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ABSTRACT Economic load dispatch solutions based on publishedmethods, both conventional and artificial,
have been very well-formulated through point-to-point movement methodologies to reach a convergence
point. Iteration always starts from the starting point to obtain the following solution point, leading to the
convergence point. This paper presents a newmethod to solve economic load dispatch problems by narrowing
the minimum and maximum power limits between generator units. This idea approximates the solution
point with a tiny space formed by the very narrow power limits of each generator. The methodology used
is the distance between the minimum and maximum power limits of each generator divided into several
segments. Then, the best segment is determined by the minimum total cost calculated based on the center
point of the segment. Continue to the following iteration process until the best segment is the smallest. This
iteration process is another artificial method that works without calculus calculations, so it does not depend
on the objective function. This method has been validated using two generator units with differentiable
objective functions, with calculation accuracy less than 0.00001 MW of the power distance of the generator
limit, and the iteration stops at the 23rd step. Furthermore, this method has been successfully applied to the
nondifferentiable objective function, piecewise and valve point effects.

INDEX TERMS Economic load dispatch, narrow power limits, segment, tiny space.

I. INTRODUCTION
Economic dispatch problem (EDP) practices are always an
interesting study. The EDP can generally be differentiated
into differentiable EDPs and nondifferentiable EDPs. The
objective function in the form of differentiable EDP is con-
tinuous and differentiable, generally quadratic. In contrast,
the objective function in nondifferentiable EDP can be either
noncontinuous or non-differentiable. Examples of nondiffer-
entiable EDP objective functions are non-smooth functions,
having prohibited operation zones and steps. The develop-
ment of this objective function has prompted experts to study
it. Conceptually, EDP is a simple optimization problem in a
power system. All committed generator units are assumed
to collect in one bus with a single load. The consequence
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of this concept is that transmission loss has been neglected.
Conventionally, the ELD (economic load dispatch) problem
is a differentiable problem, and the methods for solving it
have been widely published. The conventional ELD prob-
lem has been defined by [1], which involves equivalence
and inequality constraints. However, the actual operation of
the power plant can cause undifferentiated ELD problems,
such as a non-smooth objective function and the presence
of POZ in the fuel cost curve [2]–[4]. This makes the EDP
problem even more complicated because it changes its objec-
tive function. This method consists of an artificial network
and a Lagrange multiplier. The methodology uses the arti-
ficial network to control the Lagrange parameter. However,
it can repair the computation time, but information regard-
ing its accuracy has not been discussed [2]. A solution of
the non-convex optimization for ELD problems using the
Fuzzy Technique studied by [3]. This technique has been
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successfully applied to the ELD problems, but the formu-
lations are enough complex, and applying to POZ needs to
advance study. Economic Dispatch (ED) problem solving by
considering valve point effect (VPE), transmission loss, and
restricted operating zone (POZ) has been studied by [3] using
a full mixed-integer linear programming (FMILP) formula-
tion. In this study, a reformulation trick is used, by convert-
ing the objective function into a set of traceable quadratic
constraints [4].

Experts have published a few methods for solving EDP
based on calculus methods (CMs) and artificial intelligent
methods (AIMs). CMs are specially used for differentiable
EDPs, as studied by [5]–[9]. The methodology developed
by [5]–[8] is based on the LaGrange technique with its com-
pletion through iterative steps as in the lambda iteration, gra-
dient, and Newton methods. In addition to CMs, there is also
a direct method studied by [9]. This methodology is based on
derivingmathematics to obtain formulas with straightforward
solutions. The advantages are that the method can be applied
to large systems and has the shortest computation time. How-
ever, the method is limited to objective functions in quadratic
form only. The accuracy of the CMs is so high (the certainty
of the solution falls on the global minimum point) that they
are often used to validate the other methods (or AIMs). The
optimal point is achieved by deriving the LaGrange function
so that the CMs cannot resolve the nondifferentiable EDP.

Various AIMs have been published as in [10]–[31]. Based
on artificial intelligence, two concepts have been devel-
oped, namely, point-to-point and area reduction. A point-to-
point AIM is a method in the optimization process through
a point-to-point approach to reach a solution point. These
methods include the neural network method (NNM), particle
swarm optimization (PSO), and genetic algorithm (GA). For
AIM-based area reduction, the solution is obtained by reduc-
ing the viable area to a very small value.

