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ABSTRACT Multimodal sentiment analysis is a challenging task in the field of natural language processing
(NLP). It uses multimodal signals (natural language, facial gestures, and acoustic behavior) in videos to
generate emotional understanding. However, the importance of single modality data in the video to emotional
outcomes is not static. With the extension of the time dimension, the emotional attributes of a specific
natural language will be affected by non-natural language data, resulting in a vector shift in the feature space.
At the same time, long-term dependencies within a specific modality and long-term dependencies between
multiple modalities that are ‘‘unaligned’’ need to be considered. In response to the above problems, this
paper proposes Multimodal Encoding-Decoding Network with Transformer. The network model encodes
multimodal data through a Bidirectional Encoder Representations from Transformers (BERT) network and
Transformer encoder to resolve long-term dependencies within modalities. And the network reconstructs
the Transformer decoder to solve the weight problem of multimodal data in an iterative way. The network
fully considers the long-term dependencies between modalities and the offset effect of non-natural language
data on natural language data. Under the same experimental conditions, we validated our model on general
multimodal sentiment analysis datasets. Compared with state-of-the-art models, the network achieves good
progress and strong stability.

INDEX TERMS Auxiliary information, long-term dependence, multimodal sentiment analysis, transformer,
vector offsets.

I. INTRODUCTION
Sentiment analysis has always been a popular research direc-
tion in the field of NLP. In the early days, most of the
work was focused on unimodal research–mainly plain text
sentiment analysis [1], [2] –in which the investigations were
limited to determining the usage of words in positive and
negative scenarios [3] and obtaining emotional results by
analyzing the meaning of specific word combinations. Fur-
ther analysis of human behavior shows that humans trans-
mit information not only through natural language but also
through non-natural language (visual and acoustic) [4]. This
rich behavioral information can better help us understand
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human emotional intentions [5]. This behavioral information
is considered to be themultimodal language of human beings.
With the rapid development of online media, more and more
people tend to use video to record their comments and opin-
ions on products ormovies. This requires amulti-dimensional
analysis of people’s opinions and emotions in the video to bet-
ter understand the information it conveys [6]. Moreover, with
the maturity of audio and video feature extraction methods
[7], the research progress of multimodal sentiment analysis
has also been accelerated. Currently, modeling multimodal
language for emotional understanding has become the central
research direction of NLP and multimodal machine learn-
ing [8]–[10].

With further research, we found that although multimodal
language information is processed at the same time, it is still
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the natural language that plays a decisive role in the final
emotional understanding. It is difficult for us to analyze the
intentions of an actor by relying only on visual or acous-
tic behaviors because the non-natural language behaviors of
people expressing the same emotion are usually different.
Suppose a person shows an emotional state for a certain
thing, but it is almost difficult for us to determine whether
it is a positive emotion or a negative emotion through facial
expressions. When we combine facial behavior with different
natural language descriptions, we can clearly understand an
actor’s emotional intentions, but this will enhance or weaken
the original emotion expressed in the current natural lan-
guage. This leads to another problem. Since multimodal lan-
guage communication occurs through natural language and
non-natural language channels, the meanings of words and
sentences transmitted by humans through natural language
change dynamically in different non-natural language con-
texts [11], [12]. In other words, for a sentence that expresses
positive emotions in the field of purely natural language, the
meanings of words within the language are fixed in the vector
space. When nonnatural language behavior is introduced,
it will cause the words to shift in the original vector space.
The specific change is reflected in the strength and direction
and even causes its meaning to be biased to the opposite side.

Furthermore, the heterogeneity of cross-modality typically
increases the difficulty of the analysis of human language
because the variable sampling rate for each modal sequence
can lead to misaligned inherent data [13], expressed as
an ‘‘unaligned’’ multimodal language sequence. Therefore,
the final result of multimodal emotional discrimination is
affected not only by the long-term dependence relationship
within a specific mode but also by the long-term depen-
dence relationship between ‘‘unaligned’’ multiple modalities.
Therefore, how to coordinate the long-term dependencies
within the modalities and the long-term dependencies
between ‘‘unaligned’’ multiple modalities is a very important
research topic.

