive workload [6], [10], and brain-computer
interfaces (BCI) [11]–[16]. All these usages have potential
applications in the personal healthcare domain. Recently, due
to the inherent anti-spoofing capability of EEG signals, the
implementation of biometric systems using EEG is being
studied and has already shown promising outcomes [17].

The functional near-infrared spectroscopy (fNIRS), a non-
invasive optical imaging technique, measures changes in
hemoglobin (Hb) concentrations within the human brain [18].
Light of various wavelengths in the infrared band employed
by fNIRS infiltrates the skull to measure the change in the
concentration levels of oxygenated (oxy-Hb) and deoxy-
genated hemoglobin (deoxy-Hb) in the human brain by esti-
mating the difference in the optical absorption [19]. The
fNIRS signal distinguishes the activation changes in the cor-
tex, allowing optical measurements to be used for imaging
brain functions [20], [21]. Medical applications of fNIRS
focus on the noninvasive measurement of the quantity and
oxygen content of hemoglobin, cognitive tasks identifica-
tion [22], [23], and BCI [24]–[26].

Both EEG and fNIRS, two very vital physiological signals,
are prone to motion artifacts that occur due to the volun-
tary or involuntary movement of the test subject during sig-
nal acquisition. Constraining a test subject completely from
physical movements, voluntary or involuntary, is always very
difficult. Consequently, the EEG and fNIRS signals get cor-
rupted to some extent by motion artifacts. In some cases, this
contamination may become so prominent that the recorded
signals may lose their usability unless the motion artifacts are
removed or reduced by a significant amount [27].

Apart from motion artifacts, physiological signals suf-
fer from other forms of artifacts as well. During simulta-
neous EEG-fMRI experiments, the EEG signal is usually
contaminated by gradient artifacts (GA) and pulse artifacts
(PA) [28]–[30]. Event-related fNIRS signals are normally
contaminated by heartbeat, respiration, Mayer waves, etc.,
as well as extra-cortical physiological noises from the super-
ficial layers [31].

Several approaches were investigated for the reduction of
motion artifacts from the EEG [32], [33]. The performance
comparison using several motion artifact removal techniques
for the EEG signal was made by Sweeney et al. in [34].
Variousmultiresolution analysismethods, such as the discrete
wavelet transform (DWT) [35], empirical mode decompo-
sition (EMD) [36], ensemble empirical mode decomposi-
tion (EEMD) [37] were investigated. Authors of [34] also

combined EMD with CCA (EMD-CCA), EMD with inde-
pendent component analysis (EMD-ICA), EEMD with
ICA (EEMD-ICA), and EEMD with CCA (EEMD-CCA).
Maddirala and Shaik [38] used singular spectrum analysis
(SSA) [39] to filter out the motion artifacts from the EEG
signal. The wavelet-based techniques were proven to be
an effective multiresolution approach for the analysis and
decomposition of the EEG signal [40]. To filter out motion
artifacts from the EEG signal, DWT along with the thresh-
olding technique was utilized in [41]. Recently, to reduce
motion artifacts from the EEG signals Gajbhiye et al. [42]
employed wavelet-based transform along with the total vari-
ation (TV) and weighted TV (WTV) denoising techniques
whereas in [43], wavelet domain optimized Savitzky–Golay
filter has been incorporated.

In the last few decades, multiple motion artifacts removal
techniques was developed [44]–[46] for the removal of
motion artifacts from the fNIRS signal. Sweeney et al. [47]
used adaptive filter, Kalman Filter, and EEMD-ICA.
Scholkmann et al. [48] used the moving standard deviation
and spline interpolation method whereas in [49] wavelet-
based method was employed. The authors of [34] used
DWT, EMD, EEMD, EMD-ICA, EEMD-ICA, EMD-CCA,
and EEMD-CCA. In [50], Barker et al. used an autore-
gressive model-based algorithm to reduce motion artifacts
from the fNIRS signals. Kurtosis-based wavelet transform
was proposed in [51] whereas Siddiquee et al. [52] uti-
lized nine-degree of freedom (DoF) inertia measurement
unit (IMU) data to estimate the movement artifacts in the
fNIRS signals using autoregressive exogenous (ARX) input
model. A hybrid algorithm was proposed in [53] to filter
out the movement artifacts from fNIRS signals where both
the spline interpolation method and Savitzky–Golay filtering
were incorporated.

It is evident that the development of robust algorithms
capable of reducingmovement artifacts from EEG and fNIRS
signals is of utmost importance; otherwise, the interpretation
of the signals will be inaccurate. Also, the requirement of
robust algorithms is required since EEG and fNIRS signals
are highly non-stationary [34]. In this paper, three novel
motion artifacts correction techniques have been proposed
which are capable of removing motion artifacts from single-
channel EEG and fNIRS signals. The first novel method
is a single-stage motion artifacts removal technique where
variational mode decomposition (VMD), a robust multires-
olution analysis, was employed. The rest two novel meth-
ods are VMD with PCA (VMD-PCA) and VMD with CCA
(VMD-CCA). As the name suggests, both VMD-PCA and
VMD-CCA are two-stage motion artifacts removal tech-
niques. Since, both PCA and CCA algorithms can only pro-
cess multi-channel signals, the VMD technique was used
to generate multiple intrinsic mode functions (IMFs) and
then fed to PCA and CCA algorithms for further process-
ing. In all these three methods, single-channel EEG and
fNIRS signals were decomposed into 5,10 and 15 IMFs sepa-
rately and investigated resulting in nine different approaches.
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It should also be mentioned here that the VMD algorithm
was used in removing motion artifacts frommotion corrupted
PPG signal [54] in our previous work which showed the
potential of using VMD for these bio-signals. VMD in com-
bination with PCA and CCA is also the novel contribution of
this research work which reduces motion artifacts from EEG
and fNIRS signals.