NNM is based on the process of the human brain of work-
ing in parallel and exchanging information via the synaptic
connectors on neurons. These neurons encapsulate all the
information that comes to them, and if the result is higher
than the given potential called an action potential, the neurons
send pulses through the axons to the next stage. An artificial
neural network consists of simple computing units (artificial
neurons), and each unit is connected to other units via heavy
connectors. Then, these units calculate the total input weight
and know the output using the squashing function or activa-
tion function. The applications of this neural network have
been studied by [10], while applications to EDP have been
presented by [11] and [12]. Although NNM can be applied
to complete EDP, a high-speed processor is needed because
artificial nerves work in parallel. In addition, a large memory
is required for data storage. In addition, there are no specific
rules for determining an artificial neural network structure;
a suitable network structure is achieved through experience
and trial and error. Therefore, the speed and memory of
computers will be a problem if NNM is implemented in large
systems.

PSO is also overgrowing, as studied by [13]–[17]. The
methodology starts from a randomly selected initial spot
(initial point); continues to scatter many candidates around
it at a certain distance (step-length); then, the best candidate
is selected as the next spot until a solution point is obtained.
This methodwill not be accurate if the local minimum is close
to the initial point chosen because the method can ascertain
that the solution point falls on that local minimum. Accuracy
is also dependent on the number of candidates; the optimal
number of candidates is still uncertain. Parameter control is
required in each iteration step, and the processed dataset is
vast, which will influence the computation time when applied
to large systems.

GA is a metaheuristic based on the process of natural
selection. The applications for generating high-quality solu-
tions in optimization and search problems rely on biological
operators such as mutation, crossover, and selective opera-
tors. The method has been applied to solve EDP, as studied
by [18]–[25]. Similar to PSO, GA is no guarantee of finding
global maxima. A decent-sized population and many genera-
tions must be processed so that it is burdensome to work on
computers to obtain solutions over a long time, especially for
large systems. GA also needs fine-tuning all parameters in
determining mutation, which is often just trial and error.

The other methods stress the complexity of the optimiza-
tion problem presented by [27]–[31]. The model with the
conditional value at risk recourse function [27] has solved
the robust dynamic economic dispatch distribution problem.
Inspiration by the moth flame moving toward the moon was
developed by [28]. Optimizing an electric power system is
very complex, so a heuristic method is needed to solve it.
The basic heuristic optimization techniques for application to
power systems have been presented by [29]. The complicated
methods used to solve optimal power flow were studied
by [30] and [31]. The Newton-Rapson method determines
power flows based on PSO, which has been satisfactorily
developed [26]. These methods are also artificial; they will
face problems if applied to large systems. The other method
is based on calculus, the interior point, presented by [31].
The interior algorithm has been developed through predictor-
corrector and reduction techniques to work very fast and to be
applicable for large systems. Nevertheless, the method cannot
be applied to nondifferentiable optimizations.

All methods mentioned above use a point-to-point opti-
mization process to reach a convergence solution. The
following are published based on reducing feasible areas
developed by [32]–[35]. This method is commonly used to
detect two-dimensional image objects in telecommunication,
as studied by [32]–[34], with a coarse-to-fine technique.
The feasibility area is divided into grids, and each grid is
tracked to determine the best grid. Furthermore, this best grid
reduces until a tiny grid is obtained, representing a convergent
solution. The development of this multidimensional method
was presented by [35]. The purpose of this development is
to complete the EDP. The multidimensional feasibility area
is formed by the minimum and maximum power limits of
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the generator units. The feasibility area is divided into sev-
eral areas with the same dimensions. Each area represents a
candidate with a coordinate point at the center. In addition to
determining the best candidate, the candidate must also meet
the power balance between total power generation and load.

Fig. 1 shows a difference illustration between the point-to-
point and reducing area methods. Based on the point-to-point
method in Fig. 1a, the iteration step starts from the initial
point (x0), and through iteration steps, the solution points will
lead to the convergence point (xop). As the reducing area in
Fig. 1b shows, the iteration step starts from the feasibility area
and reduces to the best area-1 and best area-2. This method
will successfully yield when the optimal points are in their
respective best areas.

