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ABSTRACT In this paper, standard solid Sudoku cubes (SSSCs), a three-dimensional (3D) extension of
Sudoku tables, are introduced, and a method to construct these cubes is presented. This is the first class
of standard solid Sudoku cubes. An SSSC of order m is a solid Latin cube of order m with solid subcubes
of order x × y× z in which each element occurs exactly once in each row, column, depth, and subcube. The
structure of these cubes is based on cyclotomic cosets of Zn, and we make use of a vector Z and a basic table
T to construct SSSCs. We obtain m tables by multiplying all entries of T by a number from the vector Z .
Then, these tables are converted to an SSSC by stacking them in order. Based on this method of construction,
a perfect set of strongly mutually distinct standard solid Sudoku cubes is designed. We also provide a two-
dimensional (2D) representation of these SSSCs in a table with numbers placed on the main diagonal of its
subtables. Finally, a new class of 3D Sudoku puzzles based on SSSCs is presented as standard solid Sudoku
puzzles (SSSPs).

INDEX TERMS Latin cube, solid Sudoku cube, Sudoku puzzle, Sudoku table.

I. INTRODUCTION
Sudoku tables are a special class of Latin squares which
are very popular among researchers [3], [8], [9], [13], [14].
A Sudoku table of order m with subtables of order s× d is a
Latin square in whichm different numbers occur exactly once
in each row, column, and subtable [6]. The most common
Sudoku table is a 9 × 9 table with 3 × 3 subtables in which
9 different numbers occur in the entries of this table and any
number appears exactly once in each row, column, and sub-
table. As a consequence, a three-dimensional (3D) standard
solid Sudoku cube of order m is defined as an m × m × m
cube in which m different numbers appear in the entries of
the cube such that any number appears only once in each row,
column, depth, and x × y × z subcube, x · y · z = m. This is
called a standard solid Sudoku cube (SSSC) of order m with
subcubes of order x × y × z, and denote it by SSSC(x, y, z).
An SSSC(x, y, z) can be divided into subcubes of order
x×y×z along theX ,Y , and Z axes.Without loss of generality,
throughout this paper we assume that 1 ≤ x ≤ y ≤ z ≤ m.
In the design of these Sudoku cubes, we fill the m3 entries of
an SSSC of order m with only m different numbers such that
the properties are satisfied.
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approving it for publication was Yeliz Karaca .

FIGURE 1. A solid subcube of an SSSC(1, 1, m) having entries filled with
m different numbers.

In the case x = 1, y = 1, and z = m, any solid subcube
of an SSSC(1, 1,m) is a solid column of length m as shown
in Figure 1. For the case x = 1 and 1 < y, z < m, any solid
subcube of order y × z from an SSSC(1, y, z) is a solid table
in which any of the m different numbers appear exactly once
in this subcube as shown in Figure 2. Therefore, we consider
that for parameters in the range 1 < x, y, z < m, any subcube
of order x×y×z from an SSSC(x, y, z) is a solid cube inwhich
any of them different numbers appears exactly once. Figure 3
shows a subcube of order 2× 2× 2 from an SSSC(2, 2, 2) of
order m = 8. It is obvious that any of the 8 different numbers
appear exactly once in this subcube.

In this paper, we use cyclotomic cosets of the group Zn
which have previously been used to design Sudoku tables [6],
twin Sudoku tables, and triplet solid Sudoku cubes [7], and
also LDPC codes [5]. Sudoku tables/puzzles have applica-
tions in other fields of research such as image encryption [21].
They have also been used in cryptographic protocols such as

30180
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-3503-9920
https://orcid.org/0000-0001-9919-0323
https://orcid.org/0000-0002-8894-7017
https://orcid.org/0000-0001-8725-6719


M. Najafian et al.: Construction of Standard Solid Sudoku Cubes and 3D Sudoku Puzzles

FIGURE 2. A solid subcube of an SSSC(1, y, z), y · z = m, having entries
filled with m different numbers.

FIGURE 3. A 2× 2× 2 solid subcube of an SSSC(2, 2, 2) having entries
filled with 8 different numbers.

zero-knowledge proofs to prove knowledge without reveal-
ing the secret [10], [15], and they can be used in data
encryption [22].