In response to the above problems, we proposed the mul-
timodal encoding-decoding network with transformer, which
is a model for handling human ‘‘unaligned’’ multimodal lan-
guages. The main contributions of this paper are:

• A new model for processing multi-modal data, which
is used to solve the problem of the dynamic change of
the weight of multi-modal data in the time dimension,
and update the cross-modal weight value in an iterative
manner.

• Solve long-term dependencies within a single modality
and long-term dependencies across modalities, focusing
on solving the problem of the offset of the meaning of
words in natural language data caused by non-natural
language data.

In order to verify the performance of our model in mul-
timodal sentiment analysis, we conducted experiments on
the benchmark CMU-MOSI and CMU-MOSEI datasets.
We retrained our model and the latest model previously

proposed in the same experimental environment and evalu-
ated and compared the final results. In all benchmark tests,
our model can outperform the benchmark and is more stable
than other models.

The remainder of this article is organized as follows.
In Sect. II, we introduce some related work on multimodal
emotion recognition. In Sect. III, we elaborate on the overall
architecture of our model. In Sect. IV, we describe the data
set and baseline model used in the experiment in detail.
In Sect. V, we present the results of the experiment and
report the necessary analysis. We summarized our model and
elaborated on future work in Sect. VI.

II. RELATED WORKS
In this section, we mainly discuss the related work of multi-
modal sentiment analysis and briefly introduce the two basic
models we will use.

A. MULTIMODAL SENTIMENT ANALYSIS
Multimodal sentiment analysis is now a popular research
direction. It models natural language and non-natural lan-
guage to gain emotional understanding. With the emer-
gence of a large number of multimodal datasets (such as
CMU-MOSI [14] and CMU-MOSEI [15]), scholars have
successively proposed many models for multimodal senti-
ment analysis. In early work, fusion methods directly con-
nected multiple modal data [16]–[19], and the primary and
secondary relationships between the modes were not studied.
For example, in literature [16], the author regards the prob-
lem of multimodal sentiment analysis as dynamic modeling
within and between modalities. The single-mode, dual-mode,
and three-mode dynamics are explicitly modeled by calculat-
ing the vector field of the triple Cartesian product, and the
multimodal emotion fusion tensor is calculated. In [17], the
author applies LSTM to each modal view to learn the inter-
action of a specific view and reconstructs the LSTMmemory
network to learn multimodal cross-attempt interaction infor-
mation. In [18], the author decomposes the fusion problem
into multiple stages, and each stage focuses on a subset of
multimodal signals for specialized and effective fusion. Then,
the fusion method is combined with the recurrent neural net-
work system to model the interactions in time and modalities.
In literature [19], the author proposed a multimodal attention
framework based on recurrent neural networks to learn the
joint relationships between multiple modalities and discourse
and used contextual information for discourse-level emotion
prediction. The multimodal fusion methods mentioned above
all put multiple modal information in the same position
without emphasizing the primary and secondary relationships
between each modal information. Our research is closer to
the work reported in [12], [20], [21] confirming that natu-
ral language information occupies an important position in
multimodal sentiment analysis. In literature [12], for the first
time, the author proposed that a speaker’s intentions usu-
ally change dynamically according to different nonlanguage
environments. When modeling human language, not only the
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TABLE 1. A summary and comparison of two multimodal fusion methods.

literal meaning of words but also the nonverbal context in
which these words appear must be considered. To this end,
the author proposes a gated modal hybrid network, which
dynamically moves word representations based on nonverbal
cues. In literature [21], the author combines the gated modal
hybrid network mentioned above with the BERTmodel with-
out changing the basic structure of the BERT model, which
can actually accept nonverbal information. These studies all
use textual information as an important carrier and then intro-
duce nonverbal behavior as auxiliary information to form a
multimodal emotional understanding. The core of our work is
to use natural language information as the dominant modality
and non-natural language information as the auxiliary modal-
ity to obtain the fusion vector representation in the natural
language vector space. Table. 1 summarizes and compares the
two multimodal fusion methods.