FIGURE 1. Iteration processes in: (a) point-to-point; (b) reducing area
methodologies.

This paper develops a new method, called the technique of
narrowing down area (ToNDA), to work for all kinds of objec-
tive functions (differentiable or not). The methodology is to
narrow the power distance of the generator limits (PDGL)
of each generator, expressed in (1), until it approaches the
solution point, Pop, as illustrated in Fig. 2.

Xi = P̂i − P̌i (1)

where Xi is the PDGL of Generator i. P̂i and P̌i are the maxi-
mum and minimum power limits of Generator-i. Meanwhile,
feasible areas are formed by PDGL from all generators.

FIGURE 2. Iteration process in ToNDA methodology.

In each iteration, the PDGL is divided into segments, and
each segment boundary is represented as a solution point.
Once the best candidate is obtained, the PDGL is narrowed
to reduce that candidate. The iteration process continues
to update the PDGL (after being narrowed down from the

previous one) until the smallest segments are reached. The
smallest space is formed in a feasible area from a very narrow
PDGL. where the smallest space can be stated as a solution
point (convergence point).

While the narrowing process can be explained in Fig. 3,
if the PDGL of each generator is divided into k−1 segments,
k potential solution points (P1, P2, . . . ,Pk−1, Pk ) of each
generator are obtained, where the first point (P1) is at P̌, and
the endpoint (Pk ) is at P̂. For n generators, the candidate is
a vector of dimension n, where the elements are the poten-
tial solution points of each generator and are expressed in
Equation (2).

Cd i = x(Pi1,P
j
2, . . . ,P

l
n−1,P

m
n ) (2)

where cd i is as a candidate and Pi1 is,

Pi1 ∈
{
P1i ,P

2
i , . . . ,P

k−1
i ,Pki

}
(3)

The candidates formed must meet the balance of power,
namely:

Pi1 + P
j
2 + · · · + P

l
n−1+P

m
n = PD (4)

where PD is total load. Then the best candidate (Cdb) is
selected when the total cost is least compared to the others.
Area reduction is carried out by establishing a new generator
power limit involving the left and right segments. However,
the newminimumormaximumpower limit should not violate
the initial minimum or maximum power limit.

After obtaining Cdb or point (Pj+2) on the generator,
as shown in Fig. 3, which is marked with x, the distance of
the power limit is narrowed by involving the left and right
segments. Narrowing the distance of the power limit aims to
anticipate the possibility of the convergence point outside the
new distance of generator limits, such as the convergent point
(Pop) seen in Fig. 3. In this case, the convergence point is
improbable to be outside the new distance of the generator
limits.

FIGURE 3. Narrowing process.

Next, the generator limits are updated through Equa-
tions (5) and (6).

P̌new = Pj+2 − Ra, P̌new ≥ P̌old (5)

P̂new = Pj+2 + Ra, P̂new ≤ P̂old (6)

where P̌new and P̂new are the new generator limits, P̌old and
P̂old are the old generator limits. Ra is a quantity to determine
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the size of the area reduction. The smaller the Ra value is, the
larger the reduced area. For a very large Ra it will allow the
solution point to be outside the minimized area, so it is not
accurate. This inaccuracy is shown in Table 2 with a Vra value
of more than 80%. It is certain that a small Ra value (≤50%)
in the table can guarantee accuracy.

II. ToNDA METHODOLOGY
Generally, the EDP consists of an objective function, some
inequality constraints, and an equality constraint, written in
(7), (8), and (9), respectively.

TC =
n∑
i=1

Fi (7)

P̆i ≤ Pi ≤ P̂i, i = 1, 2, . . . , n (8)
n∑
i=1

Pi − PD = 0 (9)

where TC is the total cost, Pi is the active power generator,
and Fi is the function of fuel cost to generator output power
and is expressed by (10).

Fi = fi(Pi) (10)

Then, S0 is defined as the initial space (initial feasible area)
formed by generator limits from n generator units so that this
space will have n dimensions, as written in (11).

S0 =
{(
P̌01, P̂

0
1

)
,
(
P̌02, P̂

0
2

)
, . . . ,

(
P̌0n, P̂

0
n

)}
(11)

The initial PDGL of the generator is defined in (1) for gener-
ator i expressed by (12).