To construct an SSSC, we generate a basic table T of
order m × m using the elements of the cyclotomic cosets
of Zn. A vector Z is designed which contains the m different
numbers of the union of all cyclotomic cosets. Then mul-
tiplying T by numbers from the vector Z , we obtain other
tables. Stacking these solid tables in order gives a standard
solid Sudoku cube SSSC(x, y, z). We also show that for the
constructed SSSC(x, y, z) (denoted Q) of order m, there exist
m strongly mutually distinct (SMD) SSSC(x, y, z) of order m
as a perfect set of SMDSSSC(x, y, z) of order m. The perfect
set of SMDSSSC(x, y, z) is created by multiplying Q by the
numbers in the vector Z .

In [6], methods to construct Sudoku tables and solid
Sudoku cubes were presented. Sudoku tables of order m with
s × d subtables were constructed and solid Sudoku cubes
of order m with subcubes of order d × d × d were given.
In their construction, the solid Sudoku cubes had d × d × d
subcubes such that all d3 entries are filled with m different
numbers where d · d = m. In other words, each number
occurs exactly d times in each subcube. Thus, the m different
numbers fill all d3 entries while any number occurs exactly
once in each row, column, and depth, and d times in each solid
subcube.

In [7], twin Sudoku tables and triplet solid Sudoku cubes
were introduced, and a method to construct them was pre-
sented. Twin Sudoku tables of ordermwere constructed such
that they can be divided into subtables of order s×d and d×s
simultaneously. Triplet solid Sudoku cubes were designed so

that they can be divided into subcubes of order s × s × d ,
s × d × s and d × s × s, at the same time, where s · d = m.
Furthermore, the solid subcubes are filled with m different
numbers, and any number appears exactly s times in each
subcube. Thus, the m different numbers fill the s2 · d entries
of each solid subcube and any number appears exactly once
in each row, column, and depth, and s times in each solid
subcube.

In [4], linear magic squares were introduced, and the
existence and construction of orthogonal magic Sudoku solu-
tions of order p2 where p is a prime power were inves-
tigated. In [12], a set of mutual orthogonal Sudoku Latin
squares (MOSLS) was presented, and for a prime power p,
p2 − p MOSLS of order p2 were constructed. It was shown
that for integer k , there exist MOSLS of order k2.

Sudoku puzzles as incomplete Sudoku tables are quite
interesting for researchers, and they are also very popular
games among people. These puzzles should be solved so that
a complete Sudoku table is obtained. Few researchers have
investigated solving Sudoku puzzles [1], but some have stud-
ied solutions and developed algorithms to solve them [11],
[17], [19], [20]. Solving Sudoku puzzles is an NP-complete
problem [16] so obtaining solutions is very complex. Sudoku
puzzles as a cube such that six Sudoku puzzles are arranged
on the six faces of a cube were introduced in [18] as a 3D
version of Sudoku puzzles.

In this paper, a new class of solid Sudoku cubes called
standard solid Sudoku cubes is constructed. This class of solid
Sudoku cubes of order m × m × m with subcubes of order
x × y × z are created along the X , Y , and Z axes, and the
m3 entries of an SSSC(x, y, z) are filled with m different
numbers such that each number appears exactly once in
each row, column, depth, and subcube. We show that these
SSSC(x, y, z) can be used to create m SMDSSSC(x, y, z).
As it is difficult to visualize the inside of an SSSC(x, y, z)
as a solid cube, we present a two-dimensional (2D) rep-
resentation for this class of SSSC(x, y, z) to facilitate their
investigation and use. In this representation, the columns of
an SSSC(x, y, z) occur on the diagonals of subtables of a table
of order m2

× m2 where the subtables have order m × m.
Finally, we generate a new class of 3D Sudoku puzzles from
these SSSCs and their 2D representations which are called
standard solid Sudoku puzzles (SSSPs).

II. PRELIMINARIES
LetZn be the group of integers modulo n. Assume 1 < q < n,
gcd(q, n) = 1, is a number of order z, i.e. qz = 1 mod n, and
z is the least positive integer that satisfies this congruence.
Then the set Ca0 = C1 = {1, q, q2, . . . , qz−1} is a cyclotomic
coset with coset leader a0 = 1. For any positive integer t , the
number at , where at is the least positive integer that has not
appeared in the previous cyclotomic cosets, is the tth coset
leader and creates a cylotomic coset Cat = {at · c mod n|c ∈
C1} [2]. We choose b different cyclotomic cosets such that
they have cardinality |C1| = z, and satisfy the properties
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gcd(at , n) = 1, and for any 0 ≤ t1, t2 ≤ b− 1

at1 · at2 mod n ∈ Ĉ :=
⋃

0≤t≤b−1

Cat . (1)

Lemma 1: For any c ∈ Ĉ , let Mc = {c · e mod n| e ∈ Ĉ}.
If relation (1) holds, thenMc = Ĉ .