B. TRANSFORMER AND BERT
In our experiment, two basic encoding networks, the
transformer [22] and BERT (Bidirectional Encoder Repre-
sentations from Transformers) [23], are mainly involved.
A transformer is an acyclic neural architecture designed for
sequence data modeling. It discards the RNN and CNN as
the basic models of sequence learning and completely adopts
the attention mechanism; therefore, the architecture does not
have the ability to capture sequential sequences. For this rea-
son, the author uses position embedding in the architecture to
represent time-series information and finally achieves better
performance than the loop structure in terms of results, speed,
and depth. BERT is a successful application of a transformer
and a successful language model. The input embedding of
this model is generated by adding token embedding, segment
embedding, and position embedding. Then, multiple encoder
layers are applied on top of these input embeddings. Each
encoder has a multi-head attention layer and a feedforward
layer, and each layer has a residual connection with layer
normalization. BERT adopts the automatic coding method
to learn the vector representation of the masked mark in the
process.

III. PROPOSED APPROACH
In this section, we introduce in detail the Multimodal
Encoding-Decoding Network with Transformer (MEDT).
The purpose of MEDT is to solve the problem of
the ‘‘unalignment’’ characteristic of multimodal language

sequences, introduce word transfer representation, and finally
obtain multimodal emotional fusion vector representation.
Different from the previous strategy, we adopted a joint
encoding and decodingmethodwith text as themain informa-
tion and sound and image as auxiliary information to obtain
the emotion fusion vector representation. Our model can be
divided into two parts: 1) The unimodal encoder, which is
used to handle the long-term dependencies within the modal
and to encode unimodal information; and 2) The multimodal
joint-decoder, which is used to solve the long-term dependen-
cies between ‘‘unaligned’’ multiple modalities, dynamically
update the weight attribute values between different modal-
ities at different times, and finally obtain multimodal fusion
feature representation. Fig. 1 shows the overall architecture
of the model.

The input of the MEDT is multimodal sequence data. This
article mainly handles the following three types of multi-
modal sequence data: natural language {Language(l)} and
non-natural language {Visual(v),Acoustic(a)}, where Lan-
guage is the original text data Il input into the BERT model
(see Sect. III-A1). The initial feature vector of Visual and
Acoustic is expressed as Im ∈ RTm×dm (m = {a, v}), where dm
and Tm represent their respective time dimension and feature
dimension.

A. UNIMODAL ENCODER
In this part, we explained the unimodal encoder, and we used
different encoding methods for natural language and non-
natural language.

1) NATURAL LANGUAGE ENCODER
We used a pre-trained BERT [23] model that performed well
in the text domain to encode plain text to extract sentence
representations with long-term dependencies. We consider
that text information plays a leading role in the final results
of sentiment analysis. In order to ensure that the BERTmodel
can extract sentence representations containing sentiment
information, we roughly fine-tuned the BERT network on
the pure text sentiment classification dataset. The fine-tuned
BERT model does not need to achieve the best accuracy and
is only used to ensure that a general sentence representation
with emotional attributes is obtained. When we apply the
model to text in multimodal data, we will also perform syn-
chronous training. We apply the 12-layer BERT to the IMDB
dataset [24], which contains 50,000 positive and negative
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reviews from the movie database, including 36,000 training
set samples, 4,000 validation set samples, and 10,000 tests
set samples. The fine-tuned BERTmodel can achieve 89.42%
accuracy on the IMDB dataset sentiment dual classification
task.

Given the original text data Il = [I1, I2, · · · , IN ], N is the
number of samples. Each sample In (n ∈ N ) is a language
sequence In = [i1, i2, · · · , iT ] ∈ RT×d that carries T word-
piece tokens. Two special tokens [CLS] and [SEP] are added
to In, and we will use the former to predict emotions later.
Then, we input In into the input embedder, and its output is
the input encoding vector En = [eCLS , e1, e2, · · · , eT , eSEP]
of BERT after adding markers, segments, and position
embedding.

En = InputEmbedder (In) ∈ RTl×d (1)

Tl is equal to T plus two special symbols. d is the initial
encoding vector dimension. Finally, we input En into the
fine-tuned BERT model and obtain the lexical embedding
Xn of the last layer as the text embedding Xl with long-term
dependencies.

