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ABSTRACT Cloud systems and microservices are becoming powerful tools for businesses. The evidence
of the advantages of offering infrastructure, hardware or software as a service (IaaS, PaaS, SaaS) is
overwhelming. Microservices and decoupled applications are increasingly popular. These architectures,
based on containers, have facilitated the efficient development of complex SaaS applications. A big challenge
is to manage and design microservices with a massive range of different facilities, from processing and
data storage to computing predictive and prescriptive analytics. Computing providers are mainly based on
data centers formed of massive and heterogeneous virtualized systems, which are continuously growing
and diversifying over time. Moreover, these systems require integrating into current systems while meeting
the Quality of Service (QoS) constraints. The primary purpose of this work is to present an on-premise
architecture based on Kubernetes and Docker containers aimed at improving QoS regarding resource usage
and service level objectives (SLOs). The main contribution of this proposal is its dynamic autoscaling
capabilities to adjust system resources to the current workload while improving QoS.

INDEX TERMS Cloud, microservices, Kubernetes, SLO, QoS.

I. INTRODUCTION
The popularity of cloud usage has grown dramatically in
recent times, see [1], [2]. There is an increasing num-
ber of companies deploying public clouds and on-premise
infrastructure. Almost all consumer services in banking [3],
education [4], or health-care [5] rely on online services.
These services are real-time and critical application models
deployed in clouds. One of the main advantages of cloud
computing is resource provision, which offers rapid elas-
ticity and dynamic scalability [6]. IaaS clouds can scale
up or down on demand. However, providing scalability is
not trivial in SaaS environments. Legacy applications must
coexist and cooperate with new applications and services
to improve service quality. This way, to integrate all these
constraints into the systems, businesses nowadays require a
portable and interoperable environment capable of scaling
and adapting to users’ needs. Furthermore, businesses need an
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ecosystem where traditional tools and emerging innovation
can coexist and cooperate. Many legacy applications have
been migrated to cloud infrastructures that only consume and
run on a predefined static set of resources [7]. To tackle these
requirements, a container-based infrastructure can be used.
This infrastructure helps not only to deploy it to the cloud
(achieving all the advantages of cloud computing mentioned
above) but also to keep logic developed by different firms and
integrating and interacting with other services. Applications
have evolved from a monolithic development, which encap-
sulates the entire system, to small decoupled microservices
for solving particular tasks. Nevertheless, microservices in
the cloud need to mitigate different problems compared to
traditional cloud services, such as communication growth.

Regardless of their underlying architecture, cloud services
and applications are strictly governed by quality of service
(QoS) constraints regarding such metrics as efficiency, avail-
ability, reliability, and power awareness. Currently, QoS plays
a vital role [8] and is regulated by a service-level agreement
(SLA). An SLA is a contract between clients and providers
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that expresses the price for a service, the QoS levels required
during the service provision and the penalties associated
with violations of the SLA. In this context, the service level
objective (SLOs) are the specific, measurable characteris-
tics of the SLA such as availability, throughput, frequency,
response time, or quality. Quality of service and user satis-
faction are directly related. A lower level of QoS due to an
SLO violation leads to a decrease in user satisfaction. Hence,
service providers must design these contracts very carefully
to maintain user confidence and also avoid revenue loss [9].
The main challenge for a service provider is to determine the
best trade-off between profit and customer satisfaction. Mon-
itoring QoS constraints is the key to ensuring SLO constraints
and service alignment to QoS compliance [10].

One of the challenges in guaranteeing QoS is that real-
time performance metrics vary depending on the type of
service. For example, in a service based on computation and
high CPU usage, the primary metrics are the CPU use and
throughput, while for a service based on a database, the most
critical metric is response time. In this heterogeneous context,
different metrics have to be defined depending on the purpose
of the service.

Kubernetes is a container cluster management system that
allows controlling the lifecycle of container clusters. It pro-
vides tools for automatic deployment and scaling of con-
tainerised applications and routines for starting/restarting,
scheduling, and rescheduling applications in a dynamic con-
text when some host fails. Thus, Kubernetes allows spanning
hosts across the public and hybrid cloud and on-premise
infrastructure. One of the main handicaps of Kubernetes is
the large waste of resources usage. It is mainly focused on
handling the highest peaks of workload, but the system is
not always at the peak of workload. Therefore it is neces-
sary to adjust scaling up and down the resources dynami-
cally to improve resource use and ensure the quality of the
services (QoS).