Proof: This follows from [6, Lemma 1]. �
Lemma 1 proves that if we multiply all numbers in Ĉ by

any number c ∈ Ĉ , then all numbers of Ĉ are generated, i.e.
for any c ∈ Ĉ we have c · Ĉ mod n = Ĉ .
Remark 1: While we are working with the m different

numbers in Ĉ they may not be consecutive numbers. How-
ever, they can be replaced with m consecutive numbers after
the SSSC(x, y, z) is created.
Definition 1: A solid Latin cube of orderm is anm×m×m

cube having entries filled with m different elements such that
each element occurs exactly once in each row, column, and
depth of the cube.
Definition 2: A standard solid Sudoku cube of order m

with subcubes of order x × y × z, SSSC(x, y, z), is a solid
Latin cube which can be divided into m2 solid subcubes of
order x × y × z, and each element appears exactly once in
each of these subcubes.

Definition 2 describes a standard solid Sudoku cube,
SSSC(x, y, z), of order m. Hence an SSSC(x, y, z) of order m,
where x ·y ·z = m, is anm×m×m cube that hasm2 subcubes
having entries filled withm different numbers. For simplicity,
throughout this paper we define the indexes and their ranges
as 0 ≤ i, r ≤ x − 1, 0 ≤ j, s ≤ y − 1, 0 ≤ k ≤ z − 1, and
0 ≤ l ≤ m− 1. We also define x · y = b, and 0 ≤ t ≤ b− 1.
Note that the symbol × is used when discussing dimension
and · for multiplication.

Since every cube has six faces, dividing a cube into sub-
cubes of order x × y × z should be defined according to
which face and direction it is divided. A cube has top, front,
left, right, back, and bottom faces. Thus, without loss of
generality, this division is done along the X , Y , and Z axes,
respectively, so when a cube is divided into subcubes of order
x × y × z, the division is done along the axes. Figure 4
illustrates this division.

III. SSSC CONSTRUCTION
To construct a standard solid sudoku cube (SSSC) of order
m with subcubes of order x × y × z, namely SSSC(x, y, z),
consider Zn and q such that qz = 1 mod n, where z is the
least positive integer that satisfies this congruence. Therefore,
Ca0 = C1 = {1, q, q2, . . . , qz−1}, and for 1 ≤ t ≤ b−1 there
is a number at which is the least number that has not appeared
in a previous cyclotomoic coset and satisfies the properties in
Section II. Then Cat = {at , at · q, at · q

2, . . . , at · qz−1}, and
if we consider Cat as a vector, i.e.

Cat = [at at · q at · q2 . . . at · qz−1] (2)

then it contains z different numbers. We define the vector Z
by cyclotomic cosets

Z = [C1 Ca1 Ca2 . . . Cab−1] (3)

FIGURE 4. A basic table and vector Z which shows how an SSSC(x, y, z) is
divided.

which contains b different vectors of order z, b · z = m, so
Z has length m.

For 0 ≤ l ≤ m−1, if l = z · t+k where 0 ≤ k ≤ z−1 and
0 ≤ t ≤ b− 1, then the lth element in the vector Z is Z (l) =
Z (z · t + k) = at · qk mod n. For 0 ≤ i ≤ x − 1, the vector ui
of length y is defined as

u0 = [1 a1 a2 . . . ay−1]

u1 = [ay ay+1 . . . a2y−1]

u2 = [a2y a2y+1 . . . a3y−1]

...
...

ux−1 = [ab−y ab−y+1 . . . ab−1]. (4)

For 0 ≤ j ≤ y− 1, the vector u(j)i of length y is obtained from
the vector ui by a j cyclic shift to the left. Then u(0)i = ui and
for j = 1, the vectors u(1)i are

u(1)0 = [a1 a2 . . . ay−1 1]

u(1)1 = [ay+1 . . . a2y−1 ay]

u(1)2 = [a2y+1 . . . a3y−1 a2y]

...
...

u(1)x−1 = [ab−y+1 . . . ab−1 ab−y]. (5)

For 1 < j ≤ y − 1, the vectors u(j)0 , u(j)1 , . . ., and u(j)x−1
are obtained in the same way. For 0 ≤ j, s ≤ y − 1, and
0 ≤ i ≤ x − 1 the sth element of u(j)i is u(j)i (s) = ay·i+j+s.
Therefore, the table B of order b × b constructed from these
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vectors is

B =



u0 u1 u2 . . . ux−1
u1 u2 u3 . . . u0
...