The remainder of this paper is organized as follows:
Section II discusses the theoretical backgrounds of the differ-
ent algorithms (VMD, VMD-PCA, VMD-CCA) investigated
here, Section III provides brief information about the EEG
and fNIRS benchmark dataset, and experimental methodol-
ogy. Section IV provides the results of the artifact removal
techniques and discusses the results. Finally, the paper is
concluded in section V.

II. THEORETICAL BACKGROUND
In this section, the theoretical backgrounds of the VMD,
PCA, CCA, VMD-PCA, and VMD-CCA are introduced.

A. VMD
VMD [55] non-recursively decomposes time-series
signal, X into k number of quasi-orthogonal IMFs which
are compact around a center frequency ωk with limited
bandwidth. The VMD algorithm, to assess the bandwidth of
the time-series signal, is briefly described below:

i. A unilateral frequency spectrum is generated for each
mode xk using the Hilbert transform. The related ana-
lytic signal is calculated.

ii. For each mode, the frequency spectrum of the mode
is shifted to the baseband by mixing with an exponen-
tial which is tuned to the respective estimated center
frequency.

iii. Through the Gaussian smoothness of the demodulated
signal, the bandwidth is estimated.

The modes obtained by VMD show less instantaneous
frequency fluctuations with better tone detection, tone sepa-
ration, noise robustness as well as superior signal reconstruc-
tion capability in comparison to EMD and EEMD [55].

Let x0 be the observed signal of the actual signal x contam-
inated by additive zero-mean Gaussian noise η and is given
by:

x0 = x + η (1)

To solve this denoising problem, Tikhonov Regularization
is used [32], [33], as follows:

xmin{||x − x0||22 + α||∂tx||} (2)

from which Euler-Lagrange equations could be obtained and
solved in Fourier domain as:

X̂ (ω) =
X̂0

1+ αω2 (3)

where, x̂ (ω)→ F {X (.)} (ω)→ 1/
√
2π
∫
R f (t)e

jωtdt is the

Fourier transform of the signal x(t). The solution corresponds

to a convolution with Weiner filter, with α as the variance
of the white noise and 1/ω2 as lowpass power spectrum
of the signal. VMD algorithm is the generalized form of
Weiner filter with adaptive and multiple band methods and
the band-limited IMFs are obtained by solving a constrained
variational problem described by [55]:

min
xk ,ωk

{∑K

k=1

∥∥∥∥∂t [(δt + j
π t

)
∗ xk (t)

]
e−jωk t

∥∥∥∥2
2

}
s.t
∑K

k=1
xk = x (4)

where xk for k = 1, 2, 3 . . .K are the band-limited IMFs
having the center frequency ωk obtained by decomposition,
with K defined a priori.

The constrain of Equation 4 is addressed by using a
quadratic penalty term and Langrangian multiplier (λ).
Hence, with δt as Dirac distribution and (∗) as convolu-
tion operator, the augmented Langrangian equation is given
by [56]:

L ({xk} , {ωk} , λ)

= α
∑K

k=1

∥∥∥∥∂t [(δt + j
π t

)
∗ xk (t)

]
e−jωk t

∥∥∥∥2
2

+

∥∥∥∥X (t)−∑K

k=1
xk (t)

∥∥∥∥2
2
+ 〈λ (t) ,X (t)

−

∑K

k=1
xk (t)〉 (5)

where α is the balancing parameter for the data fidelity
constraint. Alternate Direction Method of Multipliers
(ADMM) [57] is utilized to estimate the saddle point of
Equation 5 corresponding to the solution of Equation 4, with
convergence tolerance of ε, where the convergence criterion
is formulated by,

∑
k


∥∥∥x̂n+1k − x̂nk

∥∥∥2
2∥∥x̂nk∥∥22
 <ε (6)

The k th mode estimate is updated using Equation 7 and
Equation 8 defined by [55]:

x̂n+1k (ω) =
X̂ (ω)−

∑
i<k x̂

n+1
i (ω)−

∑
i>k x̂

n
i (ω)+

λ̂n(ω)
2

1+ 2α(ω − ωnk )
2

(7)

ωn+1k =

∫
∞

0 ω

∣∣∣x̂n+1k (ω)
∣∣∣2 dω∫

∞

0

∣∣∣x̂n+1k (ω)
∣∣∣2 dω (8)

B. PCA
PCA [58] is one of the most popular blind source separation
(BSS) techniques that are being used for signal process-
ing for the past several decades. PCA transforms the signal
time-course among all N channels into a set of N uncorrelated
variables using a linear orthogonal transformation. A simple
way of computing PCA of a matrix A is to compute the
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eigenvalue decomposition of its covariance matrix. The prin-
cipal components of the input matrix A are the eigenvectors
associated with the largest eigenvalues. Since the eigenvalues
in the diagonal matrix 3 are sorted in decreasing order, the
first d vectors in the matrix V (a matrix whose columns
represents the corresponding eigenvectors) are the principal
components of A : V = (v1, v2, . . . , vd )

C. VMD-PCA
The use of VMD in combination with PCA for source sep-
aration from single-channel measurements is introduced in
this study for the very first time to reduce motion artifacts
from EEG and fNIRS modalities. As mentioned earlier, the
VMD algorithm can be used to generate a multi-channel
signal X, comprised of K number of IMFs, from a single
channel recording x. This matrix X, can then be fed as the
input to the PCA algorithm to produce principal components
(as described in the previous subsection) matrix, Y. The
columns of matrix Y which contribute to motion artifacts can
then be selected asmotion artifact components and set to zero.
Finally, the artifact-free signal can be reconstructed by simply
adding up the rest of the columns of matrix Y.

