IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received January 24, 2022, accepted February 7, 2022, date of publication March 10, 2022, date of current version April 12, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3158648

Accumulation and Prioritization of Architectural
Debt in Three Companies Migrating

to Microservices

SAULO SOARES DE TOLEDO !, ANTONIO MARTINI“!, (Member, IEEE), PHU H. NGUYEN 2,

AND DAG I. K. SJOBERG !, (Member, IEEE)

lDepartment for Informatics, University of Oslo, 0316 Oslo, Norway
2SINTEF, 0373 Oslo, Norway

Corresponding author: Saulo Soares de Toledo (saulos @ifi.uio.no)

ABSTRACT Many companies migrate to microservices because they help deliver value to customers
quickly and continuously. However, like any architectural style, microservices are prone to architectural
technical debt (ATD), which can be costly if the debts are not timely identified, avoided, or removed.
During the early stages of migration, microservice-specific ATDs (MS-ATDs) may accumulate. For example,
practitioners may decide to continue using poorly defined APIs in microservices while attempting to maintain
compatibility with old functionalities. The riskiest MS-ATDs must be prioritized. Nevertheless, there is
limited research regarding the prioritization of MS-ATDs in companies migrating to microservices. This
study aims to identify, during migration, which MS-ATDs occur, are the most severe, and are the most
challenging to solve. In addition, we propose a way to prioritize these debts. We conducted a multiple
exploratory case study of three large companies that were early in the migration process to microservices.
We interviewed 47 practitioners with several roles to identify the debts in their contexts. We report the
MS-ATDs detected during migration, the MS-ATDs that practitioners estimate to occur in the future, and the
MS-ATDs that practitioners report as difficult to solve. We discuss the results in the context of the companies
involved in this study. In addition, we used a risk assessment approach to propose a way for prioritizing
MS-ATDs. Practitioners from other organizations and researchers may use this approach to provide rankings
to help identify and prioritize which MS-ATDs should be avoided or solved in their contexts.

INDEX TERMS Architectural technical debt, microservices, software maintainability, cross-company study,

qualitative analysis.

I. INTRODUCTION
When companies migrate their software towards a microser-
vice architecture, the software is split into a small set
of independent services. Many of the practical difficulties
encountered in previous architectures can be mitigated
by using microservices. They support small and frequent
releases, improve scalability, and promote independence
among teams. However, microservices also bring new
management and technical demands, such as the need
to be business-domain driven and understand distributed
systems [1].

Like any architectural style, the microservice architecture
is prone to architectural technical debt (ATD), which may

The associate editor coordinating the review of this manuscript and

approving it for publication was Giuseppe Destefanis

37422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

incur high costs [2]. ATD is a type of technical debt (TD) con-
sisting of sub-optimal architectural solutions, which deliver
benefits in the short-term but increase overall costs in the long
run [3]. Some ATDs are specific to microservices [2] and
might not be considered as problems in other architectures.
For example, microservices should communicate through a
“dumb pipe” (i.e., there should not exist any transforma-
tion logic between the services), while in previous Service
Oriented Architectures (SOA), a common approach is to
have some logic between services to transform data. In this
paper, we consider ATDs only in the context of microservices
applications and thus name them MS-ATDs.

One of the reasons for companies to migrate to microser-
vices is repaying known ATDs from their previous architec-
tures while, at the same time, obtain the benefits of this new
architectural style. Figure 1 exemplifies such a migration:

VOLUME 10, 2022

https://orcid.org/0000-0002-0747-4052
https://orcid.org/0000-0002-0669-8687
https://orcid.org/0000-0003-1773-8581
https://orcid.org/0000-0002-4941-7240
https://orcid.org/0000-0003-3982-6355

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

IEEE Access

Previous /

architecture
“Big ball of mud”

7~

Migration

Old, known
Technical Debt

Microservices

=22

<
New, not known .\(\6
Technical Debt A

A -

Agility
Continuous
deployment
Continuous
integration
& \ Other benefits...

Provides

FIGURE 1. New ATD found after the migration to microservices may hinder the benefits of the new architecture.

a company has a “Big Ball of Mud” architecture [4] and
repays ATDs in a migration to microservices. As the com-
pany believes that most ATDs from before were paid, the
new microservice architecture can be prone to new, unknown
MS-ATDs. The new microservice architecture is expected to
have better scalability and agility, allow enhanced continuous
integration and delivery pipelines, and provide many other
benefits, such as allowing independent teams to work in
parallel, having more testable code, and better control of costs
in the cloud [1], [5]. However, the new MS-ATDs reduce
these benefits and can be more costly than previous debts.

Migration to microservices has been investigated in pre-
vious studies from different perspectives. Several authors
have proposed tools and approaches for assisting migra-
tion to microservices; see the systematic mapping by
Bushong et al. [6]. A few other studies have investigated TD
and related concepts in this new architectural style [2], [7],
[8]. However, none of these studies have covered how ATD
has accumulated during migration from a prior architecture to
microservices. A lightweight survey of the current literature
looking for the terms ‘“‘microservices,” ‘‘micro-services,”
“prioritization,” and “‘technical debt” in some of the major
research databases (ACM Digital Library,! IEEE Xplore,?
Scopus?) highlighted that there are no relevant papers on
how to prioritize MS-ATDs. Existing secondary studies on
microservices [9]-[11] do not address prioritizing MS-ATDs.
Companies must address the costs of such debts at a later
stage of migration. Furthermore, after observing ATDs from
the old architecture being repaid during migration, practition-
ers might have a false impression that the project is going well
without noticing new MS-ATDs.

During migration to a microservice architecture, practi-
tioners have the opportunity to identify MS-ATDs in a timely
manner before they become widespread in the entire archi-
tecture. Knowing the risky and costly MS-ATDs facilitates

1 https://dl.acm.org/
2https://ieeexplore.ieee.org/
3https://Www.scopus.comf

VOLUME 10, 2022

practitioners in deciding which MS-ATDs to avoid, remove,
and prioritize repayment. This study investigates the follow-
ing research questions (RQs) in companies that have started
their migration to microservices:

o RQ1: Which MS-ATDs do companies encounter during
early migration to microservices?

« RQ2: Which MS-ATDs do companies foresee in the
future of the migration?

o RQ3: Which MS-ATDs do the practitioners find diffi-
cult to solve?

« RQ4: How important do practitioners perceive MS-
ATDs?

« RQS: How can companies prioritize which MS-ATDs to
avoid or repay?

To answer these questions, we conducted a multiple case
study of three companies in the early stages of migration
to microservices. As shown in Figure 2, we investigated
the present and future stages of migration to microservices
in these companies. RQ1 aims to identify the debts that
occur in the early stages of migration (Present in Figure 2)
to microservices: TD is often introduced early and persists
throughout the software life cycle [12]. RQ2 investigates the
debts estimated to occur in the future, helping practitioners to
avoid or mitigate them (Future in Figure 2). Answering RQ3
highlights MS-ATDs that are difficult to remove and thus may
either require more effort to be repaid or remain in the system
for a long time. Answering RQ4 highlights which MS-ATDs
practitioners consider risky (important to them) and, thus,
should be prioritized for removal or mitigation. The difficulty
and the risk of the MS-ATDs affect how practitioners pri-
oritize them. Finally, RQS5 investigates how companies can
prioritize the removal or mitigation of MS-ATDs identified
and discussed in the previous questions (see Figure 2). Prior-
itizing MS-ATDs is an important management activity [13].

The remainder of this paper is organized as follows.
Section II provides the background for this study. Section III
describes our research design. Section IV presents our results
and discussion as well as implications for research and

37423

IEEE Access

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

Studied context

Architecture

Migration

_____________ 1 T T == T T T T T T T T T T T T T T T T 1
r Past Present : r Future
Legacy Initial Microservices I Full Microservices
Software Architecture I Architecture
Il

Towards the
Full Migration

L — l ______%‘_.

[————

Which MS-ATDs do
companies encounter

to microservices?

(RQ1)

during early migration

N

- Which MS-ATDs do the
practitioners find difficult
to solve? (RQ3)

- How important do
practitioners perceive
MS-ATDs? (RQ4)

Which MS-ATDs do
companies foresee
in the future of the
migration? (RQ2)

/

How can companies
prioritize which MS-ATDs
to avoid or repay (RQ5)

FIGURE 2. Relationship between the research questions, the ongoing architecture (with the migration in progress), and the final microservice architecture

(as envisioned by the practitioners).

practice. Section V discusses the limitations of this study.
Section VI presents the related work. Section VII concludes
the paper and highlights future work.