...
...

. . .
...

ux−1 u0 u1 . . . ux−2

u(1)0 u(1)1 u(1)2 . . . u(1)x−1
u(1)1 u(1)2 u(1)3 . . . u(1)0
...

...
...

. . .
...

u(1)x−1 u(1)0 u(1)1 . . . u(1)x−2

...
...

...
...

...

u(y−1)0 u(y−1)1 u(y−1)2 . . . u(y−1)x−1

u(y−1)1 u(y−1)2 u(y−1)3 . . . u(y−1)0
...

...
...

. . .
...

u(y−1)x−1 u(y−1)0 u(y−1)1 . . . u(y−1)x−2



(6)

with entries consisting of the coset leaders at , 0 ≤ t ≤ b− 1.
Each entry of B is the sth element of the vector u(j)i+r ,
0 ≤ s ≤ y− 1

B(j · x + r, i · y+ s) = u(j)i+r (s) = ay·(i+r)+s+j = at (7)

where t = y · (i+ r)+ s+ j mod b.
The basic table T of order m× m is

T =


B q · B q2 · B . . . qz−1 · B
q · B q2 · B q3 · B . . . B

...
...

...
. . .

...

qz−1 · B B q · B . . . qz−2 · B

 (8)

where the entry qk ·B is obtained by multiplying all entries of
B by qk . Then, for 0 ≤ t ≤ b−1 and 0 ≤ k ≤ z−1, the table
Tz·t+k of order m× m contains m different numbers where

Tz·t+k = at · qk · T mod n. (9)

By considering thesem SMD tables as Solid tables and stack-
ing them in order, a standard solid Sudoku cube SSSC(x, y, z),
denoted Q, is obtained.
Theorem 1: Table B in (6) is a Sudoku table of order b

with x × y subtables which contain all coset leaders of the
cyclotomic cosets.

Proof: From the construction of B and u(j)i , which is a
vector of length y, it is clear that B is a Latin square. Thus, it is
sufficient to show that any subtable of order x × y contains
b different numbers and any two distinct entries contain
different numbers. To achieve this, for 0 ≤ i1, i2 ≤ x− 1 and
0 ≤ s1, s2 ≤ y− 1, we show that

B(x · j+ r, y · i1 + s1) 6= B(x · j+ r, y · i2 + s2).

From the construction of B and (7), it is sufficient to show
that u(j)i1+r (s1) 6= u(j)i2+r (s2). Then, based on the vectors u(j)i ,

we have

ay·(i1+r)+j+s1 6= ay·(i2+r)+j+s2

so we should show that

y · (i1 + r)+ j+ s1 6= y · (i2 + r)+ j+ s2 mod b.

Simplifying this equation, we have y · (i2 − i1) + s2 −
s1 6= 0 mod b. Since i1 6= i2 or s1 6= s2, then

0 < y · (i2 − i1)+ s2 − s1 < y · (x − 1)+ y− 1 < b. (10)

As x · y = b, (10) holds, which completes the proof. �
Theorem 2: The basic table T in (8) is a Latin square.
Proof: It is sufficient to show that any row or column

contains m different numbers. In a row of the table, for 0 ≤
k1, k2 ≤ z−1, 0 ≤ i, r ≤ x−1 and 0 ≤ s1, s2 ≤ y−1 where
k1 6= k2 or s1 6= s2, we show that

qk1 · B(x · j+ r, y · i+ s1) 6= qk2 · B(x · j+ r, y · i+ s2).

In other words, the following should hold

qk1 · ay·(i+r)+j+s1 6= qk2ay·(i+r)+j+s2 mod n.

If k1 = k2 and s1 6= s2, then the proof is the same as that of
Theorem 1. If s1 = s2 and k1 6= k2, say y · (i + r) + j + s =
t mod b, then it is clear that at · qk1 6= at · qk2 mod n. For the
case k1 6= k2 and s1 6= s2, we must show that

qk1 · ay·(i+r)+j+s1 6= qk2 · ay·(i+r)+j+s2 mod n

and simplifying gives

at1 · q
k1 6= at2 · q

k2 mod n

where y · (i + r) + j + s1 = t1 mod b, and y · (i + r) + j +
s2 = t2 mod b. Since any two different coset leaders belong
to two different cyclotomic cosets, then

at1 6= at2 · q
k2−k1 mod n.

