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ABSTRACT In the field of human-machine interaction, gesture recognition using sparse multichannel
surface electromyography (sEMG) remains a challenge. Based on theHilbert filling curve, a dual-viewmulti-
scale convolutional neural network (DVMSCNN) is designed to enhance gesture recognition performance in
this paper. The network consists of two parts. In the first part, sEMG is filled using Hilbert filling curve, and
the obtained images in the time and electrode domain are used as inputs to the block. In the second part, the
depth features learned by block are fused and classified by a ‘‘layer fusion’’ based view aggregation network.
The evaluation of the architecture in the four databases of Ninapro-DB1, DB2, DB3 and DB4 shows that
DVMSCNN is more than 7% more accurate than other state-of-the-art methods. When validated using a
home-grown dataset, DVMSCNN was able to achieve a recognition rate of 0.8848.

INDEX TERMS Human–machine interaction, gesture recognition, multi-view learning, Hilbert filling curve,
convolutional neural network.

I. INTRODUCTION
As human-machine interaction playing an important role in
modern life, the question of how to interact with comput-
ers in an efficient and natural way has become an impor-
tant research topic. Hand gestures, which are simple and
natural, are essential parts of body language. Thus, gesture
recognition is also a key technology in human machine
interaction [1].

Gesture information collection relies on external sen-
sors and wearable sensors. The former mainly includes
conventional cameras [2]–[4], Kinect [5]–[7], and radar
[8]–[10], etc. The latter mainly includes inertial measurement
units [11]–[13] and sEMG sensors [14]–[16].

In the case of classification, the traditional machine learn-
ing (ML) has been widely used for gesture recognition
[17], [18]. Lu et al. [19] adopted Bayesian linear classifier
and an improved dynamic time warping algorithm for clas-
sification recognition of 19 gestures. Results suggest that
the average accuracy of 89.6% in user-independent testing.
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Besides, by comparing different sEMG features and classi-
fiers for the classification of 52 gestures from the Ninapro
reference dataset. A random forest classifier, a combi-
nation of statistical, and frequency domain features, i.e.,
MAV, histogram, wavelet, and Fourier transform features,
yield the best performance [20]–[24]. With the continuous
development of deep learning (DL), it has been gradually
applied to gesture recognition in recent years [25]–[28].
Panwar et al. [29] presents a deep learning framework,
Rehab-Net, which can classify the three movements from
stroke survivors without using any feature engineering.
Finally, the overall accuracy of Rehab-Net achieves 88.87%.
Tsagkas et al. [31] used short latency dimension reduced
sEMG spectrograms as input to convolutional neural net-
work (CNN) and support vector machine (SVM). The results
showed that CNN consistently exhibited better performance.

CNN have made breakthrough in feature extraction and
image classification tasks in 2D problems. Thus, it makes
sense to find a suitable method to convert sEMG into an
image that can be used as CNN input [32], [33]. Hilbert filling
curves can be applied to organize or compress data by provid-
ing a mapping between D-dimensional spaces while retaining
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FIGURE 1. The sEMG signal before and after data preprocessing of NinaPro-DB1, where (a) is the raw sEMG, (b) is the filtered and normalized sEMG,
and (c) is the sEMG after the sliding window method.

locality, such as biomedical signals [34]. Chen et al. [35]
proposed a feature extractionmethod based onHilbert-Huang
transform and used extreme learning machine for classifica-
tion. The experimental results showed that the classification
accuracy of this method was 88%. Kurek et al. [36] used
Hilbert curves to represent mammograms as 1-dimensional
vectors and extracted features from them to detect breast
cancer, with a final accuracy of 85.83%. In this case, for
the input image problem of CNN, filling sEMG with Hilbert
curve helps to enhance the classification effect of gesture
recognition.

In this paper, we design a dual-view multi-scale convolu-
tional neural network (DVMSCNN) to improve sEMG-based
gesture recognition performance. The network consists of
two parallel multi-scale CNN and a view aggregation network
based on ‘‘layer fusion’’. The two views’ inputs are 2D time
domain and electrode domain images obtained by filling the
sEMG with Hilbert.