Xl = Xn = Finetuned − BERT (In) ∈ RTl×dl (2)

where dl represents the feature dimension of the language
modality after passing through the BERT network, which is
768 dimensions.

2) NON-NATURAL LANGUAGE ENCODER
For visual and acoustic data Im ∈ RTm×dm (m = {a, v}),
we emulate the way the transformer encodes text data, and we
apply the encoder of the transformer to non-natural language
data. In this paper, for convenience, we call it a Non-natural
Language Transformer Encoder (NNLE). For any natural lan-
guage, the position and order of words in a sentence are very
important. They are not only part of the grammatical struc-
ture of a sentence but also important concepts that express
semantics. If the position or sequence of a word in a sentence
is different, the meaning of the entire sentence may deviate.
Similar to natural language, for non-natural language data
with a time dimension, such as continuous changes of facial
expressions or voice intonations, if the arrangement order is
different, the meaning expressed will also be affected.

Since the transformer model discards the RNN (Recurrent
Neural Network) and CNN (Convolutional Neural Network)
as the basic models of sequence learning, it completely
adopts the attention mechanism, which means that the trans-
former model does not have the ability to capture time
series. In order to enable the sequence to carry time infor-
mation, following [22], we add position information embed-
ding (PE) to Im and then apply a Position-wise Feedforward
Network (PFN) to obtain non-natural language embedding
data Pm ∈ RTm×dm (m = {a, v}) with relative position
information:

PFN = xW + b

Pm = PFN (Im + PE (Im)) (3)

The reason why the network is position-wise is that the
transformation parameters of each position t are the same
when passing the linear layer. PE (Im) ∈ RTm×dm calculates
the fixed position embedding of each position index of the
non-natural language data in the time dimension. We leave
more details of the positional embedding to I.

NNLE is the same as the traditional transformer encoder
(see Fig. 1, right). It consists of N identical coding lay-
ers, each layer consists of two sublayers, and each sublayer
introduces residual connections and layer normalization. The
overall structure is summarized as:

LayerNorm (x + SubLayer (x)) (4)

The two sublayers are the multi-head attention mech-
anism (MHA) and position-wise fully connected feed-
forward network (FFN). The first sublayer MHA utilizes a
self-attention block defined as a scaled dot product function:

Attention (Q,K ,V ) = softmax
(
QKT
√
dk

)
V (5)

where Q, K , and V are input vectors with the same shape.
Expression

√
dk is a scaling factor, where dk is the feature

dimension of the input vector. Multi-head means projecting
Q, K , and V through h different linear transformations and
finally stitching together different attention results:

MultiHeadAttention (Q,K ,V ) = Concat (head1, . . . , headh) W
o

whereheadi = Attention
(
QWQ

i ,KW
K
i ,VW

V
i

)
(6)

The second sublayer FFN consists of two linear transfor-
mations, and the first linear transformation is followed by a
ReLU activation function. Similar to the PFN, the FFN is
position-wise because the transformation parameters of each
position t are the same when passing through the linear layer:

FeedForward (x) = max (0, xW1 + b1)W2 + b2 (7)

Assume that the input of the 0th layer Z [0]
m = Pm. In the

ith coding layer, the output Z [i−1]
m of the previous layer first

passes through the multihead attention block to obtain the
intermediate output Z

[i]
m , which can be expressed as:

Z [i]
m = LayerNorm

×

(
Z [i−1]
m +MultiHeadAttention

(
Z [i−1]
m ,Z [i−1]

m ,Z [i−1]
m

))
(8)

Then, through the second sublayer feedforward network,
the final output Z [i]

m of the ith coding layer is obtained:

Z [i]
m = LayerNorm

(
Z
[i]
m + FeedForward

(
Z
[i]
m

))
(9)

Finally, after N coding layers, we obtain the non-natural
language embedding Xm = Z [N ]

m ∈ RTm×dm (m ∈ {a, v}) with
timing information.
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FIGURE 1. The overall architecture of the MEDT. It consists of two parts: 1) the unimodal encoder and 2) the
multimodal joint-decoder. The unimodal encoder is divided into the natural language encoder of the fine-tuned
BERT and the non-natural language encoder (NNLE), and the PFN is the Positionwise Feedforward Network. The
multimodal joint-decoder is a reconstruction of the transformer’s decoder. The right side of the figure is the
encoder architecture of the transformer.