�
Corollary 1: From Theorem 2, it can be deduced that each

table Tz·t+k in (9) is a Latin square.
Proposition 1: For 0 ≤ t ≤ b− 1 and 0 ≤ k ≤ z− 1, the

m tables Tz·t+k in (9) make a perfect set of SMDLatin squares
of order m.

Proof: Since each table is a Latin square, then based
on their construction, the proof of Theorem 2 and Lemma 1,
these m tables make a perfect set of SMD Latin squares of
order m. �
Theorem 3: The cube Q constructed by stacking the solid

tables Tz·t+k in (9) is an SSSC(x, y, z) of order m.
Proof: It is sufficient to show that any subcube of order

x× y× z contains m different numbers, i.e. any two entries of
a subcube contain different numbers. Thus, for two elements
of Z , i.e. at · qk1 and at · qk2 , and also two different entries
of a subtable of T , i.e. qk

′

· B(j · x + r1, i · y + s1) and
qk
′

· B(j · x + r2, i · y + s2), we show that e1 6= e2 where
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e1 and e2 are values in two distinct entries of a subcube from
the SSSC(x, y, z)

e1 = at · qk1 · qk
′

· B(j · x + r1, i · y+ s1) (11)

e2 = at · qk2 · qk
′

· B(j · x + r2, i · y+ s2). (12)

Removing the common terms from (11) and (12) and simpli-
fying, we obtain

qk1 · u(j)i+r1 (s1) 6= qk2 · u(j)i+r2 (s2). (13)

Based on the design of the vectors u(j)i where u(j)i+r1 (s) =
ay·(i+r1)+j+s, and (13), we have

qk1 · ay·(i+r1)+j+s1 6= qk2 · ay·(i+r2)+j+s2 mod n (14)

where k1 6= k2 or r1 6= r2 or s1 6= s2. If k1 = k2, and r1 6=
r2 or s1 6= s2, the proof follows from Theorem 1. If k1 6= k2,
there are three possibilities which must be considered.
(i) If r1 = r2 and s1 = s2, then it is clear that (14) holds,

i.e. at ·qk1 6= at ·qk2 mod n because two elements of any
cyclotomic coset are different.

(ii) If r1 = r2 and s1 6= s2, from (14) we obtain that
qk1 · as1 6= qk2 · as2 mod n, i.e. as1 6= as2 · q

k2−k1 mod n.
Since any coset leader is unique and does not belong to
another cyclotomic coset, it is clear that (14) holds.

(iii) If s1 = s2 and r1 6= r2, the proof is the same as (ii).
�

Table 1 gives the parameters to construct an SSSC(x, y, z) of
order m with x× y× z subcubes. This shows that the number
of cyclotomic cosets required is x · y = b.

IV. STRONGLY MUTUALLY DISTINCT SSSCs
Let Q be an SSSC(x, y, z) constructed from Theorem 3. For
any 0 ≤ l ≤ m − 1, let Z (l) = Z (z · t + k) = at · qk be the
lth entry of the vector Z . Then for any l, we define the
cube Ql as

Ql = Z (l) · Q mod n (15)

which is a standard solid Sudoku cube of order m. These
cubes are made by multiplying the entries of the standard
solid Sudoku cube Q by Z (l), which is the lth number in
the vector Z . Theorem 4 shows that (15) makes a perfect set
of SMDSSSC(x, y, z).
Theorem 4: For 0 ≤ l ≤ m − 1, Ql in (15) is a stan-

dard solid Sudoku cube, and they make a perfect set of
SMDSSSC(x, y, z) of order m.