Kubernetes proposes two distinct autoscaling methods:
vertical and horizontal autoscaling (HA andVA). HAhappens
when the computer resources of the underlying cluster are
modified. Thus, it means adding or removing pods (HPA)
or nodes (HNA). On the other hand, VA requires updating
the resources associated with pods (VPA) or nodes (VNA).
By default, Kubernetes triggers HPA when CPU and mem-
ory usage of the pods exceeds a certain static threshold.
Moreover, using HPA and VPA simultaneously to manage
resources can arise conflicts resulting in a wrong allocation
of resources. There are not many works aimed to improve
Kubernetes autoscaling methods. In this context, a deep
analysis of HPA has been presented in [11]. Regarding
VPA, authors in [12] propose container migration aimed to
enhance resource utilization minimizing the need to esti-
mate container resources. Furthermore, in [13] LIBRA is
presented, a mixed VPA and HPA. The authors proposed
controlling the resources and load condition by recalculating
the threshold iteratively. Finally, there are different proposals
(addons and plugins) that provide a deeper configuration

minimizing this static context focused on node-level like
Cluster Autoscaler [14] or in pod-level like Vertical Pod
Autoscaler [14].

Conventional container orchestration platforms usually
only offer limited autoscaling functionalities [15]–[17]. The
authors in [18] present a method to establish a CPU use
threshold automatically to meet the requirements of a specific
application. This work results in a cluster scaling algorithm
that converges towards an ideal number of nodes in theKuber-
netes Cluster and improves CPU use by 28.9%. Nevertheless,
in a real situation, cloud architectures need to deal with a
range of applications and services where, a priori, estimating
the requirements are challenging. That is where Kubernetes’
autoscaler starts to show its flaws, as stated in [19]. This
work proposes an autoscaler service that deals with a hybrid
environment with legacy applications (with general require-
ments) jointly with a routine creation service (without general
requirements).

Another critical point to consider is that while resource sat-
uration possibly causes SLO violations, the exact correlation
has yet to be explicitly discovered. An ideal autoscaling strat-
egy is expected to react directly to application-level metric
changes, such as increasing SLO violation rates [20]. This
work proposes a multi-tier architecture, with a monitor and
a QoS service to track workload and resource usage in all
tiers and levels and dynamically adapt to meet QoS and SLO
agreements.

In this work, the challenge is to design and implement a
monitoring service that tracks and integrates monitoring data
from all the microservices and datacenter’s resources. With
this information, the QoS service implements policies and
performs actions to guarantee the SLOs regarding resource
usage. This way, we propose to improve the Kubernetes
cluster autoscaler with custom rules based on the system’s
current status. Therefore, this work makes the following
contributions:
• Corroborate the current state of the art. Showing how
to implement a Kubernetes cluster over on-premise
infrastructure.

• Propose a Kubernetes on-premise infrastructure that can
dynamically scale up and down based on SLO require-
ments to improve resource usage and guarantee QoS.

• Enhance the performance of pod-level Kubernetes auto
scalers.

II. METHODOLOGY
In this section, the platform’s requirements are analyzed one
by one, and different solutions for each of these are suggested.
First of all, preliminary concepts are explained to help under-
stand the decisions adopted. Then these proposals are brought
together and the full architecture is described in detail.

A. ARCHITECTURE
The architecture proposed aims to provide a diverse set of
functionalities in a cloud environment. In this case, ‘‘diverse’’
means that different services may have completely unrelated
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dependencies. Thus, the preferable solution would be to iso-
late each functionality, along with its dependencies, from the
rest. In other words, a microservice architecture.

One of the platform’s requirements is to allow the integra-
tion of legacy applications in the cloud. New functionalities
have to coexist with these and might take advantage of their
data and services. Containers are useful to separate legacy and
new environments. Without using these containers, depen-
dency management to allow for backwards compatibility
would become complex.

However, legacy services still require a custom interface to
communicate with the outside world, if necessary, with other
containers. It may also be useful to copy information to more
efficient databases or adapt to the services’ requirements.
As a result, a middleware that assumes these responsibilities
might be required in the architecture.

Secondly, services should have high availability and
responsiveness, along with other QoS requirements. This
implies the need for performance measurement (through
resource usage or more complex calculations) and scal-
ing. At this point, it seems appropriate to use a container
orchestrator.

Orchestrating means automating container allocation
and management tasks, essentially abstracting away the
underlying physical or virtual infrastructure from service
developers [21]. In other words, it consists of managing the
lifecycle of the containers: provisioning, scaling, resource
allocation and health monitoring, among others.

The fact that orchestration will prove a useful addition to
the architecture is clear, as it will automate the behavior nec-
essary to achieve responsiveness and availability. However,
custom orchestration rules may have to be defined to fully
align the orchestrator’s actionswith the platform’s SLOs. As a
result, a separate monitor and a QoS service will have to be
created.

Finally, a gateway will redirect incoming traffic to the
appropriate service. Having only one point of access has
various benefits:
• Support for implementation of access-control methods
(e.g. authentication).

• User-experience improved by providing a transparent
interface.

• Allowing the establishment of load-balancing measures
when paired with container orchestration.

Once all the requirements are taken into account, the result-
ing architecture is represented by Figure 1. An explanation of
its components follows:
• Virtual machines, servers and Nodes: the cluster is
deployed on virtual machines, which act as Kubernetes
Nodes and run on a cloud infrastructure. This layer is
optional, and can be avoided if we deploy directly to
bare-metal.

• Container orchestrator: as explained above, this layer
abstracts the hosts into a Cluster, providing a transparent
interface and container management capabilities.