X0
i = P̂0i − P̌

0
i (12)

If X0
i is divided into k−1 segments, the number of k points

will be obtained as the potential solutions that are spread
evenly between the minimum and maximum limits. Where
P̂0i and P̌0i are the maximum and minimum initial power
limits. Based on the description, an initial segment length of
generator i (Ls0i ) is written in (13) is obtained.

Ls0i =
P̂0i − P̌

0
i

k − 1
(13)

For n generators, a candidate is formed; for example,
x01 (P

0,i
1 ,P

0,j
2 , . . . .,P

0,l
n−1,P

0,m
n ) is selected in S0 that meets (9)

so that P0,mn can be calculated through (14).

P0,mn = PD − P
0,i
1 − P

0,j
2 − · · · − P

0,l
n−1 (14)

For the kth iteration step, equation (14) becomes,

Pk,mn = PD − P
k,i
1 − P

k,j
2 − · · · − P

k,l
n−1 (15)

where Pk,i1 is the power generator 1, it is in segment i at
the k iteration step which satisfies the power balance in
equation (4) or (14).

This last equation ensures that the equality constraint in (9)
is consistently met. In this case, the segments of an nth

generator are not the same length because the value of Pk,mn
must meet (14). From the explanation above, some candidates
will be obtained, namely, Jc and expressed in (15).

Jc = kn−1 (16)

Suppose Cd01 is a potential candidate. If Generator 1 to
Generator n−1 is set with their solution potential points at
the minimum power limit, the solution potential point for
Generator n is:

Pn = PD − P̌1 − P̌2 − · · · − P̌n−1 (17)

So, Cd01 is:

Cd01 = x
(
P̌1, P̌2, . . . , P̌n−1,Pn

)
(18)

where Cd01 ∈ S0. Of all the candidates distributed to S0,
then the best candidate is chosen with a minimum value of
total cost (TCk

b) and it falls on Cb
k
b, expressed in (19). All the

candidates are distributed to the appropriate areas.

Cbkb = x
(
Pk1−b, , . . . ,P

k
n−b

)
(19)

while Cbkb can be determined by (19).

Cbkb = Min
{
TCk

1,TC
k
2, . . . ,TC

k
n

}
(20)

Next, S0 can be reduced to S1 (a new space), where S1 ∈ S0.
S0 is obtained by narrowing the limits of generators and is
formulated in (21) and (22).

P̌ki = Pk−bi − µLsk (21)

P̂ki = Pk−bi + µLsk (22)

where P̌ki and P̂ki are the minimum and maximum power
limits of the iteration k for Generator i. The greater the value
ofµ is, the slower the narrowing of the generator power limit,
where:

0 ≤ µ ≤ 0.5(k − 1) (23)

From (12), (22), and (23), the value of X0 can be determined,
namely:

Xnew
0 = 2µLs, Xnew

0 < Xold
0 (24)

So, the area reduction speed (Vra) is:

Vra =
Xald
0 − Xnew

0

Xold
0

100% (25)

The process of narrowing the generator limit continues
until it becomes tiny, namely, Xsmall . For example, in the
kth step, the space of the feasible area, Sk , can already be
considered to represent the solution point, where the value
of Xsmall is calculated by (26).

Xsmall = max
{
Xk
1,X

k
2, . . . ,X

k
n

}
≤ ε (26)

where ε is a very small number as the convergence. Algorithm
steps can explain detailed procedures of ToNDA through a
simple example of EDP consisting of two generator units.
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Total cost in (27), power of the generator limits in (28)
and (29), and equality constraint in (30).

TC = (200+10P1+0, 5P21)+(300+5P2+P
2
2) (27)

50 ≤ P1 ≤ 100 (28)

10 ≤ P2 ≤ 50 (29)

P1 + P2 = 110 (30)

The first step is to determine the desired number of segments
(for example, four segments or k = 5 and µ = 1), obtaining
16 rectangles and 25 points as much as possible, as shown
in Fig. 4. Two horizontal axes present the generator power
of P1 (first generator) and P2 (second generator). In contrast,
the vertical axis presents the total cost. The ABCD rectangle
(area 2500 MW2) is S0 from the initial minimum and max-
imum power limits of the generators. The PB-line is to be
formed by equality constraint stating as power balance, and
all candidates must lie on this line.