Il. BACKGROUND
A. MIGRATION TO MICROSERVICES ARCHITECTURE
Lewis and Fowler [5] defined the microservice architecture
as ““an approach to developing a single application as a suite
of small services, each running in its own process and com-
municating with lightweight mechanisms.” In a microser-
vice architecture, each microservice is autonomous, allowing
developers to select the most appropriate set of tools and
programming languages to be used. Small services tend
to reduce code complexity and increase code maintainabil-
ity. Moreover, because microservices are deployed indepen-
dently, each microservice has its own delivery pipeline, can
be tested independently, and can be scaled individually [5].
The microservice architecture is an alternative to mono-
lithic applications, which are developed as a single unit [14].
Compared with monolithic applications, microservices are
easier to scale, have shorter cycles for testing, building
and release, and are frequently less affected by down-
time [1]. However, the microservice architecture also has
drawbacks and challenges. Having each service deployed
separately introduces latency in communication, requires
the management of network failures, increases operational
complexity, and demands the management of eventual con-
sistency [1]. During migration to microservices, practitioners
reported extended time to release features, high coupling,

37424

and deficiencies in communication and knowledge sharing,
among others [15].

Microservices may be considered as a way of implement-
ing Service-Oriented Architecture (SOA), although there
are different opinions about whether microservices are an
instance of SOA [16]. There is a clear overlap between the
characteristics of SOA and the microservice architecture.
Many concepts and techniques in microservices have been
borrowed from SOA, such as service discovery, service reg-
istries, API gateways, and circuit breakers [17]. Even so, SOA
describes applications that cannot be considered microser-
vices. For example, many SOA applications are still imple-
mented using an Enterprise Service Bus (ESB), a centralized
software component providing infrastructure to the services
composing the application and mediating communication.
An ESB may intercept and modify the data, among other
functions [18]. On the other hand, microservices require a
dump pipe for communication (i.e., a communication layer
used simply to transfer data) without any modifications
or transforming capabilities. Other characteristics apply for
SOA but not for microservices, such as: there is no such
guidance about the service granularity in SOA, while for
microservices, each microservice should represent only one
capability, and SOA may support transport protocol trans-
formations, while microservices usually rely on REST over
HTTP or a protocol supported by a message bus [19].

Well-known companies, such as Amazon and Netflix,
have been using microservices to overcome difficulties with
their previous monolithic architectures [5]. The success of

VOLUME 10, 2022

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

IEEE Access

microservices in these companies made other companies
embrace this architectural style and migrate to it from their
previous monolithic architectures. There are many reports on
such migrations in the industry and academia [10].

There are several approaches for migrating monolithic
architectures to microservices, ranging from decomposition
strategies to data-driven approaches [8]. Many patterns have
also been discussed in academia and industry to guide migra-
tion [14], [20]. Frequently, the migration is advised to be
incremental in that microservices gradually replace the func-
tionality in the monolith or new microservices are created
to implement new features [20]. An incremental migration
results in both the original and new architectures coexisting
and working together.

B. PRIORITIZATION OF ARCHITECTURAL DEBT (ATD)
Technical debt (TD) denotes a suboptimal solution that deliv-
ers short-term benefits at the expense of increased overall
costs in the long run [21]. An ATD is a type of TD related to
a product’s architecture [3]. Findings from previous surveys
identify ATD as one of the most challenging types of TD to
unveil and manage [12], [22], [23].

Microservice architecture is prone to ATD.
De Toledoeral [2] listed 16 ATDs specific to
microservices (i.e., MS-ATDs), which were organized into
12 more general ATDs. Despite the possibility of finding
these ATDs in other architectural styles (e.g., APIs might be
inadequately used in any architectural style), their causes and
consequences are different from those in microservices.

Table 1 shows seven MS-ATDs, an example for each, and a
brief explanation of what is specific to microservices in each
debt. These MS-ATDs are a subset of those initially reported
by de Toledo er al. [2], and were selected according to the cri-
teria described in Section III-A. Table 1 also lists the number
of each MS-ATD in de Toledo et al. [2] for correspondence.

MS-ATDs must be prioritized before repayment [13]. One
way of prioritizing is through risk assessment [24], [25]. Risk
represents the possibility of loss (suffering the impact of the
debt). The MS-ATDs that pose the highest risk should be
addressed first. Through risk assessment, we developed a sys-
tematic approach to identify, analyze, and evaluate the risk of
each MS-ATD. We define the risk of a debt as the probability
of the debt to occur multiplied by its impact, as shown in
Equation 1. We use this definition in Section III-D to address
the risk of the debts.

risk(debt) = probability(debt) x impact(debt) (1)

C. MS-ATD DURING MIGRATION TO MICROSERVICES

After deciding to migrate to microservices, a company must
consider completely rewriting the software in the new archi-
tectural style or proceeding with an incremental migration.
A company must make this decision by considering its con-
text. However, a complete rewrite is often very costly. In that
case, there are approaches that companies may use to proceed
with an incremental migration, such as those proposed by

VOLUME 10, 2022

Yoder and Merson [20] and Newman [14]. The companies
in our study executed an incremental migration.

MS-ATDs can occur during migration to microservices.
For example, unplanned data sharing may arise when prac-
titioners share databases among several microservices and
the previous architecture, or microservice APIs may be mal-
formed because practitioners maintain compatibility with
the previous architecture. Knowing which MS-ATDs occur
at different times during migration might help practitioners
overcome their difficulties before they become too harmful,
reduce costs, and speed up migration.

IIl. RESEARCH DESIGN

This section describes the process of our exploratory
multiple-case study [26], which is summarized in Figure 3,
and a detailed protocol is available online.*

Our study was conducted in three companies during the
early stages of migration to microservices. We scheduled
three 45-minute presentations, one for each participating
company, with practitioners involved in microservice projects
in the respective companies. The goals of the presentations
were to raise practitioners’ awareness of MS-ATDs, ensure
they had the same understanding as the researchers regarding
the debts, and collect initial data.

During the scheduled presentations, we introduced the
practitioners to a list of MS-ATDs based on a previous study
(Step 2 of Figure 3). The identification and selection (Step 1)
of those MS-ATDs are described in Section III-A. Next,
we asked interviewees to answer a set of predefined questions
(Step 3). The results from the interviews were analyzed, sum-
marized, and presented to a subset of the original participants
in another round of three 45-minute presentations, one for
each company (Step 4). During the second interaction with
the companies, we collected additional information through
semi-structured interviews (Step 5). We recorded all interac-
tions with the participants for posterior analysis.

A. IDENTIFICATION AND SELECTION OF THE MS-ATDs
USED IN THIS STUDY

Practitioners from the participating companies granted us a
limited amount of time enough to prioritize seven MS-ATDs.
We selected those MS-ATDs from a list found in de
Toledo et al. [2], one of the most comprehensive studies cov-
ering MS-ATDs in large companies running mature microser-
vice projects. The list from de Toledo ef al. [2] includes
12 debts, and we selected seven debts according to the
following criteria:

(1) We selected the debts reported by at least three compa-
nies in the previous study, resulting in six out of the orig-
inal 12 debts. We considered that frequent MS-ATDs
found by companies running microservices for sev-
eral years are likely to be found in other companies.
The original study divided the debt ‘“‘reusing third-
party implementations” into two distinct sub-debts.

4https://bit.ly/3qVwFJdq

37425

https://bit.ly/3qVwFJq

IEEE Access

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

TABLE 1. The MS-ATDs selected for this study.

| Name and description

Example

What is new in microservices?

1 | Insufficient metadata (#1 in [2]):

as well as other issues.

Many microservices communicate through
messaging. However, these messages could
have additional metadata to identify their pro-
ducers, consumers, targets, and others in some
cases. Insufficient metadata may make it chal-
lenging to track dependencies among services
and find the producers for debugging purposes,

A system comprises many microservices pro-
cessing data available through a message bus.
In this example, a message can only be con-
sumed by one service at a time, but there
is no guaranteed order. If the message gets
malformed, the reason might be related to a
specific combination of modifications made by
previous services. If there is no metadata for
tracking the changes, it might be challenging to
identify the causes of the issue.

Different SOA approaches might use messages
in their communication, but microservices are
more fine-grained than those, which increases
the number of services and, consequently,
the impact of the debt. Monoliths are self-
contained and usually do not need messaging
approaches to establish communication among
their modules. On the other hand, Microser-
vices might critically depend on messages to
communicate with other services because they
form a distributed system.