D. CCA
CCA [59] and Independent component analysis (ICA) [60]
are the two most popular BSS methods for separating several
contaminated signals.

Assuming linear mixing, square mixing, and stationary
mixing [61], the ICA technique computes an un-mixing
matrixW which is used to find out the unknown independent
components Ŝ.

Ŝ =WX (9)

where X is a matrix of the recorded multi-channel signals.
CCA also estimates the unknown independent components Ŝ
using Equation 9, but it is different in comparison with the
ICA technique because CCA uses second-order statistics
(SOS) to generate components whereas ICA uses higher-
order statistics (HOS). Hence CCA is also less computation-
ally complex in comparison to ICA.

CCA solves the BSS problem by forcing the sources to
be maximally autocorrelated and mutually uncorrelated [62].
Given an input signal x, let y be a linear combination of
neighboring samples (i.e. y (t) = x (t − 1)+ x(t + 1)) [63]).
Consider the linear combinations of the components
in x and y, called the canonical variates:

x = wT
x (x−x̄) (10)

y = wT
y (y−ȳ) (11)

CCA computes the weight matrices wx and wy which will
maximize the correlation ρ between x and y [63]:

ρ =
wT
xCxywT

y√
wT
xCxxwxwT

yCyy
wy

(12)

where Cxy is the between-sets covariance matrix and
Cxx and Cyy are the nonsingular within-set covariance matri-
ces. Themaximumof ρ is calculated by setting the derivatives
of Equation 12 to zero for wx and wy.

C−1xx CxyC−1yy C
T
yxŵx = ρ

2ŵx

C−1yy CyxC−1xx C
T
xyŵy = ρ

2ŵy (13)

wx and wy can then be determined as the eigenvectors of the
matrices C−1xx CxyC−1yy C

T
yx and C−1yy CyxC−1xx C

T
xy respectively

and the corresponding eigenvalues ρ are the squared canoni-
cal correlations. The first pair of variates are the eigenvectors
ofwx andwy that correspond to the largest square correlation
coefficient (or eigenvalue) ρ2. The following pairs of variates
(wx,wy)2...m (with m recording sites) are then the remaining
eigenvectors in decreasing order of correlation which are
themselves uncorrelated with the previous eigenvectors. The
CCA technique, therefore, creates a weight Matrix Wx =

[wx1,wx2, . . . ,wxm] that can be used to separate the recorded
sources into the self-correlated and mutually uncorrelated
sources.
Using the CCA algorithm, the un-mixing matrix is deter-

mined, and the underlying source signals Ŝ can be estimated.
The components seem to be artifacts that can be removed
by setting the corresponding columns of the Ŝ matrix to
zero. When the artifact-suppressed source signals are passed
through the inverse of the mixing matrix W−1, the resultant
signal is the artifacts-free signal.

E. VMD-CCA
The single-channel signal x is converted into a multi-channel
signalX using the VMD algorithm. This matrixX can then be
fed as the input to the CCA algorithm to estimate the under-
lying true sources Ŝ (Equation 9). The individual sources
determined to be artifacts are selected and the corresponding
columns of the matrix Ŝ are set to zero. The source matrix is
then passed through the inverse of the un-mixing matrixW−1

to return the multi-channel signals X̂ which are now, ideally,
free of artifacts. The original single-channel signal x̂ can be
determined by simply adding the columns in the matrix X̂.

III. METHODS
This section discusses data description, pre-processing, study
design, motion component identification, and evaluation
metrics.

A. DATASET DESCRIPTION
In this research work, a dataset, publicly available in the
PhysioNet [33], [34], [64] is used which contains ground
truth and motion corrupted signals for both EEG and fNIRS
modalities. The details of the data recording methodology for
EEG and fNIRS modalities can be found in [47] where all the
EEG and fNIRS recordings are of 9 minutes of duration.

The proposed denoising methods used a pair of EEG
signals which are highly correlated as they were recorded
from a very closely spaced location on the scalp.
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Twenty-three EEG recordings sampled at 2048 Hz, collected
from six patients in four different sessions, are available
in the publicly available database. Each recording contains
two EEG signals: 1) motion corrupted EEG signal and
2) reference ‘‘ground truth’’ EEG signal. The average cor-
relation coefficient is very high during the epochs when the
motion artifacts are absent [33]. But, when the EEG signal
has amotion artifact, the average correlation coefficient drops
significantly. The overlaid reference EEG signal and motion
corrupted EEG signal are depicted in Figure 1a. The reference
EEG signal is utilized for the validation of the proposed
denoising methods. As EEG signals can be divided into sev-
eral sub-bands, namely delta (1–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta (13–30 Hz), and gamma (30–80 Hz) [65],
in this study, all the EEG recordings are downsampled from
2048 Hz to 256 Hz which ensures data fidelity for further
applications while processing the signals becomes relatively
convenient. The performance of the proposed techniques is
evaluated for all 23 EEG recordings.