• Containers: these are divided into three categories.

FIGURE 1. Architecture of eHQoS.

-- Data tier: the files, databases, and other information
sources relevant to the services running in the cloud.

-- Core tier: contains the business logic.
-- Composite tier: composite and aggregate services,

which use the resources provided by other tiers.
Legacy services may belong to any tier, depending on their
purpose.
• API gateway:made up of a set ofmappings fromURIs of
containers accessible from the outside. It is also respon-
sible for load balancing and security.

• Monitoring service: calculates usage metrics of each
service by communicating with all tiers. The outcomes
are relayed to the QoS service.

• QoS service: takes the metrics provided by the monitor-
ing service and directs the container orchestrator in deci-
sions such as scaling and migrating across machines.

III. IMPLEMENTATION
In this section, a case study of the proposed architecture
is presented. First, the minimal configuration setup and the
experimental setup are described in subsection III-A and
subsection III-B. Afterwards, the services deployed on them
through a Kubernetes Cluster are presented. The internal
services required by the architecture are first presented in sub-
section III-C and, afterwards, business logic services explore
those that directly provide the functionality to the end-user
in subsection III-D.

The GitHub repository containing the implementation of
the framework can be found at https://github.com/gcd-cloud-
research/KAQoS.

On top of the framework implementation, a set of Ansible
playbooks [22] can also be found. This can be used to deploy
the system on an entirely new cluster quickly. Ansible play-
books allow configuration distribution and easy provisioning
in a set of commands that can be run by all users.

A. MINIMAL CONFIGURATION SETUP
The minimum deployment uses seven (virtual or physical)
machines located in on-premise infrastructure: a Docker reg-
istry, a Master, two workers, a service node and a moni-
tor node. The registry stores Docker images related to the
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services provided. The Master and workers are named after
their Kubernetes roles and run a precooked image that
includes all the necessary dependencies to set up a Kuber-
netes Cluster with minimal configuration. The service and
monitor node is also in the Kubernetes cluster but will not
process any work that a user might submit. The purpose of
the service node is to run pods related to the functioning
of the architecture. The monitor node, on the other hand,
hosts the pods related to the performance monitoring.

B. EXPERIMENTAL SETUPS
We set up the architecture proposed under on-premise infras-
tructure managed by OpenNebula. This infrastructure was
made by 6 nodes with a total capacity of 164 cores,
656 GB of main memory, and approximately 12TB disk stor-
age. The deployment uses the minimal configuration setting
presented above. Their specifications are given in Table 1.

TABLE 1. Specifications of the virtual machines in the private cloud.

The disk is required by the Kubernetes’ and Docker’s
internal operations. All persistent data regarding the services
is stored in two external virtual hard disks. One of the disks
stores sensitive information and is encrypted with Linux
Unified Key Setup (LUKS) [23], the most commonly used
standard for encryption in Linux. The other keeps relevant
but non-sensitive data and is not encrypted. Both are 30GB
in size, mounted on the Master and shared via NFS.

C. INTERNAL SERVICES
Figure 2 depicts all the services implemented and their
relationships.

Internaldb acts as the storage for all information related
to the Cluster’s internal data on Jobs run on the platform.
MongoDB was the document-based NoSQL database [24]
chosen.

Monitordb is responsible for storing all the performance
log records. As data is written with high frequency, read peri-
odically and never updated or deleted, the NoSQL database
chosen has been Elasticsearch [25].

Most of the content in the storage is not accessed externally
(except by system administrators), so access to the database
should be restricted. This can be done via access control or
a proxy. The second option was selected, resulting in the
deployment of mongoapi, because it also provides ease of
access and transparency, allowing the database’s specifics to
be modified as necessary. On the other hand, it adds overhead
and an additional failure point, so access control would also
be a viable option.

FIGURE 2. Services included in the implementation and their
relationships. Arrows indicate information flow.

The monitoring service was implemented as a
DaemonSet — that is, an instance of it is running in each
Worker Node. Its function is to collect performance informa-
tion from hosts and their containers and save it inmonitordb.
The QoS service will then extract data from there.

The tool used for compiling performance metrics was
cAdvisor, a daemon that collects, aggregates and exports
information about hosts and running containers [26]. A cus-
tom aggregator queries cAdvisor and writes into internaldb
throughmongoapi.

CPU usage per core for each host is calculated as the
increment in the number of nanoseconds of busy CPU over
the increment in time, taking the previous measurement as
a reference. This number is then divided by the number of
cores to obtain total CPU usage. Regarding containers, the
measurement is the same but only considering the nanosec-
onds of CPU that a specific container has used.

Memory usage is calculated by dividing the memory used
at the time of the measurement by the amount of Memory
available to the host or container.

The usual technique to set up a gateway with a Kubernetes
Cluster involves two elements. First, a proxy inside the Clus-
ter receives traffic from outside and routes it to the appropriate
service. Second, a load balancer outside the Cluster shows it
to the public through a static IP address and sends all requests
to the proxy.