2 | Microservice coupling (#2 in [2]):

message formats).

Microservice coupling is about how changes in
one service require changes in another service.
The coupling might be done intentionally to
save development time, and it frequently in-
creases team dependency. There are different
types of coupling [14], but we focus on the
services’ implementation, including their con-
tracts and interfaces (e.g., API endpoints and

A files service provides access to a set of files
for authorized users. The authorization is cur-
rently performed at the users service. For every
request received by the files service, another
request is made to the users service to verify ac-
cess to the files. Changes to the users service’s
API might affect the files service, creating a de-
pendency among the development teams. The
files access authorization should possibly be
moved to the files service instead.

Coupling among microservices frequently
causes dependency among teams, reducing
teams’ velocity and agility. While companies
have a false impression that they have decou-
pled teams and well-defined agile practices,
they might be silently blocked by coupling
among the microservices.

3 | Inadequate use of APIs (#4 in [2]):

Many services communicate with the other ser-
vices through APIs. When these APIs are not
well defined or misused, they lead to issues.

An API exposed through HTTP that is not
following required standards. For example, re-
moving an item from a shopping cart is done
through an HTTP method called GET, but it
should use DELETE instead. This API’s users
have difficulties understanding it.

Each microservice exposing an API might be
developed by a different team, increasing the
probability of having many different API stan-
dards. The inadequate use of APIs impacts the
functioning of other services and development
teams.

4 | Excessive diversity (#6 in [2]):

and management.

Microservices allow mixing multiple program-
ming languages, data-storage technologies,
supporting tools, and others. However, having
too many different technologies across the sys-
tem may create difficulties with standardization

Using containers is a common technique in en-
vironments running microservices. Developers
can easily find start containers running almost
any GNU/Linux-based system to use in their
projects. However, there are several hundreds
of containers setups, and each one uses its own
distinct tools. Using too many distinct contain-
ers for solving the exact same problem requires
team members to learn a different setup every
time they change teams.

A monolith is usually developed using a limited
set of programming languages and tools. On
the other hand, Microservices can be developed
with completely distinct languages and setups,
increasing the likelihood of excessive diversity.
Other SOA approaches might also suffer from
this problem, but the number of services in
a microservice architecture is usually higher,
making the problem more costly.

in [2]):

5 | Unplanned data sharing/synchronization (#8

Microservices should have their own databases.
When different microservices share the same
database, unexpected issues such as cascading
breakings may occur. On the other hand, when
microservices have distinct databases, there
might be problems with data synchronization.

Two microservices share a database and use a
table of users. There is a field in the database
storing the users’ full names. The developers
in the first service decide to split the full name
column into first name and last name. The
second service might stop working because it
does not find the original field for the full name.

Microservices should have their own databases,
which is not required for other architectural
styles, including other SOA approaches. The
way the databases are designed for microser-
vices is also different: they should reflect
the business domain, which leads to distinct
domain-related issues. Sharing databases or
synchronizing them might lead to blocking and
other issues among teams.

6 | Misusing shared libraries (#10.1 in [2]):

using the libraries on every new release.

Many companies encapsulate code into li-
braries and distribute them to be used by many
services. Suppose such a distribution is not
properly managed. In that case, many libraries
may lead to difficulties, including breaking
changes, dependencies among teams, delays,
and additional costs to update all the services

A data encryption library is developed by a sep-
arate team in the company and used by dozens
of services throughout the project. A high-
security issue is found in the library, and the
library developers release a new version with
the fix. Every service should update the library
to the last version. Due to other priorities and
feature development, it is not possible to update
the library in the entire organization, and many
services will remain with the issue.

Libraries have different consequences in dis-
tinct architectural styles. Monoliths, for ex-
ample, bundle them in a single deployment
package, while microservices do the same for
each deployment. A system with hundreds of
services may have hundreds of deployments of
the same library. Thus, issues found in a single
library immediately affect dozens or hundreds
of services and teams.

7 | Unnecessary settings (#11 in [2]):

or other issues.

Each microservice usually has a set of set-
tings to be defined in the environment, such
as the database address, memory limits, and
others. However, if there are many unnecessary
settings, the probability of misconfiguration is
more significant, potentially leading to crashes

One of the configuration settings for access-
ing databases is to inform a “port number.”
Databases run in a default port if not changed.
For example, it is unnecessary to have a config-
uration setting in an application to inform the
default port of a database management service.
The application could have an optional configu-
ration setting that, if not present, automatically
falls back to the default value.

There are several times more settings in mi-
croservices than in monolithic architectures, in-
creasing the likelihood of unnecessary settings.
The impact of those settings in a distributed
setup is higher than in a single deployment
setup because of the more significant amount
of settings and the possibility of causing cas-
cading failures.

37426

VOLUME 10, 2022

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

IEEE Access

For simplicity, we focused only on the sub-debt ‘““mis-
use of internal shared libraries” reported by multiple
companies.

(i) We previously knew that the companies involved in this
study extensively used asynchronous communication
among services and were interested in prioritizing any
related MS-ATDs. Thus, we included an additional debt
in our list: “Insufficient metadata,” the only of the
remaining debts related to asynchronous communica-
tion among services, resulting in a total of seven debts,
as detailed in Table 1.

Other debts we did not consider in this study might be rele-
vant to the companies, including (but not limited to) the debts
identified by de Toledo et al. [2]. However, additional debts
might be considered in future prioritization by practitioners
and future research studies.

B. STUDIED COMPANIES

We studied three large software companies that had just
started modernizing their (large) legacy monolithic systems
using a microservice architecture. Figure 2 presents the
relationship between the research questions, the ongoing
architecture (with the migration in progress), and the final
microservice architecture as presently visualized by the prac-
titioners.

Company A provides business software and IT-related
development and consultancy, employs nearly a dozen thou-
sand employees, and has hundreds of thousands of customers,
mainly in northern Europe. The participants in our study are
from the core teams that have been developing a dynamic
ERP system for large companies, which is one of the com-
pany’s flagship products. It is a large monolithic system in
which customers can buy licenses and install them through
Company A or its certified partners. Software teams have
broken down their monolithic ERP product towards using
microservice architecture and providing their product as a
service on the cloud. One of their main goals is to avoid
pitfalls and (remove) debts while migrating their product.

Company B provides IT and product engineering services,
with approximately twice as many employees as Company
A. Company B serves thousands of customers in more than
90 countries. The branch with which we conducted our study
focuses on financial services, such as banking solutions, and
is located in a Nordic country. They sell and maintain com-
plex banking solutions for many banks and have continuously
developed and modernized their products, focusing more
recently on microservice architecture and modern software
development. MS-ATD is a considerable concern that soft-
ware teams want to control better.

Company C is one of the largest financial services groups
in the Nordic region (mainly banking) with 9000+ full-
time employees serving several millions of customers. The
software teams we interacted with were at the core of their
in-house software department, specialized in architecture and
technology. This software department has a good tradition of

VOLUME 10, 2022

TABLE 2. Attendees for the first presentation.

Roles Number of attendees Total
Company A Company B Company C

Developer | 1 14 7 22

Architect 6 1 11 18

Manager 2 2 1

Other 0 2 0

Total 9 19 19 47

handling TDs and has a reputation for allowing engineers to
take software engineering courses.

C. DATA COLLECTION

The data collection occurred as illustrated in Steps 3 and 5 in
Figure 3. A total of 47 participants, distributed as shown in
Table 2, participated in the first data collection (Step 3). The
participants had different backgrounds and experiences with
microservices. For each MS-ATD presented, we asked the
participants the following three questions:

(i) Have you encountered this MS-ATD in your current
project? (RQ1)
(i) Do you foresee this MS-ATD in the future of the
project? (RQ2)
(iii) Do you know how to avoid or mitigate this MS-ATD?
(RQ3)

The first two questions were answered with yes, not sure,
or no. The third question was answered with yes, partially,
no, or not applicable (n/a). Not applicable was used by the
practitioners that considered the MS-ATD as irrelevant or
out of context in their projects. For example, insufficient
metadata in messages is not applicable to contexts in which
messages are not used.

We also asked the participants to report whether they
understood the explanation of the MS-ATD. Only three par-
ticipants from Company B said that they did not understand
the explanation, which concerned MS-ATD 1, MS-ATD 2,
and MS-ATD 5, as described in Table 1. In general, our expla-
nation of the MS-ATDs was well accepted and understood by
the participants.