From Fig. 4, there are five potential candidates of 25 points
in space S0 (PB line), i.e., Cd1,Cd2,Cd3,Cd4, and Cd5.
From the potential candidates are chosen the best candidate
that has a minimum total cost, where the minimum cost falls
on the candidateCd4 (said to be the first best candidate,BC1).
Then, the PDGLs are narrowed based on (21) and (22) to be
A1B1C1D1, as shown in Fig. 4 and Fig. 5. With the same
procedures, five new candidates are obtained, and the best
candidate is BC2 and the new area (A2B2C2D2), where the
new area is less than the old area (A1B1C1D1).

FIGURE 4. Plot the candidates in the initial space.

The results of all steps are loaded in Table 1. The total
cost going down along with narrowing feasible area from
A0B0C0D0 is 50 × 40 MW2

= 2000 MW2 to A23B23C23D23
is 2.88x10−11MW2 in the 23rd step. Where the PDGL
of Generator 1 of 50 MW decreases to 0.0000060 MW,
and the PDGL of Generator 2 decreases from 40 MW to
0.0000048 MW.

The iteration will stop after reaching the convergence point
with the largest PDGL value of less than 0.00001 MW,
namely, 50 MW from Generator-1. In this simulation, con-
vergence is reached in the 23rd step with an accuracy of 5
digits of decimal number accuracy and a total cost of $5445.
83333. Accurate solution points fall in P1 = 7166762 ±
0.0000060 MW and P2 = 38.33238 ± 0.0000048 MW

TABLE 1. Results of simulation analysis.
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FIGURE 5. Plot the candidates in the A1B1C1D1.

TABLE 2. The effect of area reduction on the number of iterations.

When comparing the ToNDA method and the calculus
method for 5 digits of decimal number accuracy, the same
results were obtained, namely, Pb1 = 71.66667 MW, Pb2 =
38.333343 MW, and TC = $5445.83333.
Vra affects the number of iterations, as shown in Table 2,

where the larger Vra is, the fewer iteration steps. However,
an area reduction of more than 80% causes the calculation
to be inaccurate. From Table 2, the smaller area reduction
will guarantee the accuracy, but the iteration step required is
getting larger. For example, a Vra value of 5% requires 301
iteration steps. This paper suggests the Vra value of 50% as
a reconciliation so that the accuracy of the calculation results
is guaranteed.

III. ALGORITHM AND FLOWCHART OF ToNDA
The ToNDA described above can be applied to the various
objective functions, differentiable and nondifferentiable. The
procedure steps of solving EDP can be explained in detail by
the flowchart in Fig. 6. The calculation process starts with

determining the segment distance of the limits of each power
generator. The generator range (between the max limit and
the min limit) is divided into several segments/areas. Each
segment is represented by a point located in the middle of the
area to determine the best area indicated with the lowest cost.
The, a reduced area is formed involving the best area and the
neighboring area.Then, the process is continued by choosing
potential candidates who had to meet equality and inequality
constraints and then determining the best candidate with the
minimum total cost. Finally, the power limits of generators
are narrowed based on the point of the best candidate, where
the position of the point is the center. Convergence will be
reached if the maximum distance of the power limits of the
generator is smallest and satisfies (24). In this paper, the best
very small area that is considered to represent the point of
convergence is the area with a size of 0.012accuracy of 0.001.

The algorithm of the ToNDAmethod is written step by step
as:
1. Start
2. Input data (number of generators, cost characteristics,

generator power limit)
3. Set the maximum and minimum power limits of each

generator.
4. Calculate the PDGL for each generator using (12).
5. Set the value of k
6. The PDGL is divided into k−1 to obtain segment; for

example, k = 5 to obtain 4 segment
7. Calculate length segment through (13)
8. Determine k potential solution points that fall on the

segment boundaries in the PDGL for each generator.
9. Determine candidates that meet balance of power in

equation (4) or (14). Candidates for each generator are
determined from the smallest k sequence starting from
the first generator to the (n−1) generator. Candidates for
the nth generator are determined later through
equation (15).