Typically, Kubernetes Clusters are deployed on cloud
provider platforms such as AWS or GKE. These already
provide their own load balancers, which developers can use
to make their Clusters externally accessible.

On the other hand, given that the Kubernetes instance
is running on a bare-metal Cluster, there are no available
Load Balancers. Some alternatives exist, such as combining
MetalLB [27] as a load balancer and Ambassador [28] as a
router. However, this requires modifying the cloud’s (Open-
Nebula) configuration, which was not contemplated during
this work. The main reason for this decision was that the
authors prioritize the minimum adoption cost of introducing
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a new layer on top of Openebula without reconfiguring the
legacy cloud system. Kubernetes’ Load Balancer was also
discarded as it is deemed as insufficient in some cases, like
our study, as stated in [29] and [30].

As a workaround, a custom solution was coded. A Flask
API running outside the Cluster, in the Kubernetes Master,
acts as an entry point, checking the user’s permissions and
routing requests to the best available worker. The loadbal-
ancer (described in the next section) is queried to provide the
best replica of the desired Deployment, to which the request
is forwarded.

The QoS Deployment contains two services: autoscaler
and loadbalancer.
The autoscaler service is designed to allow the combi-

nation of different scaling criteria. These norms are imple-
mented as classes and can be plugged into the autoscaler.
The result is computed as a weighted average of the output
of each of these. The default plugin, loadtracker, uses upper
and lower thresholds to determine if a Deployment needs to
be scaled up or down.

The service contains two processes that communicate
through a pipe. The first one monitors load, as explained
above, and writes the desired replicas of each service into the
pipe. The second one reads from it and compares the desired
replicas with the currently available ones, scaling up or down
as necessary.

This service also takes into account the replicas
of a Deployment desired by the system administra-
tor through a specific tag in the Kubernetes .yaml file
(io.Kubernetes.replicas in metadata.labels). This can be
modified without the need to restart the autoscaler.
The script running in this Deployment accepts a JSON

configuration file that allows the system administrator to set
scaling and descaling criteria. All fields are optional; the
autoscaler will resort to default values when necessary.
• scaling: Settings for the loadtracker plugin.

-- min_load: If the CPU or Memory usage of a Pod
is under this value for a certain amount of time and
with some degree of tolerance, the Deployment will
be descaled.

-- max_load: Same specification as min_load, but
being the upper threshold

-- max_load_nowait: If the CPUorMemory usage go
over this value, the Pod is immediately scaled up.

-- wait_seconds: elapsed time until an under- or over-
loaded Pod is deployed.

-- tolerance: Number of times a Pod can be under- or
overloaded.

-- grace_period The number of seconds during which
a Pod should not be tracked after scaling it.

• update_seconds: The period between two consecutive
updates in the scaler, in seconds.

• exclude: Deployments which should not be monitored.
• over_threshold: From zero to one, the weighted sum of
the outputs of the plugins has to be greater than this value
to consider that a Pod needs to be scaled.

• under_threshold: The same specification as
over_threshold, except that the weighted sum has to be
smaller than this value to descale.

The loadbalancer is responsible for choosing the best
replica of service to route a request to. An initial ver-
sion selects the Pod which is using less average resources
(CPU and Memory). The selection criterion used is a key
parameter, as it determines the Pods that will receive addi-
tional workload. Even when using a production-ready load
balancer, the method for worker selection is usually a config-
urable parameter. In consequence, finding the best configura-
tion for each specific Deployment is essential for achieving a
well-balanced application.

Another endpoint can be used to see if Jobs can be created.
It is used by the consumer to prevent scheduling when the
platform is overloaded. The system’s average resource usage
determines if this is under a certain threshold (in the current
case, 80%).

D. BUSINESS LOGIC
businessdb is another Deployment of MongoDB that con-
tains information relative to the platform’s intended use. End
users could run data analysis jobs on the data, providing new
insights into the vast amounts of intelligence available.

Ideally, the end-users would keep using the preexisting
user interface with which they are familiar. Thus, an Extract,
Transform, Load procedure (ETL) is necessary to keep the
businessdb updated, either running as a periodic job or when-
ever changes are detected.

Additionally, the database acts as a backup for the data
contained in the legacy storage. When a failure occurs, the
regular updates would only allow for minimal or null loss of
data, which is a key requirement in online services.

In Figure 2 there are no information transfers from
businessdb because all services deployed are related to the
architecture, and the Deployment only contains test data. Its
potential is fulfilled when other business-oriented services
appear in the platform, for example, an anomaly-detection
Deployment could be analyzing records in the database in
real-time, or custom aggregators could show end-user infor-
mation relevant to their tasks.

The producer-consumer relationship allows the user to run
jobs (also called routines) remotely. Its purpose is to provide
the necessary resources for performing data analysis tasks in
the platform, using the data contained therein. It supports the
submission of Python and R scripts. This section focuses on
the flow of a routine Python submission request.