Proof: For 0 ≤ l ≤ m− 1, since Z (l) = Z (z · t + k) =
at ·qk is a number from Ĉ , from Lemma 1 it is clear thatQl is
an SSSC(x, y, z). For 0 ≤ l1, l2 ≤ m−1, since Z (l1) 6= Z (l2),
assume that an entry inQ contains c ∈ Ĉ so that the entries in
Ql1 and Ql2 contain values c ·Z (l1) and c ·Z (l2), respectively.
Then from Lemma 1, c · Z (l1) 6= c · Z (l2) mod n, so Ql1 and
Ql2 are SMDSSSC(x, y, z) of order m. �
Corollary 2: The m SMD standard solid Sudoku cubes

in (15) are m different Latin cubes, so they can be consid-
ered as Latin squares in four dimensions, i.e. Latin quads of

TABLE 1. Parameters to construct an SSSC(x, y, z) of order m.

order m. Then, a Latin quad is m different Latin cubes such
that the same entries of these m cubes contain m different
numbers, i.e. they are SMD Latin cubes.
Example 1: In this example, we construct an SSSC(1, 2, 2)

of order 4 where x = 1, y = 2, and z = 2. Thus, we choose
Zn = Z5 and q = 4 so the cyclotomic cosets are C1 = {1, 4}
and C2 = {2, 3} and Z = [C1 C2] = [1 4 2 3]. Based on the
construction, u = [a0 a1] = [1 2] and u(1) = [2 1]. Then,
the table B of order 2× 2 from u and u(1) is

B =
[
u
u(1)

]
=

[
1 2
2 1

]
(16)

and the basic table T of order 4× 4 is

T =
[

B 4 · B
4 · B B

]
=


1 2 4 3
2 1 3 4
4 3 1 2
3 4 2 1

 . (17)

For 0 ≤ t, k ≤ 1, the 4 tables T2·t+k of order 4 × 4 are
obtained by multiplying Z (2 · t + k) = at · 4k by the entries
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of T , so T0 = T and the other three tables are

T1 = 4 · T mod 5 =


4 3 1 2
3 4 2 1
1 2 4 3
2 1 3 4

 (18)

T2 = 2 · T mod 5 =


2 4 3 1
4 2 1 3
3 1 2 4
1 3 4 2

 (19)

T3 = 3 · T mod 5 =


3 1 2 4
1 3 4 2
2 4 3 1
4 2 1 3

 . (20)

By stacking these tables in order, i.e. T0,T1,T2,T3,
an SSSC(1, 2, 2) of order 4×4×4 is obtained in which each
subcube of order 1×2×2 contains 4 different numbers. One
of the interesting properties of these SSSCswhich can be seen
in this example is that the 64 entries of the solid cube have
only 4 different numbers.

FIGURE 5. The basic table T and the corresponding vector Z related
to SSSC(1, 2, 2).

Figure 5 gives the basic table T and the corresponding
column vector Z of SSSC(1, 2, 2). This shows that T contains
4 different numbers and is a Latin square. Figure 6 presents
the SSSC(1, 2, 2) and shows that it contains subcubes of order
1 × 2 × 2 along the X , Y , and Z axes. For 0 ≤ t, k ≤ 1, the
4 SMDSSSC(1, 2, 2), i.e. Q0,Q1,Q2,Q3, of order 4× 4× 4,
which are a perfect set of SMDSSSC(1, 2, 2), are obtained
by multiplying Z (2 · t + k) = at · 4k by the entries of Q.
Therefore, Q0 = Q, Q1 = 4 · Q mod 5, Q2 = 2 · Q mod 5,
and Q3 = 3 · Q mod 5.
Remark 2: For the given construction of SSSCs with

x = 1, it is obvious that y · z = m. Thus if we divide
SSSC(1, y, z) into subcubes of order 1×m×m, from Exam-
ple 1 it can be concluded that the corresponding 1 × m × m
subcubes are solid Sudoku tables of order m with subtables
of order y× z.

FIGURE 6. The SSSC(1, 2, 2) with subcubes of order 1× 2× 2.

FIGURE 7. Two-dimensional representation of an SSSC(x, y, z).

V. TWO-DIMENSIONAL REPRESENTATION OF SSSCs
Since it can be difficult to visualize the structure and internal
components of SSSCs, it is helpful to provide a way to illus-
trate this class of Sudoku cubes. In this section, we present
the 2D representation for SSSC(x, y, z) shown in Figure 7.
The 2D representation shown in Figure 7 is an m2