The practitioners perceived some MS-ATDs as riskier than
others and, as such, more important to them. At the end of the
presentation, we asked the participants to rank the three most
important MS-ATDs according to their point of view on the
project (RQ4).

After data analysis (Section III-D), we invited the most
experienced interviewees from the previous session to a
new group interview to discuss the results of the previous
interviews. These experts constituted approximately 30% of
the original participants. We presented the results, asked for
clarifications of context, and discussed the prioritization of
MS-ATDs in future development (RQ5). More specifically,
we asked the following questions:

37427

IEEE Access

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

Previous study

7 most common ATDs

[Ms-ATD 1| [Ms-ATD 2|

MS-ATD 1 e

MS-ATD 2

»

rg Selection

[Ms-ATD 3 | [Ms-ATD 4 |

Present
and

MS-ATD 3

Explain

[Ms-ATD 5 | [Ms-ATD B

MS-ATD 12

Coienie Semi-structured
details and .
PO Interviews
validation
Legend: [Methodology step] outcome 8"

FIGURE 3. An overview of the research process.

(1) What are your considerations regarding these results?
(i1)) What are the causes of these results?
(iii) Do you agree with these results? Why?

These experienced interviewees had a good overview and
understanding of their projects and thus provided additional
helpful information for our analysis.

D. DATA ANALYSIS

Descriptive statistics were used to compare the results for the
different companies. We created rankings for each question,
for example, from the most found to the last found MS-ATD
in RQI. To create the rankings, we transformed the categori-
cal answers into numeric values, as follows:

o Every MS-ATD reported as found, foreseen, or difficult
to solve was counted as 1 for each answer.

o MS-ATDs reported as not found, unforeseen, not dif-
ficult to solve, or not applicable to their context were
counted as 0.

o Partial answers, i.e., “not sure” or “partially,” were
counted as 0.5. This value represents a 50% probability
of a debt being found. It is reasonable to assume that
some practitioners are more confident than others when
answering these questions. Thus, 0.5 is an approxima-
tion to balance all answers. Future studies may find
better measures of practitioner confidence in answering
these questions.

The remainder of this section explains the analysis proce-
dure in detail. The set of MS-ATDs in Table 1 is denoted by
D={d, do, ..., d7}.

1) THE RANKING OF THE MOST ENCOUNTERED MS-ATDs
The question about the MS-ATDs encountered so far had
three possible answers: yes, not sure, and no. We counted

37428

Results
presentation

ATDs
rankings

Structured
Interviews

o -
l\i\} ~ Company subset
-

Company

the number of votes for each answer: ey, e, and
enot sure- We weighted each answer: 1 for yes, 0 for no
(because they represent MS-ATDs that were not encountered
and, thus, are not relevant for our ranking), and 0.5 for
partially.

Based on the eyes, €40, and €07 sure, and on the respective
weights, we computed the weighted sum of votes v,, for each
MS-ATD encountered d; € D, as defined in Equation 2.

Ve, = (1 x eyes) + (0.5 X enor sure) + (0 X €y0))

The set with all values v,, was used to compute the ranking
Rencounterea of the MS-ATDs encountered by practitioners.
The ranking is defined in Equation 3 and represents the
ordered set of debts d € D according to the respective values
previously calculated: d; is higher than d; if v; is greater
than v;, which means that d; is encountered more than dj.
For cases in which the weighted sum of votes is numerically
the same for more than one MS-ATD, we consider as most
encountered the debt with less uncertainty, i.e., with less ““not
sure” answers.

Rencounterea = order (D, {Vel s Vegs oo vy Ve7}) 3)

2) THE RANKING OF THE MOST FORESEEN MS-ATDs

The question regarding the most foreseen MS-ATDs in the
project’s future had the same possible answers (yes, not sure,
and no) as for the question about encountered MS-ATDs.

We used the same reasoning as before to calculate Equations 4
and 5.

Vi = (1 Xfyes) + (05 anut sure) + (0 ana) (4)

Rforeseen = order (D, {Vf1 s Vhe eV) (5)

VOLUME 10, 2022

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

IEEE Access

3) THE RANKING OF THE MS-ATDs THAT THE PARTICIPANTS
DO NOT KNOW HOW TO SOLVE

The third question, which asked whether the participants
knew how to solve each MS-ATD, had four possible answers:
no, partially, yes, and not applicable (n/a). We aimed to have
a final ranking in which the first MS-ATD was the one in
which the practitioners did not have the complete solution
(since they could also answer partially) or did not know how
to avoid or mitigate. We counted the number of votes for
each answer, kyo, kpartially Kyes, and ky /4, and applied weights
for them: 1 for no, O for yes and n/a (because they represent
MS-ATDs for which the companies already have a solution or
that do not apply to their cases), and 0.5 for partially (because
they represent a solution that does not entirely repay the MS-
ATD, but that at least reduces its risk).

Based on k;0, kpartiaily, Kyes, and ki /4, and on the respective
weights, we computed the values vy, for each d; € D,
as defined in Equation 6, which were used to compute the
ranking Rynown Of the MS-ATDs, as described in Equation 7.

Vi, = (1 X kno) + (0.5 x kpartiully) + (0 x kyes)
+(0 x kn/a) (6)
-3 Vig}) @)

Rinown = order(D, {vg,, vi,, ..
4) THE RANKING OF THE IMPORTANCE OF THE MS-ATDs
FOR THE PARTICIPANTS
The ranking of the importance of the MS-ATDs given by the
participants is formed by the ordered set of MS-ATDs d; € D.
d; is higher than d; if v;; is greater than Vi3 Vi; is the number
of votes for MS-ATD i. In other words, we have an ordered
list from the most important to the least important MS-ATD
(see Equation 8).
Rimportance = order(D, {Vil s Vigs oo vy Vi7}) (8)
5) THE FINAL RANKING OF IMPORTANCE FOR THE MS-ATDs
TD can be threatened as a software risk because of the
uncertainty of interest payments [24], [25]. Therefore, a risk
analysis is appropriate for prioritizing our MS-ATDs; the first
MS-ATD to be paid is the one that poses a higher risk to
the company and the project. As presented in Equation 1,
the risk of an MS-ATD can be calculated as the probability
of the debt to occur multiplied by the impact of that debt.
Therefore, we computed the priority score p; for each MS-
ATD i in Table 1 based on this risk definition. Such a priority
score is calculated using Equation 9: (i) the probability of
having the debt is calculated as the product of the number of
practitioners who believe the debt will happen in the future
and the number of people who do not know how to solve the
debt; (ii) the impact is represented by the importance given
by the practitioners for the debt (we add 1 to the number of
votes on the importance to prevent multiplication by zero if
no practitioner has voted for the debt as important).
Our approach, represented by Equation 10, uses the pri-
ority scores to compute the priority ranking. However, other

VOLUME 10, 2022

authors may consider different methods.

pi = (v X vi) x (1 +vy) 9
Rpriorily = order(D, {p1,p2, ..., p7}) (10)

6) VISUALIZING THE PRIORITY RANKING

We used the score defined in Equation 9 for the prioritization
ranking. However, for visualization and readability purposes,
we applied the transformation [27] defined in Equation 11 to
the score.

The maximum value of the priority score depends on the
number of participants and votes, and there is no upper limit.
Therefore, we normalized the score between O and 1 by
dividing it by the maximum score. We used a logarithmic
transformation to reduce the differences between the values.
Using two as the logarithm base is reasonable when the data
range is less than two powers of 10 [27]. We add 1 to the
normalized value to ensure that we do not have negative
numbers after our transformation (if the priority is zero,
we have logs(1) = 0 as the minimal value possible). Finally,
we transformed the score into a scale between 1 and 10 by
multiplying the results by 10.

s; = log (Pi
! 2 max({p1, p2, - .

1 10 11
WO)X (b

7) THE QUALITATIVE ANALYSIS

We used the recorded interviews to identify contextual infor-
mation that could explain the practitioners’ decisions. Owing
to the limited interview time, the practitioners focused on
the MS-ATDs they considered the most important while
discussing each RQ. In a few cases, the practitioners also
discussed debts that were less important to them.

For each MS-ATD in our ranking, we looked for a mention
of the debt during the interviews. We found explanations and
quotations that helped us interpret the results. For example,
when asked about the reasons for having shared databases,
one interviewee from Company A said, ““We decided to share
the database at the beginning of the migration to speed up
the process.” Thus, the debt exists at the top of their rankings
because they explicitly decided to have it, and they are paying
the respective costs.