Firstly, the end-user submits a request to the producer
containing a script and, optionally, a requirements file. This
Deployment stores the request’s contents initializes a task
instance in internaldb (which returns an ID) and uses a
routine template to build a Docker image, which contains:

• The script to be run.
• Awrapper for the script that changes the routine’s status
as necessary and writes the results to internaldb.
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• The modules required both by the wrapper and the
end-user.

This image is built and stored in the cloud’s Docker registry
using the host’s Docker daemon. The routine’s identifier is
sent to a queue. After that, all data related to the routine (local
Docker image and files saved) are removed.

The consumer polls for items in the queue. Whenever an
item is received, this Deployment queries loadbalancer to
see if the system’s load is under a certain threshold. If the
condition is not met, consumer returns the message to the
queue and waits some time before repeating the process.
When loadbalancer approves, a new job is submitted to
Kubernetes using the routine ID.

Each step in this process is represented in the database
through its status in the object representing the routine. The
possible states and transitions are specified in Figure 3.

FIGURE 3. State diagram of a routine.

Communication between the producer and the consumer
is achieved through RabbitMQ [31], a queuing messaging
system.

IV. RESULTS
The tests were performed to focus on stressing the platform
and examining its behavior. First of all, an initial analysis
to check the specific architecture mechanisms in regards to
SLO compliance (scaling and job queuing) is specifically
examined. Afterwards, an overall performance analysis is
conducted, to shed light on the platform’s general behavior
and highlight the situations where the platform fits better
than a traditional Kubernetes cluster. Thus, we aim to prove
in which situations the proposed QoS method expands the
conventional tools, such as default QoS methods in Kuber-
netes and obtains better performance regarding the usage
of computational resources overcoming some of the issues
found in traditional Kubernetes clusters.

Given that with the current implementation, CPU and
Memory usage are the monitored metrics, this results section
also revolves around these metrics. A context with legacy
applications, APIs, databases and other tools was deployed
and, to simulate stress conditions, CPU and Memory wasters
have been employed. This section shows how the system
responded. Ideally, all these systems would coexist and share
available resources.

We set up the architecture described in subsection III-B.
However, in our experimentation, we play with different sizes
to deploy theKubernetes cluster, and alsowe change the num-
ber of resources provisioned to each node (virtual machine in
our case) to better assess the efficacy of the proposed system.

A. JOB CREATION WITH OVERLOADED PLATFORM
In this test, the behaviour of the system in job creation is
examined. To simplify the results and help the reader under-
stand the plotting, we run this test using a Kubernetes cluster
made up of only 3 Workers replicas. The resource provision
is the same as the ones described in subsection III-B.

First of all, we increase the CPU and Memory usage of
all hosts (Workers) to around 90% through a DaemonSet,
cpuwaster1 and memorywaster.2 A job is then submitted.
The job is a simple python script that performs some cal-
culations. After that, we stop both wasters. So, the primary
purpose is to ensure the correctness of theQoS policies imple-
mented in the platform, which must prevent the execution of
this job until the system resource occupancy is over 80%. The
job should be put on hold by the consumer, and then, once
the waster is deleted, be executed in the Kubernetes Cluster.
Figure 4 depicts the different phases in routine creation

and highlights the correctness of the QoS policies imple-
mented. First of all, when the job is submitted, the CPU
usage of all the hosts (Workers) is higher than 80% (the
green dashed line with the tag Overload). In this situation, job
execution is prevented, and its status is changed to HOLD.
When a decrease in the overall usage of CPU resources is
detected (when the cpuwaster ends), the job is added to the
queue, and then executed. This situation is depicted around
t= 70swhen the load decreases drastically from 80% to 40%.
Execution takes place in Worker 3, as it is the only host that
increases CPU usage after the job is queued. These results are
proof of concept and demonstrate that QoS performs well and
follows the rules we implemented.

B. SCALING BASED ON POD LOAD
This test examines the possibilities of autoscaling the pro-
posed system by creating a job to stress businessdb to the
point where autoscaler creates additional replicas. This test
is set up with a Kubernetes cluster using five nodes.

1https://github.com/gcd-cloud-research/KAQoS/tree/main/images/
cpuwaster

2https://github.com/gcd-cloud-research/KAQoS/tree/main/images/ mem-
orywaster
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FIGURE 4. Events in job creation related to the Cluster’s CPU usage.

The job, mongo-flood,3 queries mongoapi to set the load
in businessdb to 60%. It then waits for a minute before
completing.

The fact that the containers’ resource usage is calculated
using the resources available to the host (as opposed to some
limit set to the container) causes the minimum load required
to scale up to be lower to avoid overloading the whole system.
As a result, the configuration used in autoscaler for this
test is as follows (details of the parameters are explained
in section III):

As can be seen in Figure 5, the Deployment (businessdb)
scaled up and down three times (purple, orange and green
lines - Replica 1, Replica 2 and Replica 3 respectively). As a
result, four Pods were involved in the test, but only two at
most co-occurred at any given point in time.