Unlike the EEG recordings, the fNIRS recordings con-
tain two pairs of signals, recorded at 690 nm and 830 nm
wavelengths. There were 16 fNIRS recordings (9 recordings
at 830 nm wavelength and 7 recordings at 690 nm wave-
length) in total from 10 test subjects at a sampling frequency
of 25 Hz [34], [64]. The performance of the proposed denois-
ing techniques is evaluated for all the 16 fNIRS recordings.
The overlaid reference fNIRS signal and motion artifact con-
taminated fNIRS signal are depicted in Figure 1b.

B. SIGNAL PREPROCESSING
1) POWER LINE NOISE REMOVAL
Power line noise causes artifacts in physiological signals.
The recorded EEG and fNIRS signals are no exception to
this. To remove power line noise, a 3rd order Butterworth
notch filter with a center frequency of 50 Hz was cho-
sen to remove 50 Hz and its subsequent harmonics as a
pre-processing technique for all the EEG and fNIRS signals.

2) BASELINE DRIFT CORRECTION
It is observed that both the EEG and fNIRS signals suffered
greatly from baseline drift i.e. unwanted amplitude shifts
in the signal which would consequently give incorrect out-
comes if not removed. To eliminate baseline drift from EEG
and fNIRS recordings, a polynomial curve fitting algorithm
(e.g., profit function of MATLAB) was utilized to approxi-
mate the baseline and then subtracted from the corresponding
original signal.

C. STUDY DESIGN
The simulations of this study were carried out in a PC with
Intel(R) Core(TM) i5-8250U CPU at 1.80GHz equipped with
8 GB RAM. In-house built MATLAB code was designed to
pre-process the EEG and fNIRS data and three different mul-
tiresolution analysis (MRA) techniques: one stage (VMD)
and two-stage (VMD-PCA and VMD-CCA) were deployed

FIGURE 1. Example of motion-corrupted (a) EEG and (b) fNIRS signals.
Two signals (blue: ground truth and red: motion-corrupted) are highly
correlated during the epochs where no motion artifacts are present.
Boxed areas show the epochs of motion corrupted signals. A zoomed
version is presented underneath each sub-plot.

in ‘‘MATLAB R2020a, The MathWorks, Inc’’. Figure 2 out-
lines the motion artifacts removal framework which is
proposed in this research work. An automated way for iden-
tifying motion corrupted components of the preprocessed
signal is also discussed.

As mentioned earlier, VMD can generate k number of
IMFs where k is user-defined. In this research work, three
different values of k have been chosen namely 5, 10, and
15 separately. In the rest of the manuscript, the subscript
VMD(5) would refer to the generation of 5 IMFs, while,
the subscripts of VMD(10) and VMD(15) would refer to the
generation of 10 and 15 IMFs, respectively. With the IMF’s
availability using the VMD technique, the artifact compo-
nents can be selected and removed. All the remaining IMFs
can then either be added up to reconstruct a cleaner signal or
all the IMFs can be fed as inputs to PCA /CCA algorithms
separately to generate the output PCA/CCA components.
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FIGURE 2. The methodological framework for the motion artifact removal.

PCA technique needs the number of input channels to be
at least two or greater. In this work, single-channel EEG
and fNIRS signals are evaluated for the correction of motion
artifacts. Hence, it is required to generate several IMFs
which would be used as the inputs for PCA and CCA sep-
arately. VMD-PCA-based (VMD(5)-PCA, VMD(10)-PCA,
VMD(15)-PCA) two-stage artifacts removal technique has
been realized for three different values of k = 5, 10,
and 15 for both single-channel EEG and fNIRS modalities.
Also, VMD-CCA-based (VMD(5)-CCA, VMD(10)-CCA,
VMD(15)-CCA) two-stage artifacts removal technique has
been realized for three different values of k = 5,
10, and 15 for both single-channel EEG and fNIRS
signals.

D. REMOVAL OF MOTION ARTIFACT COMPONENTS
USING ‘‘GROUND TRUTH’’ METHOD
A frequently encountered issue in removing motion artifacts
using the aforementioned artifact removal techniques is to
reliably identify the motion corrupted components of the
decomposed signal, remove those components, and recon-
struct a cleaner signal using the remaining components.
To evaluate the effectiveness of the proposed algorithms,
the available reference ‘‘ground truth’’ signal of EEG and
fNIRSmodalities were utilized. If a component of the decom-
posed signal is removed and the signal is reconstructed using
the remaining components, then the correlation coefficient
between the newly reconstructed signal and the reference
‘‘ground truth’’ signal will only increase if that removed
component suffers from motion artifacts. Using this simple
yet effective idea, component/s of the decomposed signal
suffering from motion artifacts were identified and removed
to produce a cleaner signal which eventually ensured the

optimal performance of each proposed technique during
evaluation.

Figure 3a shows an example motion corrupted EEG sig-
nal and Figure 3b represents the corresponding 10 band-
limited IMFs (BLIMFs) generated from the EEG signal using
VMD(10) algorithm. Figure 4a represents an example motion
corrupted EEG signal from which 5 BLIMFs are generated
using VMD(5) and then these 5 IMFs are fed as 5 channel
input to the PCA algorithm whereas Figure 4b represents
the resultant PCA components. Figure 5a depicts an exam-
ple motion corrupted EEG signal and Figure 5b represents
resultant 5 CCA components where the input of the CCA
method was 5 BLIMFs generated from the motion corrupted
EEG signal using VMD(5).
Similarly, Figure 6a, Figure 7a, and Figure 8a shows three

separate motion corrupted fNIRS signals whereas Figure 6b,
Figure 7b, and Figure 8b represent the BLIMFs generated
from VMD(5), 5 output components from the PCA algorithm,
and 5 output components using the CCA algorithm, respec-
tively for the corresponding motion corrupted fNIRS signals.