The rest of this paper is arranged as follows. Section 2 intro-
duces the process of data collection and completion.
Section 3 proposes the classification model based on DVM-
SCNN. Section 4 presents the experiment results of proposed
algorithm. Section 5 summarizes the study and puts forward
future work.

II. DATASET AND DATA PROCESSING
A. DATASET AND PREPROCESSING
The evaluations in this work were performed offline using
multi-channel sEMG signals from the publicity available
NinaPro databases [42]. We chose 4 sub-databases of
NinaPro, which the details are as follows:

The first sub-database (denoted as NinaPro-DB1) contains
10-channels sparse multi-channel sEMG signals recorded
from 27 intact subjects. Each gesture was recorded with
10 trials at a sampling rate of 100Hz. Each subject was
asked to perform 53 gestures, including 12 fingermovements,
17 wrist movements and hand postures, 23 grasping and func-
tional movement. Relaxation state between each repetition
was resting gesture.

FIGURE 2. Flowchart of data processing.

FIGURE 3. Hilbert curves of orders 1 and 2.

FIGURE 4. Image representation of the Hilbert electrode dimension at
time (0, 20, 40, 60).

The second sub-database (denoted as NinaPro-DB2)
contains 12-channels sparse multichannel sEMG signals
recorded from 40 intact subjects. Each gesture was recorded
with 6 trials at a sampling rate of 2000Hz. Each subject
was asked to perform 50 gestures, including 9 force patterns,
17 wrist movements and hand postures, 23 grasping and
functional movement, and the rest movement.

The third sub-database (denoted as NinaPro-DB3)
12-channels sparse multichannel sEMG signals recorded
from 11 transradial amputees; other information exactly the
same as those in NinaPro-DB2. According to the authors of
NinaPro database, three amputated subjects performed only a
part of gestures due to fatigue or pain, and in two amputated
subjects, the number of electrodes was reduced to ten due
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FIGURE 5. Image representation of the Hilbert time dimension on the electrode.

to insufficient space. To ensure training and testing of the
model can be completed, we omitted data from these subjects
following the experimental configuration used by [37].

The fourth sub-database (denoted as NinaPro-DB4)
contains 12-channels sparse multichannel sEMG signals
recorded from 10 intact subjects. Each gesture was recorded
with 6 trials at a sampling rate of 2000Hz. Each subject
was asked to perform exactly the same 53 gestures as those
in NinaPro-DB1. Because two subjects (i.e., subject 4 and
subject 6) did not complete all hand movements, their data
was omitted in our experiment.

B. DATA PROCESSING
Due to memory limitation of the hardware, for experiments
on NinaPro DB2-DB4, we down-sampled the sEMG signals
from 2000 Hz to 100 Hz following the experimental config-
uration used in [38]. The data processing is divided into two
parts, as shown in Fig. 2. The first part is data pre-processing.
Firstly, the sEMG signals use a 1st order 1 Hz lowpass Butter-
worth filter. Then, the data are Min-Max normalized. As the
last step, the data is segmented into overlapping windows of
length 640ms with a step of 10ms, using the sliding window
method. Fig.1 shows the sEMG signal before and after data
preprocessing of NinaPro-DB1.

The second part is to fill the preprocessed data with Hilbert,
which is a continuous fractal space-filling curve. Space-
filling curves have been widely applied to tasks in data orga-
nization and compression. The Hilbert curve is known for
being superior in preserving locality compared to alterna-
tives [39], [40], such as the z-order and Peano curves. The rule
is to rearrange the D-dimensional space in a recursive manner
for another dimension while keeping one dimension of the
sequence data unchanged, where D = 2. The sEMG signal is
transformed in two ways: (1) across the time dimension, i.e.,
for each sEMG channel, map the time series into a 2D image,
or (2) across the sEMG channels, i.e., for h each time instant,
map the values of the channels into a 2D image. If denotes a
Hilbert curve of order i, the specific conversion is as follows:

1) H0 is a single point. Second item;
2) H1 consists of four copies of (the point) H0, connected

with three straight segments of length h at right angles
to each other. Four orientations of this curve, labeled 1,
2, 3, and 4, are shown in Fig. 3.