This information, combined with the performance metrics
obtained from the monitoring service about businessdb’s
Pods’ CPU consumption over time, yields Figure 5. It depicts
the CPU usage of the different replicas (Pods) in the
Deployment, the low (min_load) and upper (max_load) load

3https://github.com/gcd-cloud-research/KAQoS/blob/main/test-routines/
mongo-flood/mongoflood.py

FIGURE 5. CPU load and scaling/descaling events while a test job is
stressing businessdb.

thresholds, set to 30 and 60 respectively, and the scaling
events, represented by lines (U1, U2, U3, D1, D2, D3; where
U and D are used to indicate scaling up and down events,
respectively).

This first scaling event seen in Figure 5 (denoted by U1,
at t = 20s) is caused by a continuous increase in CPU
usage over the maximum threshold (max_load). Note that the
Main Pod is using a percentage superior to the max_load
between t = 10s and t = 20s. As a result, the autoscal-
ing service scales up the Deployment (generating the Pod
Replica 1). After this event, both Pods are ready to serve
incoming requests.

Afterwards, the mean load decreases, leading the Pod to
exceed its tolerance threshold, after which it is considered to
have a normal load, and theQoS service eliminatesReplica 1.
This is illustrated by D1, at t = 40s. This situation, where
the Deployment is scaled up and down, happens twice more
(Replica 2 and Replica 3), denoted by (U2, D2, U3, D3).
This behavior highlights the capacity of the proposed system
to adapt to an uncertain workload regarding resource usage.

Finally, after the events discussed, the number of replicas
necessary is one. Thus, the autoscaler scales down until
the desired value is reached, only maintaining the initial
(Main Pod).

C. PERFORMANCE DURING JOB EXECUTION
The tests performed consist of the submission of 1000 identi-
cal jobs that train and test supervised models on two samples
stored in businessdb under 2 different situations. First of
all, an ideal situation is tested where the hosts are close
and reserved to the experiment and will only execute these
1000 test tasks. Then, we test another situation where the
hosts are not reserved and needs to share the resources. Note
that this situation can be similar to a platform that contains
other tasks and legacy applications that consume resources,
but also new tasks can also arrive at the system and must be
executed. We perform this experiment with the experimental
setup presented in subsection III-B.
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FIGURE 6. Kubernetes without waster.

The first experiment is launched in the ideal situation.
The QoS proposed services are stopped for this experiment
and Kubernetes is allowed to manage the situation with the
default configuration. Figure IV-C shows the performance
concerning usage of CPU (y-axis) over time (y-axis) for
each host in the Cluster. This figure highlights that the
default configuration on the Kubernetes cluster can manage
the resources in this situation very well, and our proposal
is not required. From these results, it is clear that all the
tasks are scheduled and executed homogeneously among
the hosts keeping the resource usage under 80%. Therefore,
we can conclude the excellent behavior of the Kubernetes
cluster under this situation, as other authors in the literature
point out.

The second experiment is performed in the non-ideal sit-
uation (stressed system) and using only default Kubernetes.
Figure 7 depicts the overall performance over time for the
1000 tasks. Note that the waster processes are not depicted.
This figure points out that Kubernetes cannot handle this
situation where the hosts are stressed and performing other
tasks. Compared with Figure IV-C, the task is not now homo-
geneously distributed (hosts 5 is overloaded) while other
hosts are free and need double of time to finish the same
experiment.

The last experiment is performed in the non-ideal situation
(stressed system) but now with our QoS proposal activated
to manage the cluster. Figure 8 shows better usage of the
resource compared with Kubernetes alone. See Figure 7.
When comparing both results, it must be pointed out
that QoS provides better resources utilization keeping
the hosts busy by scaling the pods up and down on
demand.

V. BENCHMARK
To assess the efficacy of the proposed platform, it has been
compared against Kubernetes’ default configuration and with
community-developed autoscalers [14].

FIGURE 7. Kubernetes with waster each worker.

FIGURE 8. QoS with waster each worker.

A. PERFORMANCE AND SCALABILITY AGAINST
KUBERNETES DEFAULT CONFIGURATION
We perform this experiment with a Kubernetes cluster made
up of three nodes. We provision the nodes with different
ranges of resources assigned to make up the cluster:
• case 1: 3 nodes of 2 CPUs each node
• case 2: 3 nodes of 4 CPUs each node
• case 3: 3 nodes of 8 CPUs each node
• case 4: 3 nodes of 10 CPUs each node
The experiment consisted in submitting 500 tasks. The task

is a Logistic Regression model, which is CPU-consuming
and does several databases calls as well [32]. To set up this
experiment, we first deploy a default Kubernetes cluster and
monitor the main performance metrics (response time, exe-
cution time and throughput). Then, we deploy our proposed
QoS aware architecture and resubmit the same tasks again.