E. PERFORMANCE METRICS
Using the available reference ‘‘ground truth’’ signal for each
modality, as described earlier, the efficacy and performance
of each proposed artifact removal technique can be deter-
mined. Since the objective of each proposed technique is to
reducemotion artifacts from the contaminated signal, compu-
tation of 1SNR and percentage reduction in motion artifacts
can quantify the efficacy of that corresponding technique’s
ability in removing artifacts. Therefore, the difference in SNR
before and after artifact removal (1SNR), and the improve-
ment in correlation coefficient between signals, denoted by
the percentage reduction in motion artifact η [34], are used
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FIGURE 3. (a) An example motion-corrupted EEG signal and (b) 10 IMFs
generated using VMD(10) algorithm for that EEG signal.

FIGURE 4. (a) An example motion-corrupted EEG signal and
(b) corresponding 5 components generated from PCA algorithm.

as performance metrics. For the calculation of 1SNR, the
following formula was used which was given in [34]:

1SNR = 10log10

(
σ 2
x

σ 2
eafter

)
− 10log10

(
σ 2
x

σ 2
ebefore

)
(14)

where σ 2
x , σ

2
ebefore , and σ

2
eafter represent the variance of the

reference ‘‘ground truth’’ signal, motion corrupted signal, and
cleaned signal, respectively.

The improvement in correlation coefficient between sig-
nals was used to estimate another performance metric,
namely the percentage reduction in motion artifact η [34]:

η = 100(1−
ρclean − ρafter

ρclean − ρbefore
) (15)

FIGURE 5. (a) An example motion-corrupted EEG signal and
(b) corresponding 5 components generated from CCA algorithm.

FIGURE 6. (a) An example motion-corrupted fNIRS signal and
(b) 5 IMFs generated using VMD(5) algorithm for that fNIRS signal.

where ρbefore denotes the correlation coefficient between
the reference ‘‘ground truth’’ and motion-corrupted signals
and ρafter represents the correlation coefficient between the
reference ‘‘ground truth’’ and the processed cleaner signal.
ρclean is the correlation between reference ‘‘ground truth’’
andmotion corrupted signals over those epochs wheremotion
artifact is absent.

In this study, a modified version of Equation 15 has
been used assuming ρclean = 1 as in an ideal situation
the correlation coefficient between the ground truth and
the motion corrupted signal over the clean epochs would
always be 1. Hence, the modified version of Equation 15
becomes:

η = 100(1−
1− ρafter
1− ρbefore

) (16)
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FIGURE 7. (a) An example motion-corrupted fNIRS signal and
(b) corresponding 5 components generated from PCA algorithm.

FIGURE 8. (a) An example motion-corrupted fNIRS signal and
(b) corresponding 5 components generated from CCA algorithm.

IV. RESULTS AND DISCUSSION
The results obtained in this work, using the proposed
novel motion artifact removal techniques are mentioned
below where the performance metrics were calculated using
Equations 14 and 16.

A. MOTION ARTIFACT CORRECTION FROM EEG
All the methods mentioned earlier were applied to all the
23 recordings of EEG. Figure 9 depicts an example EEG
trial after the correction of the motion artifacts using VMD(5),
VMD(5)-PCA, VMD(5)-CCA.

1) VMD
When employing VMD(5), VMD(10), and VMD(15), an aver-
age 1SNR of 25.91 dB, 24.58 dB, and 24.78 dB, respec-
tively was found for all (23) recordings and 25.34 dB,
24.63 dB, and 24.28 dB, respectively was found over
21 recordings. The average percentage reduction in artifact

FIGURE 9. The removal of the motion artifact from an example EEG trial
using (a) VMD(5), (b) VMD(5)-PCA, and (c) VMD(5)-CCA.

for three separate VMD approaches was found to be 53.59%,
55.31%, and 55.86%, respectively for all trials whereas for
21 trials, the η values are 60.14%, 61.04%, and 61.52%,
respectively.
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2) VMD-PCA
VMD(5)-PCA, VMD(10)-PCA, and VMD(15)-PCA tech-
niques produced an average 1SNR of 24.14 dB, 23.32 dB,
and 23.48 dB, respectively for 23 trials, and the artifact
was reduced by 55.52%, 56.24%, and 56.84%, respectively.
For 21 trials, these three VMD-PCA approaches produced
an average 1SNR of 25.09 dB, 24.58 dB, and 24.12 dB,
respectively, and the artifact was reduced by 60.59%, 61.42%,
and 62.01%, respectively.

3) VMD-CCA
VMD(5)-CCA, VMD(10)-CCA, and VMD(15)-CCA algo-
rithms produced an average 1SNR of 24.78 dB, 24.85 dB,
and 23.81 dB over all trials. Also, 55.75%, 56.84%, and
57.01% average reduction in artifact were found when
using these techniques. For 21 trials, these three techniques
produced an average 1SNR of 25.70 dB, 25.35 dB, and
24.36 dB, respectively, and the artifact was reduced by
60.78%, 61.9 %, and 62.09%, respectively.