10. Determine the best candidate with the lowest total cost
of generation from all candidates.

11. Set the Vra (recommended 50%).
12. Create a new PDGL with the best candidate as the

center involving neighboring segments.
13. If the minimum limit obtained is less than the initial

minimum limit, then the minimum limit is set equal to
the initial minimum.

14. If the maximum limit obtained is greater than the initial
maximum limit, then the maximum limit is set equal to
the initial maximum limit.

15. If the largest PDGL has been reduced to be the smallest
value (for example, 0.00001 MW), then the
convergence point is reached, and go to Step 16.
Otherwise, go back to Step 6.

16. Finish

IV. SIMULATION AND ANALYSIS
The ToNDA work performance and this method were tested
with the EDPwith a fuel cost model in the form of a piecewise
quadratic cost function and valve point effect. Simulation for

VOLUME 10, 2022 30827



H. Zein et al.: Method for Completing ELD Using Technique of Narrowing Down Area

FIGURE 6. Flowchart of ToNDA.

EDP with a piecewise quadratic cost function uses a 10-unit
system. In comparison, simulation for VPE uses two size
systems, a 13-unit system, and a 40-unit system.

A. EDP WITH PIECEWISE QUADRATIC FUEL
COST FUNCTION
The mathematical model of the fuel cost function is in piece-
wise quadratic forms depicted in Fig. 7 and formulated in
(31). The case study uses a 10-unit system with three fuel
types obtained from [36]. The ToNDA successfully simulated
the case for three load demands of 2500 MW, 2600 MW,
and 2700 MW, and the detailed results are presented in
Table 3.

f (P)=


ai,1 + bi,1Pi + ci,1P2i , P̌i ≤ Pi < Pi,1
ai,2 + bi,2Pi + ci,2P2i , Pi,1 ≤ Pi < Pi,2

...

ai,k−1+bi,k−1Pi+ci,k−1P2i , Pi,k−1≤Pi < P̂i
(31)

The simulation uses the Laptop Asus core i3 using the Fortran
Programming Language. For an error rate of 0.0001 MW,
the iteration stops at the 19th step with a CPU time of
3.74 seconds.

Calculation results of the EDP for the other methods
are obtained from [36], namely, Sequential Approach with
Matrix Framework (SAMF), Hierarchical Method (HM),

FIGURE 7. Characteristics of the generating unit with various fuel types.

TABLE 3. Economic dispatch results of three load demands with three
fuel types.

TABLE 4. Comparison of six methods.

Hopfield Neural Network (HNN), Adaptive Hopfield Neural
Network (AHNN), and Hybrid Genetic Algorithm (HGA).
A detailed comparison of the results is presented in Table 4.

Table 4 shows that the reference methods give almost no
different results for load demands of 2500 MW, 2600 MW,
or 2700MW. The ToNDAmethod provides better results than
the results of the reference methods. When referring to the
SAMF results, the ToNDAmethod provides a lower total cost
with an average fuel savings of 9.06 $/h or 1.55% (detailed
in Table 5).

Fuel savings will increase when the load demand is greater;
the percentage of fuel savings increases from 1.12% (load
demand of 2500 MW) to 1.80% (load demand of 2700 MW).
This fuel savings shows that the ToNDA method is always
accurate even though the load demand is increasing.

Based on Table 4, the proposed method has a performance
improvement of 10.97 $/h or 1.7586% against the best com-
parison method (PSO or HGA), which costs 623.81.
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TABLE 5. Fuel saving refer to SAMF method.

B. EDP WITH VPE
1) THE 13-UNIT SYSTEM
EDP simulation with VPE uses the IEEE testing system. The
simulations carried out are for two systems with different
sizes, namely, a system of 13 units and 40 units [37] with a
demand load of 1800MW and 10500MW, respectively. Data
of the 13-unit system and ToNDA results are presented in
Table 6. The optimal power of generators (Popt ) is not out of
power limits (P̌ and P̂). Under this optimal condition, the VPE
is 13.9829 $/h caused by the second unit of 12.3762 $/h. The
optimal condition, fuel, and VPE costs must be minimized.
The coefficient e is so large that the cost of VPE is minimized
as low as possible. Therefore, the high fuel units will be
optimal at the minimum power limit, the VPE cost is zero

(5, 6, and 7 units) or above the minimum power limit, and the
VPE cost is close to zero (4 units). The lowest fuel units will
be optimal around the maximum limit, and the VPE cost is
close to zero (unit 1).