3) H2 is constructed by connecting four copies of different
orientations H1 with three straight segments of length
h/2. There are four possible directions, and the rules of
construction are summarized in Table 1. Fig. 3 shows a
2nd order Hilbert curve, which is oriented #2, i.e., H1
consists of the 1223 direction.

4) Hn is constructed by connecting four copies of differ-
ent orientations Hn−1 with three straight segments of
length h/n. Therefore, Hilbert curves can be generated
according to this recursive approach for higher order
curves.

TABLE 1. Four possible directions for H2.

For a given M × N sEMG signal, M represents the time
series and N represents the electrode channels. When map-
ping in time dimension, for each electrode n and each time
step m, Hilbert generates the image coordinates (i, j) (i = j,
m = i × j) for time step m so that the image value at
position (i, j, n) is equal to the signal value of electrode n at
time-step m. Finally, the maximum size L × L× N image is
achieved, where M = L2 and L is a power of 2. Similarly,
when performing filling in the electrode dimension, for each
electrode m and each time step n, Hilbert generates the image
coordinates (i, j) (i = j, n = i× j) for electrode n. The image
value at position (m, i, j) is equal to the signal value at time-
step m for electrode n. The final maximum sizeM × K × K
image is achieved, where N = K 2 and K is a power of 2. For
example, 64 × 10 sEMG are shown in Fig. 1(c), when it is
mapped in the electrode dimension, it can eventually become
64× 4× 4 image. Fig. 4 shows that the image representation
of Hilbert electrode dimension on time (0,20,40,60). When
it is transformed in the time dimension, it can eventually
become 8 × 8 × 10 image, as shown in Fig. 5 for the image
representation of the Hilbert time dimension on the electrode.
Note that when using sequence segments of length less than
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FIGURE 6. The dual-view multi-scale convolutional neural network.

or, rows and columns with only zeroes can be deleted(filled)
and cropped to the final image.

III. FRAMEWORK AND METHODS
A. MULTI-VIEW LEARNING
Multi-view learning is an emerging direction in machine
learning which refers to the learning of multi-view data or
multiple feature sets that can reflect different attributes or
views of the data. Comparedwith single-view learning, multi-
view learning can achieve higher performance by making full
use of the information in different views of the data. Multi-
view CNN is one of the important issues in the practical
application of multi-view learning, and it consists of two
parts. The first half is a multi-stream CNN composed of
multiple branches. Each branch models the data of each view
separately to make full use of each view in the learning pro-
cess; the second half uses a multi-view aggregation network
to perform aggregation on the multi-view features learned in
the first half of the network.

The data of N views are assumed to be v1, v2, . . . , vn.
The multi-view convolutional neural network is modeled in
the first half by N convolutional neural network branches
hw1, hw2, . . . , hwn, where w1,w2, . . . ,wn are the parameters
of these N convolutional neural network branches:

Hi = hwi(vi) (1)

where Hi is the feature of the output of the hidden layer spec-
ified for the i-th network branch, which can be understood as
the feature obtained from the data vi of the i-th view learned
by the convolutional neural network hwi.
Then, the multi-view features are aggregated by a multi-

view aggregation network hagreew , and the final gesture
recognition label y is obtained:

y = hagreew

(
{Hi}Ni=1

)
(2)

B. PROPOSED DEEP LEARNING FRAMEWORK
Inspired bymulti-view learning, propose the dual-viewmulti-
scale convolutional neural network (DVMSCNN) architec-
ture illustrated in Fig. 6. First, two views vi (i = 1, 2) of the
sEMG signal after Hilbert transformation are expressed as
follows:

vi = fv (x) (3)

FIGURE 7. The specific structure of block1.