IV. RESULTS AND DISCUSSION

Table 3 shows our raw data with the number of participants
who voted for each answer in the first three RQs (i.e., for the
MS-ATDs encountered so far, foreseen in the future, and that
the practitioners do not know how to avoid), and the number
of votes for importance, for each company. The raw data may
be used by the reader to replicate our study or to use them in
different ways as those proposed in this work.

Figures 4, 6, and 8 show the percentage of practitioners
who voted for each answer in each MS-ATD regarding the
respective RQs.

Tables 4, 5, 6, and 7 present the rankings calculated
from the data in Table 3 using the formulas described in
Section III-D. These tables contain colors to facilitate the

37429

IEEE Access

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

TABLE 3. The raw answers for the most encountered MS-ATDs, the most foreseen MS-ATDs, the MS-ATDs practitioners do not know how to avoid, and the

importance for each MS-ATD according to practitioners.

ATD Company MS-ATDs encountered MS-ATDs foreseen MS-ATDs practitioners do Votes for
not know how to avoid importance
Found | Notsure | Notfound | Foreseen | Notsure | Notforeseen | No | Partially | Yes | N/A
Insufficient metadata A 2 2 5 4 2 3 4 1 1 3 1
B 1 6 9 3 7 5 2 5 0 9 4
C 6 5 7 9 7 1 1 6 3 5 5
Microservice A 4 1 4 7 1 1 4 3 1 1 9
coupling B 8 4 4 12 4 0 6 5 1 5 8
C 10 3 10 1 2 5 6 2 1 13
Inadequate use of A 6 0 2 5 1 3 2 4 2 1 6
APIs B 6 3 5 7 4 2 0 6 5 3 6
C 9 1 3 11 1 1 0 12 1 0 4
Excessive diversity A 2 0 6 3 0 5 3 3 1 1 0
B 1 1 12 6 0 7 0 8 2 2 1
C 7 0 6 8 2 3 4 6 3 1 6
Unplanned data A 6 1 2 5 3 1 1 7 0 1 7
sharing/sync. B 7 4 3 10 3 0 4 6 1 2 7
C 4 4 6 6 4 3 3 7 2 2 6
Misusing shared A 6 1 1 6 2 1 4 3 1 1 2
libraries B 10 0 3 11 1 1 5 6 2 0 10
C 9 0 3 11 3 0 6 6 1 1 3
Unnecessary settings A 6 0 1 6 1 1 1 4 3 1 2
B 9 2 4 8 1 5 5 4 3 1 3
C 9 2 2 10 1 2 2 9 1 1 2

identification of the MS-ATD for the distinct companies, i.e.,
the same MS-ATD has the same color for all the rankings,
facilitating the comparison among them. We focused on the
top-3 debts of the rankings because they were the debts the
companies mainly discussed in our follow-up interviews and
were thus most relevant to the companies.

A. WHICH MS-ATDs DO COMPANIES ENCOUNTER
DURING EARLY MIGRATION TO MICROSERVICES? (RQ1)
Figure 4 shows the percentage of practitioners who voted for
each answer. Table 4 shows a ranking calculated as defined by
Equation 3, ordered from the most found MS-ATD to the less
found MS-ATD. Figure 5 shows the values used to calculate
the rankings and is used to support our discussion.

1) MISUSING SHARED LIBRARIES

“Misusing shared libraries™ is among the most encountered
MS-ATDs for Companies A and B, and fourth for Company
C. This debt has the least uncertainty among the practitioners
(see Figure 4). Only 13% of the participants from Company
A, the company with the fewest participants, answered “Not
sure.”” Among the participants from all three companies,
75-77% answered ‘‘Found.”

A practitioner from Company A said, “We have created a
lot of smaller projects ourselves that we use in our solutions
as packages [as shared libraries] in the monolith.” Another
practitioner complemented with an example to justify why

37430

they use shared libraries: “During the migration, we are
still sharing the database with the monolith. We have some
encrypted data that must be accessed by the same decryption
algorithms available as a library. So, we share the library
among the microservices.” Thus, in this case, the need for
such shared libraries is caused by the dependency on the
monolith.

Company B has internal restrictions on how many times a
service should be called, as explained by one interviewee: “If
you try to run this external validation several times an hour,
suddenly you get a call from those running that service saying
that you cannot do this.”” They work around these issues using
shared libraries instead of relying on external services, which
makes them use more shared libraries and might indicate an
infrastructure that is not yet prepared for distributed systems.

For Company C, the weighted sum of votes for this debt is
similar to that for top-3 debts (see Figure 5c). Figure 4 shows
that as many as 75% of the practitioners encountered it in their
projects. As a financial services company, they have several
legacy systems. These systems potentially share code with
microservices through libraries, increasing the likelihood of
having this debt.

2) UNNECESSARY SETTINGS

“Unnecessary settings” is the only MS-ATD in the top-3 for
all companies. The number of practitioners unsure about the
presence of this debt is relatively small compared with other

VOLUME 10, 2022

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

IEEE Access

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

s I 2 23%

e 36% 8%
44%

25%

56%

56% 11%

28%

25%
21%
22% v

A B C A B A

38%

6% 33%

44% I 50% 25%

Insufficient metadata =~ Microservice coupling ' Inadequate use of APIs

M Found

86%
7%
B c A

Excessive diversity

Not Sure

13% 15%

2% 21% 13% 23% 25%

Misusing shared
libraries

27%
11% o 15%

14%
13%

Unnecessary settings

43%
9
46% 29%

29%

54% [l 67% [l 50% Il 29%

Unplanned data
sharing/sync

Not Found

FIGURE 4. Percentage of practitioners who voted for each answer regarding the debts found on each company. Not all practitioners voted for all

questions for each company.

TABLE 4. Ranking of the most encountered MS-ATDs calculated through Equation 3. Each MS-ATD is associated with the same color to facilitate

identifying it across the rankings from the distinct companies.

Company A Company B

Company C

Misusing shared libraries Unnecessary settings

Microservice coupling

Unplanned data sharing/synchronization

Unnecessary settings Microservice coupling
Inadequate use of APIs
Microservice coupling

Insufficient metadata Insufficient metadata

debts, and 60-86% of the practitioners reported it as found
(see Figure 4). Thus, this debt is relatively common across
companies and easy to recognize.

One interviewee from Company A said, “The situation
regarding configuration settings today is chaotic” while try-
ing to explain that there was no approach to control the
addition of unnecessary settings to the services, and, thus,
the debt was common to be found. Companies B and C
reported that this debt is so common that it must be accepted
when using microservices. One interviewee from Company
B, for example, said, “This is an expected consequence of
having many small services, each with its own settings.”” Only
practitioners from Company A reported that they would like
to mitigate this debt in the future.

3) MICROSERVICE COUPLING

“Microservice coupling” is among the three most encoun-
tered MS-ATDs for Companies B and C. A considerable
number of practitioners are unsure of the existence of this
debt (see Figure 4). Possible reasons are that the practitioners
did not perceive the costs of this debt in the current stage
of their projects, that they did not have a tool to make those
dependencies visible, or that they might not be sure about the
design of their services.

VOLUME 10, 2022

Misusing shared libraries

Unnecessary settings

Inadequate use of APIs

Unplanned data sharing/synchronization Misusing shared libraries

Inadequate use of APIs

Insufficient metadata

Unplanned data sharing/synchronization

Company A explained that the new microservices are one
way to reduce coupling from the previous system. How-
ever, they do not seem concerned with coupling among the
microservices themselves in the current stage because they
are in an early stage of migration, with only a small part of a
monolithic architecture migrated to microservices. Answer-
ing this question requires observing Company A again in the
future to understand the evolution of microservice coupling.

Companies B and C seem to have a higher number of
microservices and teams involved with the services than
Company A. Therefore, it was easier for them to visualize
microservice coupling.

Our impression is that the practitioners only start to think
about microservice coupling at a later stage when more cou-
plings have been created.