Balance power between generating and load demand is
shown by the IPSO-TVAC, HCRO-DE, DSD, and ToNDA
methods. There are four different solution points shown in
Table 7, namely, the results of QPSO (SSA, IPSO-TVAC,
HCRO-DE, andDSD) and (HGA and FAPSO-VDE) ToNDA.
The result of the SSA method is smallest compared to the
IPSO-TVAC, HCRO-DE, and DSD methods, but the power
is not balanced. The DSD method shows the best results
(total cost of $17963.29/h) with balanced power compared
to the HGA method at different solution points. The SHDE
method (total cost of $17963.891/h) is better than the HGA
method because it satisfies the power balance. The power
balance must be satisfied because small power changes sig-
nificantly affect the results. For example, unit 4 with the
power is 109.7453 MW at the cost of $1129.5971/h, when
the power increases to 0.1 MW (to 109.8453 MW), the
cost reduces to 1129.4972 $/h. The ToNDA method yields
a different solution point, but the total cost of 17974.67$/h

TABLE 6. Results for the 13-system unit with VPE.

TABLE 7. Comparison results for 13-unit test system with VPE.
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TABLE 8. Test results for 40-unit system with VPE.

TABLE 9. Comparison results of 9 methods for IEEE 40 units with VPE.

is almost equal to the others, except for the QPSO method
(18398.848 $/h). For quadratic and the results of various fuel
types in Table 4, the proposed method is competitive, which
gives 1.7586% better results than the best comparisonmethod
(PSO or HGA), which offers a cost of 623.81 $/h). However,
for the case of VPE (in Table 7), the proposed method differs
only in the results of 0.05072% worse than the best method
(IPSO-TVAC)

2) THE LARGE UNIT SYSTEM
The test results for a 40-unit system with VPE are presented
in Table 8. The lowest fuel units fall in the minimum power
limit (units 10, 11, 12, 27, 28, and 29). The optimal power
(Popt) does not violate the power limits. The total cost of the
ToNDA method (121412.87 $/h) is slightly larger than the
others, as shown in Table 9.

In Tables 8 and Table 9, the proposed method is superior
to QPSO and HGA, while when compared to DSD, there
is a difference of 0.00028%. When the proposed method
is compared with the method from the latest reference [4]
which uses full mixed-integer linear programming (FMILP)
formula, the results are also not significantly different.

Figure 8 shows the execution times for various numbers of
generators. From the time, it looks quite feasible to apply to

FIGURE 8. Execution time for various number of generators.

the generator schedule for the next 1 hour, where generally
the generator schedule is 1 hour ahead.

V. CONCLUSION
A new paradigm based on narrowing the area in solving any
EDP problem has been described in this paper through the
ToNDA method. The methodology developed narrows the
feasible area at each iteration step to obtain a tiny feasible
area (as the solution point). The feasible area is evenly traced
to ensure very high accuracy. The advantage is that it does
not depend on the forms of the objective function. All eco-
nomic load dispatch problems can be solved satisfactorily,
regardless of whether the economic load dispatch problems
are differentiable.

The simulation of two generators (differentiable EDP)
shows that the results are close to the results of the calculus
method in step 14, with a limit range of 0.09766 MW or a
feasible area size of 0.0000596 MW2 (it is a tiny area that
can be considered a convergence point).

The ToNDA method successfully applies to the nondif-
ferentiable EDP, piecewise fuel cost, and fuel cost with the
valve point effect. From the simulation results of EDP with
a piecewise quadratic fuel cost function for ten units, the
ToNDA can save 9.06 $/h of fuel. or 1.55% compared to the
SAMF, HM, HNN, AHNN, and HGA) methods.

While the EDP simulation results with VPE are 13 units,
the proposed method shows almost the same results as other
methods, although the solution points are different. This
method always balances the power generated and the load
demand. This power balance must be maintained because a
slightly unbalanced power can reduce fuel costs due to VPE.

The ToNDA method has also been successfully applied to
large systems (40 generator units) in the case of the valve
point effect. Moreover, this method still consistently shows
optimal results compared to the other eight methods.
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