FIGURE 8. The specific structure of block2.

where x is denoted as sEMG, fv (·) denotes Hilbert transform,
v1 and v2 are the image representations of the time domain
and electrode domain, respectively.

Then, the two views are modeled in parallel by two blocks.
This process can be formulated as:

H j
i = f (vi) (4)

where vi ∈ RL×W×H is the input, L, W, and H are the
dimensions of vi, f (·) denotes the DVMSCNN and H j

i is
the output of the jth layer(j = 2, 3, · · · n) of the ith view
(i = 1, 2). Finally, the depth features of different layers are
fused together by an embedded view aggregation network
and fed into the Softmax classifier to output the classification
results. This process is written as:

H k
layer = fuseF

(
H j
i

)
(5)

Hfinal = fuseS
(
H k
layer

)
(6)

where fuseF (·) denotes feature level fusion, H k
layer ,

(k = 2, 3, · · · n) denotes the input to the view aggregation
network, fuseS (·) denotes the view aggregation network, and
Hfinal denotes a single output label’s final acquisition.

C. THE BLOCK ARCHITECTURE
Traditional neural networks learn features of fine scale in
early layers and coarse scale in later layers (through repeated
convolution, pooling, and stride convolution). Coarse scale
features in the final layers are important to classify the content
of the whole image into a single class. Early layers lack
coarse-level features and early-exit classifiers attached to
these layers will likely yield unsatisfactory high error rates.
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FIGURE 9. Detailed steps of input part, down-sampling, regular
convolution, and stride convolution. Note: There is zero padding in the
regular convolution and the input Conv, but there is no in the second
Conv in the stride convolution.

To address this issue, we propose an architecture similar to
the Multi-Scale Dense Network (MSDNet) [41], which are
shown in Fig. 7 and Fig. 8, respectively. The horizontal direc-
tion corresponds to the layer direction (depth) of the network,
it can preserve and progress high-resolution information,
which facilitates the construction of high quality coarse fea-
tures in later layers. The vertical direction represents the scale
of the feature map and produce coarse features throughout
that are amenable to classification. The n × n in the feature
represents the size of the feature map and the top right of
block1 shows the meaning of each icon and arrow.

The detailed steps of the Block input part are shown in
Fig. 9(a). First, batch normalization is required to process
the data before the first convolutional layer consisting of
64 3 × 3 filters to prevent overfitting, after which the batch
normalization and ReLU activation function are processed
as the original input image xi10. When L = 1, xi10 is down-
sampled (2∗2 maximum pooling layer) to obtain a coarser-
scale feature map, which determines the scale of the whole
block. The detailed steps of down-sampling are shown in
Fig. 9(b). If the output feature map of the i-th Block, the L-th
layer, and the scale s is denoted as xisL , then the output feature
map of the first layer is xis1. When L > 1, the output feature
map is the fusion of all previous features of the scale s and
s-1 after regular convolution csL(·) or stride convolution k

s
L(·).

Fig. 9(c)(d) shows the detailed steps of regular convolution,
and stride convolution. Among them, regular convolution
increases the depth of the architecture along the horizontal
direction (d), and stride convolution changes the scale along
the vertical path, transfers information from higher to lower
resolutions, and learns a more comprehensive range of depth
features.

Since the fusion of regular and stride convolution is a
cascade along the channel dimension, its output must have
feature maps of the same size. Therefore, there is no zero

FIGURE 10. The view aggregation network. Note: G is the number of
categories.

TABLE 2. The output of block1 in DVMSCNN as s and L change x1s
L.

TABLE 3. The output of block2 in DVMSCNN as s and L change x2s
L.

padding in the second convolutional layer in stride convo-
lution, and all other convolutional layers have zero padding.
Besides, batch normalization and ReLU activation functions
are applied to each layer to prevent overfitting. Finally, the
features of the output of layer L in Block1 and Block2 with
scale s are shown in Tables 2 and 3.