4) UNPLANNED DATA SHARING/SYNCHRONIZATION

Microservices recommend decentralized data management;
however, some practitioners do not entirely agree with this
recommendation. When centralizing data management, some
additional services may have to share data with other ser-
vices in a way that was not previously planned. On the
other hand, practitioners might not properly plan the database
synchronization properly when decentralizing data man-

37431

IEEE Access

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

Misusing shared libraries

Unplanned data sharing/sync

Unnecessary settings

Microservice coupling

I
Inadequate use of APls I
I
Insufficient metadata E—————
I

Excessive diversity

o

2 4 6 8 10 12 14

Weighted sum of votes
(a) Company A

Unnecessary settings

Misusing shared libraries

Microservice coupling

Unplanned data sharing/sync

Inadequate use of APIs

Insufficient metadata IEEG——

Excessive diversity

o
~
IS

6 8 10 12 14

Weighted sum of votes
(b) Company B

Microservice coupling

Unnecessary settings

Inadequate use of APIs

Misusing shared libraries

Insufficient metadata

Excessive diversity

Unplanned data sharing/sync |

o

2 4 6 8 10 12 14

Weighted sum of votes

(c) Company C

FIGURE 5. Values for the calculation of the ranking of MS-ATDs found for
each company.

agement. These situations lead to “‘unplanned data shar-
ing/synchronization,” which only appears on the top-3 list for
Company A. This debt represents the difficulties of splitting
a large database that is running for a long time or synchro-
nizing distinct databases. Many practitioners were uncertain
about the existence of this debt (see Figure 4), indicating that
identifying it is more challenging than identifying others.

Several practitioners have stated that they wondered
whether sharing databases across microservices is an incor-
rect decision. One reason for that is the trade-off represented
by this debt: splitting the database increases issues with syn-
chronization among services.

Company A decided to split the database at a later stage
of its migration to microservices. Thus, they deliberately
acquired this debt to accelerate the initial steps of their migra-
tion and plan to repay it later.

For Company B, despite this debt being ranked fourth,
at least 50% of the practitioners reported it and 29% were
unsure (see Figure 4). This debt is almost as important as the
other debts.

It is not clear from our data why this debt is the last on
the list for Company C. It might be that the practitioners
from Company C who participated in our interviews were

37432

primarily involved in well-designed services that had their
own databases and did not have to synchronize with other
services. This can only be confirmed by a more in-depth
study.

5) INADEQUATE USE OF APIs
“Inadequate use of APIs” only appears on the top-3 list for
Company C.

This debt was ranked fourth in Company A, but with as
many as 75% of developers reporting it, it was close to the
top three debts. In Company B, this debt has been reported
less.

Company C could not explain why this debt was among
the most found when asked during the follow-up interviews.
However, we might have identified a disagreement between
technical leaders and other practitioners. The company will
discuss it internally.

6) INSUFFICIENT METADATA

“Insufficient metadata” is the debt with most uncertainty
among all the debts. In practice, many practitioners could not
connect the debt with their examples. It is unclear whether
additional metadata can resolve the current issues. To be
repaid, this debt may require a global overview of the archi-
tecture. However, many practitioners focus on their own ser-
vices, and only a few have such a global overview of the
architecture.

7) EXCESSIVE DIVERSITY

“Excessive diversity”’ is the debt in which the majority of the
participants had a strong opinion about its existence: only 7%
of the participants from Company B reported not being sure
about it, while all the other practitioners answered “found”
or “not found” (see Figure 4). However, in our interviews,
we noticed a lack of consensus on the extent to which this
is a debt. Some practitioners believe that such technology
diversity is acceptable, while others believe it incurs high
costs.

Only 25% of the practitioners from Company A reported
this debt as found. Company A has a well-defined set of tech-
nologies and platforms for the development of its microser-
vices. Moreover, they have only migrated a small part of their
monolith to microservices, and used the same .NET Core
technology stack. Thus, Company A expected to have fewer
complaints about this debt than the other companies.

Company B was satisfied with its current policy on the
diversity of technologies while using microservices. On the
other hand, Company C is divided on their opinions; about
half of the practitioners believe there is a problem with their
policy on diversity, but in spite of that, they did not want to
limit the technologies used by other teams.

Main findings

F1. The use of shared libraries starts at the early migration
stages and is usually related to the convenience of reusing

VOLUME 10, 2022

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

IEEE Access

100%
D e 15% 15% 28
90% 6 6

8%
80% 11% 259 g% .
o 33% 3%

60% 41%
50% 22%

A B C B C A

Insufficient metadata =~ Microservice coupling ' Inadequate use of APIs

M Foreseen

33%
11% 31%
40% (R
6
9
30% 47%
20%
10%
44% [20% I 53% [l 73% [l 75% [77% [l 56% I 54% [85% [38%
0%
A B c A

Excessive diversity

Not Sure

11% 8%
6 = 13% 5%
23% 23% 23% 2 8%

15% 2 o

33% 7%

54% 31%
46% [l 62% [l 56% [l 7% [l 26% [67% [l 55% [79% I 75% [l 57% [l 77%
B c A B c A B c A B c

Unplanned data
sharing/sync

Misusing shared
libraries

Unnecessary settings

Not Foreseen

FIGURE 6. Percentage of practitioners who voted for each answer regarding the debts foreseen on each company. Not all practitioners voted for all

questions for each company.

code from the original architecture. However, companies
may misuse the shared libraries.

F1. Unnecessary settings are common during the early stages
of migration. Some practitioners try to find ways to
mitigate this debt (sooner or later), while others find it
more convenient to maintain the debt and its extra cost.

F2. The costs of microservice coupling are not recognizable
in the initial stages of migration, and the debt is down-
prioritized. Practitioners may not prioritize this debt and
may tend to postpone repayment.

F3. Compared to the other debts, insufficient metadata and
unplanned data sharing/synchronization are the debts in
which more practitioners are unsure about their exis-
tence, which might indicate that identifying these debts
is more challenging than identifying others.

B. WHICH MS-ATDs DO COMPANIES FORESEE IN THE
FUTURE OF THE MIGRATION? (RQ2)

Figure 6 presents the percentage of practitioners who voted
for each answer regarding MS-ATDs foreseen in the next
steps of migration. More practitioners are not sure about
the debts in the future than when compared to the debts in
the present, as detailed in Section IV-A. Such an increase
in the number of “not sure” answers is expected because
practitioners are reasoning about a possible future.

The remainder of this section discusses the most fore-
seen MS-ATDs extracted from the results for each company
according to our data and ranking calculation defined in
Equation 5. The rankings are presented in Table 5, ordered
from the most foreseen to the least foreseen debt. The values
used to calculate the rankings are shown in Figure 7.

1) MICROSERVICE COUPLING

“Microservice coupling” is the top item in the ranking for
Companies A and B, and the fifth debt in the ranking for
Company C. Compared to the currently found MS-ATDs

VOLUME 10, 2022

Microservice coupling

Misusing shared libraries

Unnecessary settings

Unplanned data sharing/sync

Inadequate use of APls G
Insufficient metadata EEE——————— —

Excessive diversity —EE_—_———

0 2 4 6 8 10 12 14

Weighted sum of votes
(a) Company A

Microservice coupling

Misusing shared libraries

Unplanned data sharing/sync

Inadequate use of APIs

Unnecessary settings

Insufficient metadata

Excessive diversity

0 2 4 6 8 10 12 14

Weighted sum of votes

(b) Company B

Misusing shared libraries

Insufficient metadata

Inadequate use of APIs

Unnecessary settings

Microservice coupling

Excessive diversity

Unplanned data sharing/sync

0 2 4 6 8 10 12 14

Weighted sum of votes

(c) Company C

FIGURE 7. Values for the calculation of the ranking of MS-ATDs foreseen
for each company.

in Section IV-A, 75-77% of the practitioners from all three
companies estimate that this debt will increase.

In the follow-up interview with Company A, senior prac-
titioners did not expect such a result because they planned
to reduce microservice coupling in the future. This result

37433

IEEE Access

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

TABLE 5. Ranking of MS-ATDs foreseen in each company calculated through Equation 5. Each MS-ATD is associated with the same color to facilitate

identifying it across the rankings from the distinct companies.

Company A Company B

Microservice coupling Microservice coupling

Misusing shared libraries

Misusing shared libraries

Company C

Misusing shared libraries

Insufficient metadata

Unnecessary settings

Unplanned data sharing/synchronization

Inadequate use of APIs

Insufficient metadata Insufficient metadata

highlights that other participants may not share the same point
of view. Thus, they may internally discuss the reasons for
such concern, as explained by one of the practitioners: ““These
numbers inform us that we have an important job in informing
everyone about what we want to do” .

One practitioner from Company B explained that this is
expected: “We are going to see more on coupling if nothing
is done today to change [the process]” .