B. MOTION ARTIFACT CORRECTION FROM fNIRS
Again VMD, VMD-PCA, and VMD-CCA (with three dif-
ferent decomposition levels of IMFs i.e. 5, 10, and 15)
techniques were applied and the performance matrices were
calculated for all the 16 fNIRS recordings. Figure 10a,
Figure 10b, and Figure 10c illustrate an example fNIRS
trial after the removal of the motion artifact using VMD(10),
VMD(10)-PCA, VMD(10)-CCA, respectively.

1) VMD
For all trials, the average 1SNR improved to 15.63 dB,
15.39 dB, and 15.45 dB when VMD(5), VMD(10), and
VMD(15) techniques were applied, respectively, and the
average percent reduction in motion artifacts improved by
28.21%, 28.51%, and 28.27%, respectively. Over 15 fNIRS
trials, the three techniques produced an average 1SNR
of 15.99 dB, 15.74 dB, and 15.81 dB, respectively, and
the artifact was reduced by 32.3%, 32.63%, and 32.42%,
respectively.

2) VMD-PCA
VMD(5)-PCA, VMD(10)-PCA, and VMD(15)-PCA produced
average1SNR of 13.80 dB, 12.24 dB, and 13.26 dB, respec-
tively. These three different approaches also reduced the
artifact by 36.22%, 37.74%, and 35.19%, respectively for all
16 recordings. Over 15 trials, these three techniques produced
an average 1SNR of 14.58 dB, 12.86 dB, and 13.95 dB,
respectively, and the artifact was reduced by 36.63%, 37.71%,
and 38.16%, respectively.

3) VMD-CCA
Finally, VMD(5)-CCA, VMD(10)-CCA, and VMD(15)-CCA
techniques reduced the artifact by 35.19%, 39.01%, and
38.64% respectively and the techniques also produced an
average 1SNR of 14.56 dB, 15.97 dB, and 16.16 dB respec-
tively for all the available fNIRS recordings. Again, for

FIGURE 10. The removal of the motion artifact from an example fNIRS
signal using (a) VMD(10), (a) VMD(10)-PCA, and (c) VMD(10)-CCA.

15 fNIRS trials, the three techniques produced an average
1SNR of 15.42 dB, 16.82 dB, and 17.01 dB, respectively, and
the artifact was reduced by 35.55 %, 39.48 %, and 39.02%,
respectively.
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TABLE 1. Average 1SNR and average percentage reduction in artifacts (η) for all recordings of eeg and fNIRS. Corresponding standard deviations are
shown inside the bracket.

FIGURE 11. Box and whisker plot of performance metrics using (a) VMD(5), VMD(5) -PCA, and VMD(5)-CCA, (b) VMD(10), VMD(10)-PCA, and VMD(10)-CCA,
and (c) VMD(15), VMD(15)-PCA, and VMD(15)-CCA for all 23 denoised EEG signals.

Table 1 summarizes the results obtained (average 1SNR
and average percentage reduction in motion artifacts η)
using the artifact removal techniques described in the

paper i.e. VMD, VMD-PCA, and VMD-CCA for all the
EEG (23) and fNIRS (16) recordings. The values
inside brackets in Table 1 denote the corresponding
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TABLE 2. Average 1SNR and average percentage reduction in motion artifacts (η) For EEG (21 out of 23) and fNIRS (15 out of 16) signals. Corresponding
standard deviations are shown inside the brackets.

FIGURE 12. Box and whisker plot of performance metrics utilizing (a) VMD(5), VMD(5)-PCA, and VMD(5)-CCA, (b) VMD(10), VMD(10)-PCA, and
VMD(10)-CCA, and (c) VMD(15), VMD(15)-PCA, and VMD(15)-CCA for all 16 cleaned fNIRS signals.

standard deviations. For both the EEG and fNIRS modalities,
it is evident from the result presented in Table 1 that the
two-stage artifacts removal technique i.e. VMD-PCA and

VMD-CCA algorithms performed relatively better com-
pared to the single-stage artifact removal technique
i.e. VMD.
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FIGURE 13. Box and whisker plot of performance metrics employing (a) VMD(5), VMD(5)-PCA, and VMD(5)-CCA, (b) VMD(10), VMD(10)-PCA, and
VMD(10)-CCA, and (c) VMD(15), VMD(15)-PCA, and VMD(15)-CCA for 21 motion-corrected EEG signals.

Figure 11a shows the box and whisker plot of the
performance metrics (1SNR and percentage reduction in
motion artifacts) using VMD(5), VMD(5)-PCA, and VMD(5)-
CCA techniques for all the motion-corrected EEG signals.
Figure 11b represents the box and whisker plot of the
same performance metrics when VMD(10), VMD(10)-PCA,
and VMD(10)-CCA algorithms were employed whereas
Figure 11c depicts the performance metrics obtained using
box and whisker plot from VMD(15), VMD(15)-PCA, and
VMD(15)-CCA for all the EEG recordings.