D. VIEW AGGREGATION NETWORK
To aggregate depth features and improve gesture recognition
accuracy, DVMSCNN embeds a view aggregation network
based on ‘‘layer fusion’’, as shown in Fig. 10. The network
fuses the depth features from different layers (L > 1),
which are shown in Table 4. Then, the fused features are
passed through a classifier consisting of an FC layer with
256 hidden units, a 128-hidden unit FC layer, and softmax
activation, a single output label is finally obtained. Batch
normalization and ReLU nonlinearity function are applied
to each layer, while Dropout is applied to each FC layer to
prevent overfitting.
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TABLE 4. The output of DVMSCNN in DVMSCNN as L change xs
L.

FIGURE 11. Performance of DVMSCNN with different number of layers.

FIGURE 12. The 4-layer structured dual-view multi-scale CNN.

IV. RESULTS
A. PERFORMANCE METRICS
In this paper, the five-fold cross-validations used when exper-
imenting with the NinaPro database. Specifically, for each
subject, eight out of ten repetitions are used as training data,
and the remaining two are used as testing data. This process is
repeated five times and these results are averaged to compute
the optimum test performance. Accuracy is used as perfor-
mance metrics.

B. EXPERIMENTAL RESULTS OF DVMSCNN
The influence of different network layers (L = 2, 3, 4, 5, 6)
on gesture recognition are shown in Fig. 11, which show that
the performance grows in a stepwise manner as the number
of layers increases (L = 2, 3, 4). However, when L > 4,
the number of layers does not bring better performance opti-
mization. Thus, the number of layers of DVMSCNN is set to
a four-layer structure as shown in Fig. 12, where block 1 and
block 2 are shown in Fig. 13 and Fig. 14.

According to the number of layers of DVMSCNN L = 4,
four layers fusion can be obtained, which are only L4 fusion,

TABLE 5. Properties evaluation of recognition performance of different
view aggregation networks.

FIGURE 13. The specific structure of block1.

TABLE 6. Hyper-parameter selection.

only L2 and L4 for layer fusion, only L3 and L4 for layer fusion
and L2, L3, and L4 fusion. The recognition performance of
the fusion of different layers is shown in Table 5, where
bold indicates the best. The proposed L4 fusion achieved the
gesture recognition accuracy of 0.8293, 0.7756, 0.6545 and
0.6824 on NinaPro-DB1, DB2, DB3, and DB4, respectively.
However, the accuracy of DVMSCNN obtained after L2, L3,
and L4 fusion can be improved to 0.8672, 0.8329, 0.7058 and
0.7332. Therefore, DVMSCNN uses this fusion method of
view aggregation network.

C. HYPER-PARAMETER SELECTION
Hyper-parameter is an important concept in deep learning,
referring to the parameter that need to be set artificially before
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TABLE 7. Hyper-parameter selection.

FIGURE 14. The specific structure of block2.

FIGURE 15. The accuracy of DVMSCNN on the NinaPro-DB1.

starting training on a model. The setting of hyper-parameter
has a great impact on the performance of a network model,
so finding a suitable set of hyper-parameters is one of the key
steps in building a deep model. For the problem of choosing
hyper-parameters for Pool, Dropout, and Initial learning rate,
Table 6 lists the search space and the selected values. DVM-
SCNN trained the network for 90 periods using stochastic
gradient descent (SGD) to validate the accuracy of different
parameter combinations for NinaPro-DB1, NinaPro-DB2,

FIGURE 16. The accuracy of DVMSCNN on the NinaPro-DB2.

NinaPro-DB3 and NinaPro-DB4. The results are shown in
Table 7, where bold indicates the best, and standard deviation
are in parentheses.

In summary, the network was trained using SGD for
90 epochs with an initial learning rate of 0.1, halved every
10 epochs, and a batch size of 1024. Dropout layers were
appended after convolutional layers with a forget rate of
0.25 to avoid overfitting the networks caused by the small
training set. Besides, weight decay regularization with a value
of l2 = 0.0005 was applied to all convolutional layers.