We analyze four scenarios where we configure the
nodes with different resource provisioning related to CPU
resources. The results show a reduction in response time and
a better throughput between the proposed architecture and the
default configuration of a Kubernetes cluster. Table 2 shows
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TABLE 2. Performance results between Kubernetes default configuration
environment and proposed infrastructures based on a Kubernetes
QoS awareness under normal workload conditions.

the average response time measured in seconds (RT (s),
average execution time measured in second (ET (s) and the
throughput of each experiment. These results were captured
in a non-saturated environment, simulating a normal work-
load. We have highlighted in green the rows with the results
of our proposal with QoS enabled. Finally, the results also
show that our proposal is scalable and does not depend on
nodes’ resources.

Table 3 shows the average response time measured in
seconds (RT (s), average execution time measured in second
(ET (s) and the throughput of each experiment. These results
were captured in a saturated environment, simulating a
stressed workload. The results show the same trend as the
ones gather from normal conditions. However, the differences
between our proposal and default configuration are even
better under saturated conditions.

TABLE 3. Performance results between Kubernetes default configuration
environment and proposed infrastructures based on a Kubernetes
QoS awareness under saturated context.

B. PERFORMANCE AGAINST COMMUNITY-DEVELOPED
AUTOSCALERS
Kubernetes provides some community-based autoscalers.
Down below is the list of them and whether they are useful
for assessing the proposed work.
• Cluster Autoscaler: It uses node-level scaling and we
focus on a pod level in this paper. However, it will be use-
ful for our future work regarding this paper, which will

be a study of how the node-level autoscaling fares when
considering costs too and whether it can be improved.

• Vertical Pod Autoscaler: Scales pod instances up or
down based on the amount of requests and resource
usage.

• Addon Resizer: It scales resources up or down based
on some parameters. The resource amount needs to be
specified and only works for a singleton.

• Charts: Likewise Cluster Autoscaler, focuses on node
scaling while we are interested in pod scaling in this
paper.

To sum up, only the VPA (Vertical Pod Autoscaler) fits the
needs of the project in terms of scope. We perform the same
experiment of submitting 500 tasks under a non-saturated and
stressed environment. The only difference is that we execute
this experiment under only one node configuration (case 3).

The results with the VPA have been compared and shown
in Table 4. As it can be seen, the VPA plugin does in fact
improve the performance results without the QoS enabled
(default Kubernetes configuration). However, it still falls
behind the performance obtained using our proposal.

TABLE 4. Performance results between Kubernetes default configuration,
community VPA and proposed infrastructure based on a Kubernetes
QoS awareness.

These results point out that our autoscaler performs better
than the competitors in on-premise infrastructure regarding
performance metrics related to Quality of the service and
SLO awareness like response time and throughput under
normal and saturated conditions.

VI. DISCUSSION
The findings of this work are similar to [10] and demonstrate
that monitoring QoS constraints is the key to ensuring that
SLOs are satisfied.

The results obtained on the implementation described in
section III confirm that the architecture proposed is viable in
regards to maintaining SLO compliance at both the hardware
and software levels. Although the metrics used, focusing on
CPU andMemory usage, do not reflect all the nuances of QoS
in a production environment, the platform’s performance in
terms of standard SLO requirements is encouraging.

These results go beyond previous reports [20], [33]–[35],
showing that it is complex but viable to deal with both lev-
els of abstraction in the design and implementation of QoS
regarding SLO.

VOLUME 10, 2022 33091



L. M. Ruíz et al.: Autoscaling Pods on On-Premise Kubernetes Infrastructure QoS-Aware

Furthermore, this work ties nicely with previous stud-
ies where the authors conclude that it is possible to adjust
the Kubernetes Cluster [18] if the requirements are known
beforehand. However, the results highlight the issues that
must be faced when these requirements are stochastic.

On the other hand, this implementation is far from being
complete and marketable. Several issues that need to be
addressed before applying the architecture on a commercial
level were revealed by the tests. These are described below
and proposed as future work in section VIII.

One issue found is that Alpine Docker images require
additional Linux packages. This to light an important issue
about the routine template’s design. At the same time, it is not
possible to provide an image flexible enough to allow the exe-
cution of jobs with differing requirements (e.g. programming
language, libraries) while following the principles behind
containerization (e.g. minimum dependencies and weight).

In fact, implementation gives the user the option to submit
a Pip (Python Package Installer [36]) requirements file, which
is meant to reduce dependencies in the routine template.
An option would be to extend this behavior to allow users to
submit their own Dockerfile, although this would go against
the transparency of jobmanagement and execution. Addition-
ally, the routine wrapper is written in Python, so support for
the language and certain packages would still be required.
Alternatively, separate templates could be added for each
supported language.

The test (subsection IV-B) justifies the need to measure
container load using the container’s own resource limit as a
reference, instead of using the hosts’ (VMs) own resource
limits. Otherwise, values for the autoscaler configuration
need to be smaller and closer to each other, which would
be detrimental in situations with high variability in resource
consumption.

Nonetheless, selecting an appropriate limit a priori for a
Deployment is complicated and depends both on the plat-
form’s own state and external factors. For example, inter-
naldb’s usage is a function of the size of its collections,
while businessdb depends on external submission of data.
Although Deployments scale up if the load is excessive,
minimizing replication operations is useful for keeping the
architecture-related overhead to a minimum.