× m2

table that we call a diagonal table with m2 subtables of
order m × m. The m different numbers in a column of an
SSSC(x, y, z), i.e. in the X , Y , or Z direction, are placed
on the diagonal of an m × m subtable. To do so, we can
embed a column into one of the 2D planes, i.e. the XY -plane,
XZ -plane, or ZY -plane. If we embed an SSSC(x, y, z) into the
XY -plane, then the entries on the diagonal of the subtables
containm different numbers from a column in the Z direction.
The diagonal table for the SSSC(1,2,2) in Figure 6 is

shown in Figure 8. The first entries on the diagonal of a
subtable contain numbers from T0, the second entries contain
numbers from T1, the third entries are from T2, and the fourth
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entries are from T3. In general, the entries on the diagonal of
each subtable are as follows. The first entry is the number
in the basic table, i.e. T0, the second is the number in the
second table, i.e. T1, the third is the number in the third table,
i.e. T2, and this continues until the mth entry is the number in
the mth table, i.e. Tm−1. Therefore, with this representation
all m different numbers occur as diagonal entries of the
m × m subtables of the table. In this table, each element
occurs exactly once in each row, column, and diagonal of a
subtable. Further, any z consecutive entries starting from the
first position on the diagonal of any x × y block of subtables
divided from top to the bottom and left to right will contain
m different numbers.

FIGURE 8. The 2D representation of the SSSC(1, 2, 2) in Figure 6, which is
obtained by embedding the numbers of SSSC(1, 2, 2) in the entries of the
diagonal table in the XY-plane.

Example 2: To illustrate the two dimensional represen-
tation of an SSSC(x, y, z), the SSSC(1, 2, 2) presented in
Example 1 is investigated. Figure 8 shows the 2D represen-
tation of this SSSC. Denote this table as D. It is obvious that
each element occurs exactly once in each row, column, and
diagonal of the subtables of D. Table D corresponds to the
standard solid Sudoku cube Q0 in Figure 6 from Example 1.
Therefore, to obtain tables D1, D2, and D3 corresponding to
Q1, Q2, and Q3, we multiply D by 4, 2, and 3, respectively.
Thus, D0 = 1 ·D, D1 = 4 ·D mod 5, D2 = 2 ·D mod 5, and
D3 = 3 ·D mod 5. The shaded entries in Figure 8 correspond
to the shaded entries of SSSC(1, 2, 2) in Figure 6.
In Example 3, we show the construction of an SSSC(x, y, z)

of order 8 where x = y = z = 2.
Example 3: To construct a standard solid Sudoku cube of

orderm = 8with subcubes of order 2×2×2 (x = y = z = 2),
we consider Z17 and q = 16 so the cyclotomic cosets are
C1 = {1, 16}, C2 = {2, 15}, C4 = {4, 13}, and C8 = {8, 9}.

The vector Z = [1 16 2 15 4 13 8 9] of length 8 contains the
numbers in Ĉ . For 0 ≤ i, j ≤ 1, the vectors u(j)i , are obtained
using (4), i.e. u0 = [1 2] and u1 = [4 8] so that u(1)0 = [2 1]
and u(1)1 = [8 4]. In fact, u(1)0 and u(1)1 are formed by a cyclic
shift to the left of u0 and u1, respectively. Then the table B of
order 4 × 4 is constructed from the vectors u0, u1, u

(1)
0 , and

u(1)1 as

B =


u0 u1
u1 u0
u(1)0 u(1)1
u(1)1 u(1)0

 =

1 2 4 8
4 8 1 2
2 1 8 4
8 4 2 1

 . (21)

For 0 ≤ i, j, r, s ≤ 1, the (2 · j + r, 2 · i + s)th entry of B is

the sth entry of u(j)i+r . In other words, B(2 · j+ r, 2 · i+ s) =
u(j)i+r (s) = a2·(i+r)+j+s = at where t = 2·(i+r)+j+s mod 4.
The basic table T of order 8× 8 from B is

T =
[

B q · B
q · B B

]
(22)

=



1 2 4 8 16 15 13 9
4 8 1 2 13 9 16 15
2 1 8 4 15 16 9 13
8 4 2 1 9 13 15 16
16 15 13 9 1 2 4 8
13 9 16 15 4 8 1 2
15 16 9 13 2 1 8 4
9 13 15 16 8 4 2 1


. (23)

Then for 0 ≤ l ≤ 7, the 8 strongly mutually distinct tables Tl
obtained from T are given by