It is evident from the result of Table 1 and Figure 11 that the
EEG signal reconstructed from VMD(5) method has a greater
1SNR value (25.91 dB) and lesser η value (53.59%) com-
pared to both VMD(10) and VMD(15) techniques. VMD(15)
provided the largest η value (55.86%) while VMD(5) ren-
dered the largest1SNR (25.91 dB) among the three different
single-stage motion artifact correction techniques (VMD(5),
VMD(10), and VMD(15)). The probable reason for the greater
improvement in correlation is as VMD(15) generates 15 IMFs

and VMD(5) produces 5 IMFs, there is a lesser probability
that the last IMF which is considered as motion component
for the VMD(15) has a lesser chance of getting mixed up with
the signal components and movement artifacts components.
In other words, VMD(15) generates finer decomposition of the
single-channel EEG signal compared to VMD(5).
When two-stage motion artifacts removal techniques are

employed (VMD-PCA and VMD-CCA), the best aver-
age correlation improvement is produced by VMD(15)-CCA
approach which is 57.01%. On the other hand, the best
average 1SNR value (24.86 dB) is obtained from VMD(10)-
CCA technique for EEG signals (Table 1, Figure 11b and
Figure 11c). Since two-stage decomposition allows the low
IMF number-based techniques to be further decomposed to
extract noise components, VMD(10)-CCA performed well for
the two-stage technique as well while the best correlation
improvement is produced by VMD(15)-CCA approach.

Figure 12a, Figure 12b, and Figure 12c represent the
box and whisker plot of the 1SNR and percentage
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FIGURE 14. Box and whisker plot of performance parameters using (a) VMD(5), VMD(5)-PCA, and VMD(5)-CCA, (b) VMD(10), VMD(10)-PCA, and
VMD(10)-CCA, and (c) VMD(15), VMD (15)-PCA, and VMD(15)-CCA for 15 denoised fNIRS signals.

reduction in motion artifacts for all the 16 fNIRS signals
where VMD(5), VMD(5)-PCA, VMD(5)-CCA; VMD(10),
VMD(10)-PCA, VMD(10)-CCA; and VMD(15), VMD(15)-
PCA, VMD(15)-CCA algorithms are used respectively.
From Table 1 and Figure 12, it is observed that for fNIRS

recordings, the best average 1SNR value is 15.97 dB and
the greatest average percentage reduction in movement arti-
facts is 39.01% produced by VMD(10)-CCA. Also, two-
stage motion artifacts correction techniques (VMD-PCA and
VMD-CCA) performed significantly better compared to the
single-stage motion artifacts correction technique (VMD) in
terms of the average percentage reduction in motion artifacts.

Authors of [38] found that brain activity was absent
in the EEG trials of 12 and 15. Moreover, they found
a poor correlation coefficient over the clean epochs of
the recordings of trials 12 and 15 and carried out their
investigation on the remaining 21 recordings of EEG.
We have observed similar phenomena while investigating
this study. In addition to this, similar phenomena were
observed for the single-channel fNIRS signal of trial 8

(recorded at 830 nm wavelength). Therefore, the authors
of this work are presenting a second table (Table 2) that
depicts the average 1SNR and average percent reduction in
motion artifacts for the remaining 21 EEG signals (excluding
trials 12 and 15) and 15 fNIRS signals (excluding trial 8
recorded at 830 nm wavelength) using VMD, VMD-PCA,
and VMD-CCA based algorithms.

Figure 13a, Figure 13b, and Figure 13c represent the box
and whisker plot of the calculated performance parameters
(1SNR and η) using Equations 14 and 16) when VMD(5),
VMD(5)-PCA, VMD(5) -CCA; VMD(10), VMD(10)-PCA, and
VMD(10)-CCA; VMD(15), VMD(15)-PCA, and VMD(15)-
CCA algorithms are employed, respectively for 21 motion
corrupted EEG recordings. On the other hand, Figure 14a,
Figure 14b, and Figure 14c represent the box andwhisker plot
of the same performance parameters which are obtained from
VMD(5), VMD(5)-PCA, VMD(5)-CCA; VMD(10), VMD(10)-
PCA, and VMD(10)-CCA; VMD(15), VMD(15)-PCA, and
VMD(15)-CCA techniques respectively for 15 motion artifact
corrected fNIRS signals.
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FIGURE 15. Box and whisker plot of performance parameters using
VMD(5) for 21 cleaned EEG trials. Here, for each trial, the first four IMFs
were added to generate the clean EEG signals directly.

After excluding two recordings (trials 12 and 15) of EEG
signals, the largest average 1SNR was found as 25.70 dB
using VMD(5)-CCA and VMD(15)-CCA technique provided
the highest average ηwhich is 62.09%. For fNIRS signals, the
highest average1SNR (17.01 dB)was foundwhenVMD(15)-
CCA techniquewas incorporated. The largest η (39.48%)was
generated by VMD(10)-CCA method.

As previously mentioned in the introduction section,
it has been found that DWT, EMD, EEMD, EMD-ICA,
EMD-CCA, EEMD-ICA, EEMD-CCA, SSA,Wavelet-based
techniques along with approximation sub-band filtering,
adaptive filtering (ARX model with exogenous input), etc.
were mostly used as movement artifacts removal techniques.
To obtain denoised signals from motion corrupted physio-
logical signals using DWT-based techniques, choosing the
appropriate wavelet is very vital and somewhat difficult as
well. To date there is no concrete rule available for choosing
the right wavelet for the specific physiological signal of
interest, rather, in most cases, wavelets are chosen based on
the morphology of the signal of interest. Hence, inappropriate
selection of wavelets would lead to inefficient denoising.
EMD based motion artifacts removal technique greatly suf-
fers from the ‘mode mixing’ problem which would lead to
an erroneous result. This mode mixing problem is solved
in EEMD techniques. Although EEMD is free from the
mode mixing problem, this algorithm requires an optimum
parameter, the number of ensembles to be used. Selecting
the number of ensembles is entirely done based on trial
and error [34]. To use the SSA algorithm for the analysis
of physiological signals, a prior declaration of the window
length and the required number of reconstruction compo-
nents is necessary, which makes SSA inefficient as well.
In [42], the authors used DWT and approximation sub-band