FIGURE 2. The left side shows the overall architecture of the multimodal joint decoder, and the right side shows the
cross-modal attention mechanism we use.

B. MULTIMODAL JOINT-DECODER
In this part, we reconstruct the decoder of the transformer
to obtain the multimodal fusion embedding representation,
which is called the multimodal joint-decoder. First, this net-
work considers the characteristics of word vectors in the fea-
ture space that are affected by non-natural language data; and
second, the network solves the problem of long-term depen-
dence between cross-modalities. (Fig. 2 shows the overall
structure). The multimodal joint-decoding layer is composed
of two sublayers. The second sublayer adopts a position-wise

fully connected feed-forward network such as NNLE. The
difference between the two networks is that in the multi-
head cross-modal attention mechanism, we use a cross-modal
attention block (CM ) containing a scaled dot product
function [13].

In the cross-modal attention block (CM ), two different
modal vectors Xβ ∈ RTβ×dβ and Xα ∈ RTα×dα are given.
We define the queries as Qβ = XβWQβ , the keys as Kα =
XαWkα , and the values as Vα = XαWVα , where WQβ ∈

Rdβ×dk ,WKα ∈ Rdα×dk , andWVα ∈ Rdα×dk are theweights of
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the linear transformation. Therefore, the cross-modal embed-
ding Yβ ∈ RTβ×dk from β to α can be obtained:

Yβ = CMα→β

(
Qβ ,Kα,Vα

)
= softmax

(
QβKT

α
√
dk

)
Vα

= softmax

(
XβWQβ

(
XαWkα

)T
√
dk

)
XαWVα (10)

Among the variables, Yβ and Qβ have the same length
(that is, Tβ ), but the data information comes from the feature
space of Vα . Expression

√
dk is a scaling factor. In particular,

the function softmax calculates the attention score matrix
S ∈ RTβ×Tα from modality β to modality α, where the
(i, j)th score indicates the degree of correlation between the
information at the ith time step of modality β and the infor-
mation at the jth time step of modality α. Hence, the ith time
step of Yβ is a weighted summary of Vα , with the weight
determined by the ith row in the attention score matrix S.
However, CMα→β is just single-head cross-modal attention.
The multi-head uses h different linear transformations to
project Xβ and Xα and finally splices the different attention
results to obtain the cross-modal embedding representation
Xα→β = Xβ ∈ RTβ×dβ of modality β to modality α:

Xα→β = MultiheadCMα→β

(
Xβ ,Xα

)
= Concat (head1, · · · , headh)WO

whereheadi = CMα→β

(
XβW i

Qβ ,XαW
i
Kα ,XαW

i
Vα

)
(11)

For the convenience of the following description, we sum-
marize the multi-head cross-modal attention mechanism as:

LayerNorm
(
Xβ +MultiHeadCMα→β

(
Xβ ,Zα

))
(12)

The input of the multimodal joint-decoder is three types of
coded multimodal embeddings Xl ∈ RTl×dl , Xa ∈ RTa×da ,
and Xv ∈ RTv×dv , where Xl is the text embedding through
the BERT encoder, and Xa and Xv are the acoustic and
visual embeddings with time information through the NNLE,
respectively. In this paper, we always use the natural language
data Xl as the query vector and use Xa and Xv as the key and
value vectors, respectively, to obtain the cross-modal fusion
embedding representation after the text embedding is offset
under the influence of non-natural language data.

The multimodal decoder is composed of N multimodal
decoding layers. Assuming that the text embedding of the
0th layer is represented as Z [0]

l = Xl ∈ RTl×dl , for the ith
decoding layer, we first use audio Xa as the initial keys and
values to obtain the cross-modal text embedding representa-
tion Z∗[i]a→l ∈ RTl×dl :

Z∗[i]a→l = LayerNorm

×

(
Z [i−1]
l +MultiHeadCMa→l

(
Z [i−1]
l ,Za

))
(13)

At this time, the data in Z∗[i]a→l belong to the text feature
space, but compared to before, the data shift in direction under
the influence of audio information. Then,Xv is passed into the

cross-modal attention mechanism as the new keys and values,
and Z∗[i]a→l is used as the query vector to further obtain the new
cross-modal text embedding representation Z∗[i]v→l ∈ RTl×dl :

Z∗[i]v→l = LayerNorm

×

(
Z∗[i]a→l +MultiHeadCMv→l

(
Z∗[i]a→l,Zv

))
(14)

Here, Z∗[i]v→l is a text embedding representation containing
two types of non-natural language information. Finally, after
a position-wise feed-forward network, the cross-modal text
embedding representation Z [i]

l of the ith layer is obtained.