Tl = T2·t+k = Z (2 · t + k) · T = at · qk · T mod 17 (24)

where for 0 ≤ t ≤ 3 and 0 ≤ k ≤ 1, the entries of T are
multiplied by at · qk . By stacking these 8 strongly mutually
distinct solid tables in order T0,T1, . . . ,T7, the SSSC(2, 2, 2)
is obtained.We replace these eight different numbers with the
consecutive numbers 1 to 8 so that 1→ 1, 2→ 2, 13→ 3,
4→ 4, 15→ 5, 16→ 6, 9→ 7, 8→ 8.
Figure 9 gives the 2D representation of SSSC(2, 2, 2). It is

clear that any of the 8 different numbers appears exactly
once in each row, column, and diagonal of any subtable
of this table. In addition, any z = 2 consecutive entries
starting from the beginning of the diagonal of any block of
2 × 2 subtables divided from top to the bottom and left to
right contain 8 different numbers. The two pairs of rectangles
and parallelograms shown in Figure 9 at the corners of the
2 × 2 block of subtables represent two 2 × 2 × 2 subcubes
of the SSSC(2, 2, 2). To obtain other subcubes of this SSSC,
one can follow the same pattern on the table. In other words,
any 2 consecutive entries on the diagonals of a 2× 2 block of
subtables, corresponding to a subcube in the SSSC(2, 2, 2),
contains 8 different numbers.

In Section VI, this representation method is used to
show how to create and also represent 3D Sudoku puzzles.
This representation not only provides us with a method of
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FIGURE 9. 2D representation of the SSSC(2, 2, 2) in Example 3. Any two
consecutive entries on the diagonals of any 2× 2 block of subtables
divided from top to bottom and left to right contain 8 different numbers.
The two rectangles represent a subcube in the SSSC(2, 2, 2), and the two
parallelograms show another subcube.

understanding these SSSCs, but also creates a new type of
Sudoku table which is interesting.

VI. SUDOKU PUZZLES FROM SSSCs
Sudoku puzzles in 3D are challenging problems. In [18],
the only known 3D Sudoku puzzles were defined as six 2D
Sudoku puzzles on the six faces of a cube. In [6], a method
to construct Sudoku tables was presented as well as the
construction of 2D Sudoku puzzles from these tables. In other
words, it was shown that a 2D Sudoku puzzle can be created
by removing some entries of a Sudoku table. This method
guarantees that these puzzles are solvable, i.e. they have at
least one solution because they are obtained from a Sudoku

FIGURE 10. Two-dimensional representation of an SSSP(1, 2, 2).

table. In [7], twin Sudoku puzzles were introduced. These
puzzles are obtained from the twin Sudoku tables constructed
in [7] by removing some entries from the tables.

Whenever a new type of Sudoku table is designed, a new
class of Sudoku puzzles can be created by removing some
entries from the tables. Here, we obtain a new class of 3D
Sudoku puzzles by remove some entries in an SSSC(x, y, z) to
obtain a standard solid Sudoku puzzle (SSSP(x, y, z)). Since
it is hard to visualize the elements of an SSSP(x, y, z), we use
the 2D representation presented in Section V. Then, these
puzzles should be solved such that the m different numbers
appear exactly once in each row, column, and diagonal of the
subtables divided from top to bottom and left to right of the
puzzle. Further, any z consecutive entries starting from the
first position on the diagonals of any x× y block of subtables
in the table, divided from top to bottom and left to right,
should contain m different numbers. The last property comes
from the fact that any number should occur exactly once in
each x × y× z subcube of the SSSP(x, y, z).
Example 4: Figure 10 gives the 2D representation of

an SSSP(1, 2, 2) corresponding to the SSSC(1, 2, 2) in
Example 1. To solve this puzzle, the shaded entries should be
filled with the four different numbers such that any number
appears exactly once in each row, column, and diagonal of
any subtable. It should also satisfy the property that any
z = 2 consecutive entries starting from the first position on
the diagonals of any 1 × 2 block of subtables divided from
top to bottom and left to right of the Sudoku puzzle contain
the four different numbers.

VII. CONCLUSION
A method to design a new class of solid Sudoku cubes called
standard solid Sudoku cubes (SSSC) was created. In this
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construction, algebraic tools such as cyclotomic cosets in a
group Zn are used to create an SSSC of order m. That is, for
any number m and any factorization of m, x · y · z = m, not
only an SSSC(x, y, z) but also m strongly mutually distinct
SSSCs(x, y, z) are created. These m SMD SSSCs(x, y, z) can
also be considered as an extended version of a Latin square
in 4D as a Latin quad. Based on a 2D representation of
SSSC(x, y, z), a new class of 3D Sudoku puzzles, namely
SSSP(x, y, z), was introduced. These 3D Sudoku puzzles are
interesting not only for game designers but also for people
who are interested in solving Sudoku puzzles.
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