For Company C, “Microservice coupling” is among the
less foreseen debts (see Table 4). However, all debts had
substantial votes by practitioners from Company C: 77% of
the practitioners reported this debt as foreseen, and only 8%
were unsure (see Figure 6). However, our ranking provides a
starting point for prioritizing the debts.

2) MISUSING SHARED LIBRARIES

“Misusing shared libraries” is in the top-3 for all companies
in the ranking. We present the reasons for this for each
company below.

One interviewee from Company A said, ‘“We have a lot
of dependencies on other parts of the system. Instead of
implementing something new, we use these dependencies to
focus on the main goal. Most of these dependencies will be
addressed in the end, but you cannot address them all during
the migration process.” Therefore, they will still use libraries
they believe are necessary and will postpone their removal.

Company B reported no plan to reduce the usage of shared
libraries today; they foresee this debt coming again in the
future.

Company C started a discussion on whether the shared
libraries were an issue. One practitioner said, ““We first need
to discuss whether shared libraries are necessarily bad, are
they?” They do not seem to have plans to change how they
use these libraries. Thus, they might prevent the costs of
misusing shared libraries by closely following library usage.
Our discussion on this topic may have increased practitioners’
awareness of the debt.

3) UNNECESSARY SETTINGS
“Unnecessary settings” is in the top-3 for Company A only.

37434

Unplanned data sharing/synchronization

Inadequate use of APIs

Unnecessary settings

Inadequate use of APIs

Unnecessary settings

Microservice coupling

Unplanned data sharing/synchronization

Company A visualizes the need to reduce unnecessary
settings in the future but believes that the problem will first
increase before they have a better approach to handle it.
They wanted a solution to the problem, but that was not a
priority.

Companies B and C expect this debt, but they accept it and
do not have plans to mitigate it. They are not concerned with
the costs of this debt. It is possible that it is better to pay
interest in this type of debt than to repay it.

4) UNPLANNED DATA SHARING/SYNCHRONIZATION
“Unplanned data sharing/synchronization” is in the top-3 for
Company B only. This debt is still among those with more
participants who are unsure about the debt. The reasons may
be the same as those explained in Section IV-A: practitioners
are still questioning whether sharing databases is always a
bad practice because they foresee cases in which this seems
to be a good solution for the problem.

Company A decided to postpone the migration of the
database to the microservices. Thus, they currently have the
costs of using a centralized database and do not foresee
the complete migration of the database. However, Figure 7a
shows that there is no difference in the value used to calculate
the rankings between this debt and the “Unnecessary set-
tings,” one of the top-3 debts in the ranking for Company A.

Company B saw this debt as a challenge that will increase
if nothing else is done to reduce it. Thus, some practitioners
have already observed that the company needs to work on a
solution for the debt.

It is unclear from our data why this debt goes to the bottom
of the list for Company C, a result similar to that described in
Section IV-A.

5) INADEQUATE USE OF APIs
“Inadequate use of APIs” is in the top-3 for Company C only.
Company C explained the same as reported in
Section IV-A: they could not explain why this debt was
among the most found when asked during the follow-up
interviews, so they went back to investigate this further with
developers. Companies A and B did not provide any further
comments.

VOLUME 10, 2022

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

IEEE Access

100%
90%
80%

11% % 1% 8% 13y

11% 14% 21%
J0% 33% 33% Zfi;/“ 22%
60% — 11%

13%

s0% |11% se% 29% [33% 36%

40% 29% 43% 38%
30% 44%
20% 31%
10% 40%
44% o hed ESd ESQ B 3% 92% B
b

0%
A B C A B C A B C A

Insufficient metadata =~ Microservice coupling Inadequate use of APIs

mNo

Excessive diversity

7% 79 o 9
- 6 11% 150 14% 11% s W/: 11% 8% Z;
8% 11%
7% 21% 14% 23%
33%
33% 43%
46% 31%
23% 46%

50%
69%

78% 44%
7% 4 BtA Et3 Bt3 3 B4 EEA 38%

B C A B C A B C A B C

Unplanned data
sharing/sync

Misusing shared
libraries

Unnecessary settings

Partially ~ Yes = N/A

FIGURE 8. Percentage of practitioners who voted for each answer regarding the debts practitioners know how to avoid on each company. Not all

practitioners voted for all questions for each company.

6) EXCESSIVE DIVERSITY

“Excessive diversity” is the debt in which the majority of
the participants had a strong opinion about its existence:
only 15% of the participants from Company C reported not
being sure about it, while all the other practitioners answered
“found” or “not found™ (see Figure 6). Compared with the
described in Section IV-A, the participants from all compa-
nies believe that this debt will increase in the future.

Company A has the fewest participants among the com-
panies in this study. Such a result is expected because they
seem to have reasonable control of technology diversity in
their current stage of development.

Company B reported that they do not have proper control
of such diversity, which might lead to an increase in this debt
in the future, indicating that they should be aware of the issue
and control it in advance.

Company C already saw the costs of this debt, and they
believed that the problem would increase because there was
no plan to limit such diversity.

7) INSUFFICIENT METADATA

“Insufficient metadata’ keeps being the debt with the higher
number of practitioners not sure about it. The possible reasons
are explained in Section I'V-A: practitioners have difficulties
seeing this debt in their contexts and are not sure whether
additional metadata is the right solution for the cases they
observed. The number of practitioners who answered ‘‘not
sure’ increased more than for other debts. Again, this debt
seems difficult to identify and estimate in the future and
might concern architects more than developers, who are only
involved with the development of microservices.

Companies A and C foresee cases in which they need addi-
tional metadata and consequently increase the probability of
having this debt. On the other hand, Company B is mostly
uncertain about this debt.

Main findings
F1. The practitioners seem to foresee an increase in
microservice coupling. Microservice coupling might

VOLUME 10, 2022

increase unnoticed in the early stages of migration, and
suddenly become visible with many microservices.

F1. The practitioners foresee the use of shared libraries
because they plan to use libraries to accelerate migration.
Therefore, they may have to deal with the misuse of such
libraries later.

F2. The practitioners accepted the extra costs of “Unneces-
sary settings.” Therefore, they foresee the presence of
such debt.

F3. The practitioners are most uncertain about to what extent
“unplanned data sharing/synchronization” is a debt.
They foresee the debt because they are unsure how to
repay it.

C. WHICH MS-ATDs DO THE PRACTITIONERS FIND
DIFFICULT TO SOLVE? (RQ3)

Figure 8 presents the percentage of practitioners who voted
for each answer regarding MS-ATDs they did not know how
to avoid. Most practitioners are not confident about solving
the problem, which means that they do not know whether
what they are using is a solution to prevent such debts in most
cases.

The remainder of this section discusses the top-3 most
found MS-ATDs extracted from the results for each company,
according to our data and ranking calculation defined in
Equation 7. The rankings are listed in Table 6. The MS-ATD
on the top of the list is the debt that most practitioners do
not know how to prevent. The values used to calculate the
rankings are shown in Figure 9.

1) MISUSING SHARED LIBRARIES
“Misusing shared libraries™ is in the top-3 for all companies
in the ranking. None of the companies seemed to have consid-
ered good alternatives for shared libraries in the early stages
of migration.

Company A reported that it is difficult to avoid these
libraries because of the dependencies they have on the orig-
inal architecture. These libraries ensure that all services

37435

IEEE Access

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

TABLE 6. Ranking of MS-ATDs that companies do not know how to avoid calculated through Equation 7. Each MS-ATD is associated with the same color

to facilitate identifying it across the rankings from the distinct companies.

Company A Company B

Misusing shared libraries

Microservice coupling

ervice coupling

Misusing shared libraries

Company C

Misusing shared libraries

Microservice coupling

Unplanned data sharing/synchronization

Unnecessary settings

Insufficient metadata

Inadequate use of APIs

Unnecessary settings

Misusing shared libraries IEEEEEG—
Microservice coupling
Unplanned data sharing/sync
Excessive diversity
Insufficient metadata

Inadequate use of APIs

Unnecessary settings

o
~
IS

6 8 10 12 14
Weighted sum of votes

(a) Company A

Microservice coupling

Misusing shared libraries

Unnecessary settings

Unplanned data sharing/sync

1
Insufficient metadata IEEG—_—IS—
Excessive diversity I
I

Inadequate use of APIs

0 2 4 6 8 10 12 14
Weighted sum of votes

(b) Company B

Misusing shared libraries

Microservice coupling

Excessive diversity

Unnecessary settings

Unplanned data sharing/sync

Inadequate use of APIs

Insufficient metadata

=)
~
IS

6 8 10 12 14

Weighted sum of votes

(c) Company C

FIGURE 9. Values for the calculation of the ranking of MS-ATDs the
practitioners know how to avoid for each company.

behave in the same way when dealing with a centralized
database and old pieces of software. Thus, they believe that
this is difficult to deal with now, and their removal will be
postponed.