Z [i]
l = LayerNorm

(
Z∗[i]v→l + FeadForward

(
Z∗[i]v→l

))
(15)

Finally, after n decoding layers, we obtain the final
cross-modal text embedding representation X(a,v)→l =

Z [N ]
l ∈ RTl×dl . Then, we choose the feature vector of the

special symbol token [CLS] in the text embedding as the
embedding representation Xf ∈ Rdl of multimodal fusion
information and further use it for sentiment analysis.

IV. EXPERIMENTAL SETTINGS
In this section, we introduce our experimental set-
tings, including the experimental datasets, baselines, and
evaluations.

A. DATASETS
In this work, we use two public multimodal sentiment analy-
sis datasets: MOSI and MOSEI. Here, we give a brief intro-
duction to the above datasets.

1) MOSI
The CMU-MOSI [14] dataset is one of the most pop-
ular benchmark datasets for multimodal sentiment analy-
sis. It comprises 2,199 short monologue video clips taken
from 93 YouTube movie review videos. Human annotators
label each sample with a sentiment score from -3 (strongly
negative) to 3 (strongly positive). We further processed the
dataset and divided it into a training set containing 1,284
samples, a validation set containing 229 samples, and a test
set containing 686 samples.

2) MOSEI
The CMU-MOSEI [15] dataset expands its data with a higher
number of utterances and greater variety in samples, speakers,
and topics than CMU-MOSI. The dataset contains 22,856
annotated video segments (utterances) from 5,000 videos,
1,000 distinct speakers and 250 different topics. We also
processed the dataset further and divided it into a training set
containing 16,326 samples, a validation set containing 1,871
samples, and a test set containing 4,659 samples.

B. BASELINES
In order to verify the performance of the MEDT, we con-
ducted a fair comparison with the following various state-
of-the-art models for multimodal language analysis. These
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TABLE 2. Results for multimodal sentiment analysis on CMU-MOSI and CMU-MOSEI with aligned and unaligned multimodal sequences. For the
performance indicators, h means higher is better and ` means lower is better. (SD) is the standard deviation of the results of five experiments. For the
model, (B) means that the language features are based on BERT. In Acc-2 and F1-Score, the left of the ‘‘/’’ is calculated as ‘‘neg./non-neg.’’ and the right is
calculated as ‘‘neg./pos.’’.

models are trained using extracted BERT word embeddings
as their language input:

TFN: The Tensor Fusion Network [16] creates a multidi-
mensional tensor to capture unimodal, bimodal, and trimodal
interactions and explicitly model intramodal and intermodal
dynamics.

LMF: Low-rank Multimodal Fusion [25] is an improve-
ment of the TFN that uses a low-rank tensor to perform
multimodal fusion to improve efficiency.

MulT: The Multimodal Transformer [13] adopts direc-
tional pairwise cross-modal attention, which attends to inter-
actions between multimodal sequences across distinct time
steps and latently adapts streams from one modality to
another.

MISA: Modality-Invariant and -Specific Representa-
tions [20] project each modality to two subspaces of modal
invariant and specific modalities to capture cross-modal com-
monality and unimodal private features for task prediction
fusion.

SelF-MM: The Self-Supervised Multitask Multimodal
sentiment analysis network [21] obtains an informative uni-
modal representation by jointly learning a multimodal task
and three unimodal subtasks. Among the subtasks, the label
of the unimodal subtask is obtained through a label generation
module based on a self-supervised learning strategy. Then,
the multimodal and single-modal tasks are jointly trained to
learn consistency and differences, respectively.