filtering using total variation (TV) and weighted TV. During
the reconstruction of the signal, they have discarded the
first three high-frequency detailed sub-band signals based on
that those first three detailed sub-band signals contained no
relevant information of EEG signal. Therefore, identifying
the non-useful components while using DWT-based methods
is critical to remove motion artifacts from EEG as well as
fNIRS signal. Also, the value of the regularization factor to
solve the optimization problem of TV and MTV techniques
was chosen without giving any justification. In [52], the
autoregressive exogenous input model (adaptive approach)
was investigated to model the motion corrupted segments
as output, and IMU data was used as exogenous input. The
authors showed the efficacy of their proposed model only for
4 test subjects. One of the crucial parts presents in implement-
ing this method is the proper synchronization of the fNIRS
data and IMU data which is very challenging in a practi-
cal environment. Also, if the epoch duration of the motion
artifacts is sufficiently large (more specifically, the sample
size), then modeling the artifacts mathematically using the
least square method would require higher-order polynomial
models (stability issue), which makes this approach very
difficult to implement in a real-life scenario.

The two-stage motion artifacts removal techniques (VMD-
PCA and VMD-CCA) proposed in this paper will not be
able to identify the motion corrupted PCA components/CCA
components in the absence of ground truth signal. In the
absence of ground truth signal, an alternative method can be
realized proposed by Hassan et al. [66] where the authors
used the autocorrelation function to identify the motion cor-
rupted components. The automatic artifact component selec-
tion technique using the autocorrelation function proposed
in [66] has not been presented in this work.

However, the proposed single-stage motion artifact
removal technique (VMD) will give optimum results even
in the absence of the ground truth signal. It has been visually
observed that themaximum percentage ofmotion artifacts are
present in the last IMF of VMD. To validate this statement,
VMD(5) technique was again used for 21 noisy EEG (trials
12 and 15 were excluded) signals, where the first four IMFs
were added up leaving the 5th IMFs as it is. This technique
produced an average1SNR of 23.04± 6.22 dB and a 58.31%
reduction in artifacts with a standard deviation of 25.16.
Figure 15 depicts the box and whisker plot for the perfor-
mance parameter obtained using this technique.

Applications where obtaining ground truth signal is dif-
ficult (EMG signal acquisition), could use this method for
successful elimination of motion artifacts. On the other
hand, in the physiological signal acquisition modalities,
where obtaining the ground truth signal is relatively easier
(ECG signal), making use of the two-stage motion artifacts
removal technique (VMD-CCA) is suggested for obtaining
greater accuracy and signal quality.

The results, as well as the box and whisker plots pre-
sented in this research work, are a clear indication of the
efficacy of our proposed novel multiresolution techniques
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i.e. VMD, VMD-PCA, VMD-CCA for the successful
removal of motion artifacts from EEG and fNIRS signals.
Since all the techniques, proposed in this work, are reliable,
robust, and computationally efficient, similar methodology
with minimal alterations can be applied for the correction
of motion artifacts from other physiological signals (EMG,
ECG, PPG, etc.) as well. We strongly believe, the motion-
artifacts-free EEG and fNIRS signals obtained using our
proposed models would facilitate in identifying neurologi-
cal disorders by both medical doctors and machine learning
based systems to a great extent. The only limitation of this
study is that the two-stage motion artifact correction methods
(VMD-PCA and VMD-CCA), proposed in this study, are
relatively computationally expensive in comparison with the
single-stage motion artifact correction method (VMD).

V. CONCLUSION
Three robust motion artifact removal techniques have been
proposed in this paper, namely variational mode decompo-
sition (VMD), variational mode decomposition in combina-
tion with principal component analysis (VMD-PCA), and
variational mode decomposition in combination with canon-
ical correlation analysis (VMDD-CCA) for EEG and fNIRS
modalities. Further, the proposed algorithms are investigated
by 9 different approaches. Both VMD-PCA and VMD-CCA
techniques can be used on the single-channel recordings
as the VMD algorithm can decompose a single-channel
signal into a predefined number of IMFs that can be fed
to the PCA/CCA algorithm. The performance parameters
obtained from all these approaches are a clear indication of
the efficacy of these algorithms. The novel VMD(15)-CCA
and VMD(10)-CCA technique provided the best performance
in terms of the percentage reduction in motion artifacts
(62.09% and 39.48%) when analyzing the 21 EEG and
15 fNIRS recordings, respectively. On the other hand,
the VMD(10)-CCA technique generated the highest average
1 SNR (25.35 dB) for EEG signals, and VMD(15)-CCA
produced the highest 1SNR (17.01 dB) for fNIRS signals.
An alternative approach for removing motion artifacts from
EEG signals has also been investigated that produced very
good results. This claim is validated from the computation of
the performance matrices also. In the future, deep learning
models will be investigated for the automated detection and
removal of motion artifacts in physiological signals (EEG,
ECG, EMG, PPG, fNIRS, etc.). New methods based on the
use of different multivariate signal processing approaches
will be developed for the elimination of other artifacts
from the EEG and fNIRS signals recorded using multiple
electrodes.
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