D. EFFECT OF HILBERT ON EXPERIMENTAL RESULTS
This section mainly verifies Hilbert can help to enhance
gesture recognition performance or not. DVMSCNN inputs
sEMG without Hilbert, sEMG only with time-domain fill-
ing, and sEMG with only electrode-domain mapping as the
comparison. According to Fig. 15-18, it can be concluded
that Hilbert filling can significantly improve the performance
of gesture recognition. In addition, the combination of time
domain and electrode domain is better than the combination
of single domain.
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FIGURE 17. The accuracy of DVMSCNN on the NinaPro-DB3.

FIGURE 18. The accuracy of DVMSCNN on the NinaPro-DB4.

TABLE 8. Comparison results with the state-of-the-art gesture
recognition approaches.

E. COMPARISON WITH THE STATE-OF-THE-ART GESTURE
RECOGNITION APPROACHES
To evaluate the performance of the DVMSCNN, comparative
study is conducted with other state-of-the-art sEMG-based
models. The introduction and processing are described in
section II, and the performance metrics and hyper param-
eter selection are described from sections IV.A to IV.B.
Notably, the training was performed according to the original
paper’s process since there is a manual extraction of fea-
tures in the data processing using Random forests and SVM.
Table 8 shows that the performance metrics of DVMSCNN
implemented on the Ninapro database are 0.8672, 0.8329,
0.7058 and 0.7332, respectively, all higher than the values of
other methods.

FIGURE 19. The specific gesture movements.

FIGURE 20. The confusion matrix for the actual gesture data.

F. THE COMPARISON RESULTS BETWEEN THE ACTUAL
GESTURE AND THE STANDARD DATA SET
This section adds the results of comparing the actual ges-
tures with the standard dataset. A total of 8 channels of
sparse multichannel sEMG signals recorded from 8 healthy
subjects (3 females, 5 males) were acquired using the Del-
sys Trigno wireless acquisition system in this paper. Each
gesture was recorded for 5 experiments at a sampling rate
of 200 Hz with a 10 second interruption in between each
experiment to avoid muscle fatigue. Each subject was asked
to perform 12 gestures, including 5 basic finger movements,
4 isotonic and isometric hand configurations, and 3 grasping
hand-gestures. The specific gesture movements are shown
in Fig. 19.
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The actual gesture dataset uses the same data processing
as the Ninapro database. The table 9 shows the final accuracy
results and the Fig. 20 shows the confusion matrix for the
actual gesture data, where the numbers 1-12 represent the
gestures in Fig. 19, respectively. Compared to the standard
database, the home-grown dataset in this paper is deficient
in terms of the number of subjects and gesture actions, but
in general, it verifies that DVMSCNN has good recognition
performance for the actual gesture map dataset as well.

TABLE 9. The comparison results between the actual gesture and the
standard data set.

V. CONCLUSION
This paper designs a dual-view multi-scale Hilbert con-
volutional neural network for effectively classifying hand
gesture from Ninapro-DB1, Ninapro-DB2, Ninapro-DB3
and Ninapro-DB4. Firstly, the sEMG is partitioned into
the time-domain and electrode-domain based datasets using
the Hilbert filling curve’s property. Secondly, to improve the
classification effect, two views are used as the input to the
network, and a view aggregation network based on ‘‘layer
fusion’’ is embedded into the network to aggregate the fea-
tures from each layer of the two views. In conclusion, the
framework we designed for DVMSCNN achieved accuracies
of 0.8672, 0.8329, 0.7058, and 0.7332. When validated with
a home-grown dataset, the recognition rate can reach 0.8848.
In addition, better overall performance is reported compared
to the state-of-the-art model. In the future, following recent
progress in multi-view classification, we will expand cur-
rent work to larger datasets (not only the sEMG dataset)
to build more discriminative multi-view representations.
Furthermore, since sEMG signals are essentially sequences
of temporal data, novel temporal models, such as sequentially
supervised long and short-term memory, should be employed
to explore more sophisticated fusion algorithms for gesture
recognition.
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