C. EXPERIMENTAL DESIGN
1) EXPERIMENTAL DETAILS
We use Adam as the optimizer and the initial learning rate
of 5e-5 for the BERT natural language encoder. The learn-
ing rate of the two non-natural language encoders is 0.001,
and the learning rate of the multimodal decoder and other
networks is 0.0001. For a fair comparison, we conducted

experiments on our model and the model mentioned above
under the same experimental conditions. We ran each model
five times and reported the average performance.

2) EVALUATION METRICS
Following previous work [15], [20], the emotional inten-
sity predictions using the MOSI and MOSEI datasets are
regression tasks, and the mean absolute error (MAE) and
Pearson correlation (Corr) are used as the performance indi-
cators. Additionally, the benchmark also involves classifi-
cation scores that include seven-class accuracy (Acc-7) and
five-class accuracy (Acc-5) ranging from -3 to 3, binary
accuracy (Acc-2), and the F-Score. For the binary accuracy
score, we chose two different evaluation methods. The first
is negative/non-negative classification, where non-negative
labels are based on scores ≥ 0 [26]. The second is the more
accurate negative/positive classification, where negative and
positive classes are assigned to sentiment scores of < 0 and
> 0, respectively [13]. We use the segment mark -/- to report
the results of these two indicators, where the score on the left
represents neg./non-neg. and the score on the right is neg./pos.
Furthermore, we calculate the standard deviation (SD) of the
five experimental results of the abovementioned evaluation
indexes and use it as the stability index of the model.

V. RESULTS AND DISCUSSION
In this section, we have conducted a detailed analysis and
discussion of the experimental results on the CMU-MOSI and
CMU-MOSEI datasets.

A. RESULTS
Table. 2 shows the comparison results on the MOSI and
MOSEI datasets. For a fair comparison, we experimented
with our model and the benchmark models under the same
experimental conditions. Following previous work [20], [21],
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TABLE 3. Examples from the CMU-MOSI data set. The true emotional label lies between strongly negative (−3) and strongly positive (+3). According to
the different ‘‘data settings’’, we performed fitting experiments on the ‘‘aligned’’ and ‘‘unaligned’’ data.

we tested our model (MEDT) on ‘‘aligned’’ data and
‘‘unaligned’’ data according to the different ‘‘data settings’’
and compared its results with those of the benchmark mod-
els. First, we apply our model and the benchmark mod-
els to ‘‘unaligned’’ data. Compared with the benchmark
models, our model achieved significant improvements in
all evaluation indicators. As mentioned earlier, when TFN
and LMF networks perform multimodal sentiment analysis,
each modality data has an equal effect on the final senti-
ment result. Our model MEDT takes natural language data
as the dominant information iteratively updates the weight
ratio of non-natural language data to natural language data,
and dynamically obtains multimodal fusion feature repre-
sentations to obtain emotional results. As can be seen from
Table. 2, our method has a substantial improvement in the
evaluation indicators of classification or regression com-
pared with the previous two networks. For example, on the
‘‘unaligned’’MOSI data, especially in the regression task, the
mean squared error (MAE) dropped directly by 23.61 points,
and in the binary classification accuracy metric and F1 score,
it also steadily increased by 5 points. Moreover, compared
with the state-of-the-art model Self-MM, the accuracy has
also been improved. Then, for the ‘‘aligned’’ data, we applied
the MISA and Self-MM models that performed well on the
‘‘unaligned’’ data to the ‘‘aligned’’ data, and our model still
had the best results. In addition to the basic evaluation indi-
cators, we also recorded the results of five experiments and
calculated the standard deviation to show the stability of the
model. The results show that the standard deviation of our
model for all evaluation indicators is low, and the fluctua-
tion is generally maintained between 0.2-0.9. Compared with
other models, our model has strong stability and resistance to
randomness, whichmeans that themodel can obtain relatively
stable output results under different conditions. In Fig. 3,
we show the results of five experiments on the Pearson corre-
lation (Corr) indicator of the two datasets in the regression
task. Our model guarantees a high Corr index while also
ensuring the stability of the model.