In the graph for this same test (Figure 5) a certain desyn-
chronization between peak loads and scaling events can be
observed. This has two causes:

1) The monitor DaemonSet and the autoscaler are not
synchronized.

2) The scaling process has to obtain data from Kubernetes
API before scaling.

The update_time of business is five seconds. As a result,
the maximum time between the two events (performance
submission in the database and scaling) should be just over
five seconds. However, the delay between cAdvisor’s mea-
surement and themonitor’s upload should also be taken into
account.

Finally, during daily usage of the platform, it was estab-
lished that resource usage increased with time. This can be
easily explained by the accumulation of data in internaldb.
Given that performance metrics are recorded each second
for every host and container, the amount of data stored in
the database leads to a great rise in resource usage. That is
why we migrated from an initial approach in MongoDB to
more efficient storage in Elasticsearch, which induces a much
lower overhead over time. However, these old performance
logs should either be purged or moved to another database or
files to keep the main database lighter.

Similarly, cleanup should also be implemented in the
Docker registry. This stores images for all jobs and Deploy-
ments, and the Kubernetes API server keeps records of exe-
cuted Jobs. A reasonablewaywould be to clean all the records
as mentioned above after a few days of not being used.

VII. CONCLUSION
In this study, a system based on the Kubernetes cluster and
built over on-premise infrastructure was proposed to fulfil
QoS requirements and be transparent to final users and auto-
matically capable of executing tasks on demand and coexist-
ing with legacy applications.

This paper presents a generic system to dynamically moni-
tor and adjust the computer resource regarding QoS and SLO
constraints. The architecture proposed contains such services
as a monitor, QoS module, an executing service and scaling
routines. These findings provide a potential mechanism for
monitoring, adjusting, and autoscaling services, overcoming
some challenges in the traditional Kubernetes environment.

The proposed system can improve resources management
and QoS in a Kubernetes cluster. The QoS and the scal-
ing routines can be configured to specific resource usage
thresholds according to SLO rules, which can ensure QoS in
the Cluster. The QoS module is responsible for the resource
scaling, and then the executingmodule carries out pod scaling
accordingly. Therefore, the data yielded by this study pro-
vide substantial evidence that the proposed system is capa-
ble of ensuring QoS regarding performance metrics such as
Response Time and Throughput.

We build the system on top of on-premise legacy Open-
Nebula. This way, we tested that the proposed platform can be
adopted as a new layer without reconfiguring the system, thus
minimizing the impact of adoption. The underlying evidence
from the proposed architecture states that it can be easily
deployed in any other on-premise infrastructure as it does
not use any OpenNebula specific configuration. Furthermore,
there is no problem in deploying it directly on bare-metal
nodes.

In conclusion, all these findings encourage continuing this
work. They indicate that this is the path for evolving current
cloud architectures into more robust, automatic, elastic and
QoS-aware regarding the SLOs. We believe these findings
have generalizable research value in the field and can be
applied either in on-premise/hybrid clouds or for migrating
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traditional non-cloud servers/architectures to the cloud to
achieve all their benefits.

VIII. FUTURE WORK
As mentioned in section VI, this project still requires sev-
eral key features before achieving its potential. For example,
Cron Jobs to remove old performance records, other database
objects such as old tasks, Kubernetes API’s Job data and
Registry images should be scheduled. The implementation of
authentication and authorization through roles, possibly using
Lightweight Directory Access Protocol (LDAP), must also be
taken into consideration.

If these requirements were met, the platform could be
considered to be in its minimal marketable state. On the
other hand, several additions are desirable to facilitate deploy-
ment and improve performance and thus, user experience.
Regarding the former, a global configuration that includes
parameters for all services in the architecture could be used
tominimize in-script modifications. Next, routine submission
should be tailored separately to each supported programming
language. This would ensure dependency minimisation, iso-
lation and transparency.

Additionally, tests could be performed to assess the effec-
tiveness of executing Machine Learning algorithms to main-
tain QoS. These include preemptive actions based on load
prediction, anomaly detection and visualization for system
administrators or optimization of autoscaler’s configuration
values. Additional performance metrics should be added to
capture facets of execution that are not taken into account as
of now.

After implementing a better scaling and load balancing
solution on a pod level, the clear next step would be to
develop a solution that addresses node-level scaling. That
would ideally use historical performance data to predict using
AI algorithms such as Machine Learning or Reinforcement
Learning. That would allow the system to grow and reduce its
size optimally, thus reducing infrastructure costs and power
consumption.

Finally, an interesting addition regarding user experience
would be to develop a front-end for the application. Many of
the users will not have the necessary knowledge to call a bare
HTTPAPI, and cannot be expected to acquire that knowledge
on top of their other responsibilities. As such, a user interface
that is friendly, easy to understand and tailored to the services
offered by the specific deployment would be necessary.
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