B. DISCUSSION
Weighting each modality data and enhancing the associ-
ated modality data for a particular task can better achieve

the desired results. Our model further validates this idea.
However, our model is less flexible than the method that
automatically obtains the dominant mode data by building
a weight distribution model. Taking the three modalities of
natural language (language) and non-natural language (audio
and visual) in this paper as examples, our model assumes in
advance that natural language is dominant for emotion acqui-
sition. Taking non-natural language as the influencing factor
of natural language offset dynamically adjusts the weight
value between natural language and non-natural language.
This idea is slightly different from the above, the acquisition
of the dominant modal data is changed from the model’s self-
learning to artificial assumption, but the final presentation
result is ideal. Therefore, this provides a good idea for our
next step, that is, how to let the model learn and determine
the dominant modal data autonomously. At the same time,
it can be seen from Table. 2 that the evaluation results of our
model on aligned data and unaligned data are also slightly
different, which is reflected in the fact that the evaluation indi-
cators of unaligned data are generally better than aligned data.
This is because the multi-modal feature fusion used in the
early stage is based on the cascade of feature vectors, which
requires multiple modal sequence data to be consistent in
the time dimension, which is convenient for model building.
But this leads to the unavoidable loss of some information.
Our model does not need to take this factor into account,
and access to more information ensures the superiority of
our model.

C. QUALITATIVE ANALYSIS
In order to verify the more intuitive performance of our model
in regression tasks, in Table. 3, we selected multimodal sam-
ples from the MOSI dataset to display the results. We applied
the model to ‘‘aligned’’ data and ‘‘unaligned’’ data and fitted
the true values separately. Our model has a better fitting effect
on samples showing strong emotions. Regardless of whether
it is for strong positive emotions or negative emotions, the
fitting error of our two experimental results to the true value
is maintained at ±0.1; furthermore, for the neutral sample,
the fitting error of the emotional result is approximately
±0.25. Overall, our model shows an excellent emotional
fitting effect.
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FIGURE 3. On the MOSI and MOSEI datasets, we show the standard
deviations of the five experimental results on the Corr indicator on the
aligned data and the unaligned data, respectively.

VI. CONCLUSION
In this article, we introduce aMultimodal Encoding-Decoding
Network with Transformer (MEDT) for multimodal senti-
ment analysis. We use different encoding methods for the
three multimodal information: for language data, we use a
pre-trained BERTmodel to obtain lexical embedding; and for
visual and acoustic language data, we use the transformer’s
encoder to encode non-natural language data to obtain
embedding representation. Finally, we also reconstructed the
decoder to obtain cross-modal multimodal embedding repre-
sentation. Our model finally solves the long-term dependence
relationship between specific modalities and multimodalities
and considers the offset characteristics of text embedding
under the influence of non-natural language information. Our
experiments have proven the superior performance of the
MDET. However, our model was designed around the idea
of taking natural language as the dominant and non-natural
language as auxiliary information. This greatly limits the
flexibility to switch dominance between multiple modalities
in the model. Next, we will focus on the idea of flexibly
obtaining dominant information amongmultiple modal infor-
mation, and propose a better model for multimodal sentiment
analysis. In addition to this, we will also envision better
multimodal data alignment methods to better fit our models.
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APPENDIX I. POSITIONAL EMBEDDING
Because the Transformer model abandons RNN and CNN as
the basic model of sequence learning and completely adopts
the attention mechanism, the Transformer model does not
have the ability to capture sequential sequences. At the same
time, the order of arranging the input sequence does not
change the behavior of the Transformer or change its output.
To solve this problem, following the work of [13], we use
sin and cos functions to encode the position information of
the sequence of length T , and the frequency is determined

by the feature dimension index. In particular, we define the
positional embedding (PE) of the sequenceX ∈ RT×d (where
T is the length) as a matrix, where:

PE[pos, 2i] = sin
(

pos

10000
2i
d

)
PE[pos, 2i+ 1] = cos

(
pos

10000
2i
d

)
(16)

where pos is the position index in the time dimension, i is the
dimension, and the value is 0,

[ d
2

]
. Therefore, each feature

dimension of PE is a position value showing a sinusoidal
pattern. After calculation, the position embedding is directly
added to the sequence, so that X + PE encodes the position
information of the element at each time step.
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