Company B reported that the debt would increase because
there is no plan to reduce the usage of shared libraries today.
One participant from this company said, “There is really no
gold solution; everything is a trade-off.” It is difficult for
them to avoid using shared libraries.

37436

Unplanned data sharing/synchronization

Insufficient metadata

Inadequate use of APIs

Unnecessary settings

Unplanned data sharing/synchronization
Inadequate use of APIs

Insufficient metadata

Company C was not convinced about reducing the usage
of shared libraries. When discussing the implementation of
functionality as a service, one practitioner said, “This will
add latency everywhere.” For him, this is unacceptable, and a
shared library solves the problem without additional latency.
However, companies with more mature microservice archi-
tectures have reported increased maintenance costs owing
to the growing use of shared libraries [2]. Company C may
have a different context from the companies studied by de
Toledo et al. [2], and how they use shared libraries does not
lead to problems. However, it is also possible that they are
just down-prioritizing the debt, and they might incur high
costs later. A more in-depth study would be useful to help
companies such as Company C achieve a good trade-off
between performance and maintainability while using shared
libraries.

2) MICROSERVICE COUPLING

“Microservice coupling” is in the top-3 for all companies
in the ranking. This result highlights that practitioners do
not know how to properly prevent this debt from occurring.
Thus, it is important to invest in training and techniques to
prevent or reduce coupling in the early stages and, therefore,
to reduce the growth of the debt interest.

Company A reported that coupling is difficult for practi-
tioners to solve, and that more code reviews should help to
reduce it.

Companies B and C reported that they did not have a good
approach to solving this debt.

3) UNPLANNED DATA SHARING/SYNCHRONIZATION
“Unplanned data sharing/synchronization” is among the
top-3 for Company A only.

Company A had a complex database that was difficult to
split. Practitioners postponed splitting the database because
it is challenging and costly to do so immediately.

Company B has this debt as fourth in its ranking. However,
as shown in Figure 9b, there is no difference in its value
with the third element in the ranking despite more votes for
partial solutions (see Figure 8). Nevertheless, the differences
are minimal (a small difference in uncertainty compared to

VOLUME 10, 2022

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

IEEE Access

the third debt in the list), and this debt is almost as important
as the third one in the list for Company B.

Several practitioners from Company C also voted for this
debt as difficult to solve despite the existence of other debts
with more votes (see Figure 8).

4) UNNECESSARY SETTINGS
“Unnecessary settings” is in the top-3 for Company B only.

Company A did not discuss how it planned to reduce
unnecessary settings in their services.

Company B had difficulties finding solutions for the
increasing number of unnecessary settings, and considered
the debt difficult to handle. One of the practitioners said,
“Approaches to control the growth of these settings, such
as peer review, might introduce time-demanding formal pro-
cedures, such as waiting for external teams’ reviews and
additional coordination.” Thus, Company B does not see
good approaches to dealing with this issue, placing this debt
as one of the top-3 in the list.

Company C has this debt as the fourth in the ranking, but
it is as difficult as the third in the ranking (see Figure 9c).

5) EXCESSIVE DIVERSITY
“Excessive diversity” is in the top-3 for Company C only.

For Company A, this debt is fourth in the ranking, but it is
as difficult as the third in the same ranking (see Figure 9a).
They only migrated a small part of the monolithic architecture
to microservices and used the same .NET Core technology
stack, reducing the diversity of technologies. However, they
also reported having outsourced teams, and the new microser-
vice architecture would allow other teams to use other tech-
nology stacks. The debt may worsen in the future.

Company B seems to have this diversity controlled, but it
is not clear how they performed this control. The diversity of
technology stacks for Company B stems from their various
projects for different customers, but not from the same project
with diverse microservices using different stacks.

Company C, on the other hand, reported that it is difficult to
limit the technologies and languages without receiving com-
plaints from teams already using a distinct set of technologies
throughout the company. They accepted the debt now, but
might need to develop company-level guidelines to keep it
under control in the future. This seems to be a social rather
than technical problem that is difficult to solve.

6) INSUFFICIENT METADATA

Answers for “insufficient metadata” carries a lot of uncer-
tainty. Since practitioners have difficulties visualizing the
solution in practice, they are not sure whether solving it is
difficult.

Company A was the company in which most practitioners
who voted for the debt were sure about it being difficult to
solve (see Figure 8). Since Company A is also the company
with the fewest microservices in the migration, it has had a
hard time seeing cases where this debt applies.

VOLUME 10, 2022

Companies B and C seem to have more microservices
that use messages in which the debt could apply. Thus, they
seem to have a better overview of how the metadata could be
implemented in their cases than Company A. However, they
were uncertain about whether what they thought as a solution
would help them solve the problem. Therefore, there is a large
amount of uncertainty.

7) INADEQUATE USE OF APIs

The “inadequate use of APIs” is a debt with a high degree
of uncertainty, but it is also one of the debts with more
participants answering they know how to solve. Practition-
ers from all companies reported that this was a matter
of education and training for creating good APIs. During
our follow-up interviews, senior practitioners and architects
reported knowing the good practices for developing APIs.
They informed us that they were already investing in spread-
ing knowledge on the subject throughout the companies. One
possible interpretation of these results is that the companies
still have practitioners learning about topics such as how to
control API versioning and deprecation. Such cases generated
some uncertainty in the teams, but they knew how to repay
the debt.

Main findings

F1. Practitioners consider “microservice coupling’ difficult
to solve. Therefore, it is important to invest in training
and techniques to prevent or reduce this debt early on in
a project.

F2. Companies share libraries to reuse code from the original
architecture. However, they do not consider the costs of
misusing them in the early stages of migration, which
might incur high costs later.

F3. “Excessive diversity’ is a debt that is difficult to mitigate
after practitioners start using distinct technologies. Hav-
ing some agreement regarding the technologies to use
in the early stages of migration would facilitate dealing
with this debt later.

D. HOW IMPORTANT DO PRACTITIONERS PERCEIVE
MS-ATDs? (RQ4)
Figure 10 and Table 7 show the importance of the MS-ATDs
as perceived by the practitioners and calculated using Equa-
tion 8 for each company. Figure 10 groups the answers by
MS-ATD and shows the percentage of votes per company.
Table 7 presents the MS-ATDs ordered by the company.
There are clear differences among the companies, indicat-
ing that the importance of MS-ATDs is context dependent.
For example, “‘excessive diversity,” the last in the rankings
for Companies A and B, is in the top-3 for Company C.
Two debts are consistently among the most important for all
three companies: “‘microservice coupling” and ‘““‘unplanned
data sharing/synchronization.” The remainder of this section
discusses each MS-ATD and possible reasons for these
results.

37437

IEEE Access

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

35%

30%

25%

20%

15%

10%

5%

33% 21% 33% 26% 18% 15% 22% 15% 10% 7%

0%

A B C A B C A B C A

Microservice coupling Unplanned data

sharing/sync

Inadequate use of APIs

26%

B

Misusing shared

8% 4% 10% 13% 7% 8% 5% 0% 3% 15%

C A B C A B C A B C

Insufficient metadata =~ Unnecessary settings Excessive diversity

libraries

FIGURE 10. Importance of the MS-ATDs as perceived by the practitioners calculated by the Equation 8.

TABLE 7. Ranking of the most important MS-ATDs according to the practitioners calculated through Equation 8. Each MS-ATD is associated with the same
color to facilitate identifying it across the rankings from the distinct companies.

Company A Company B

Company C

1 o

Unplanned data sharing/synchronization 0

AP

Unnecessary settings q 0

Misusing shared libraries

1) THE DEBTS THAT WERE IMPORTANT FOR ALL THREE
COMPANIES

All three companies highly reported two MS-ATDs:
“microservice coupling” and ‘‘unplanned data shar-
ing/synchronization” (see Table 7). These debts are explicitly
mentioned in the definition of microservices: low-coupled
services with their own databases. One possible interpretation
of these results is that practitioners may clearly identify debts
against the definition of microservices.

As reported in Section IV-A, Company A reported that
“microservice coupling” does not exist at present, and they
do not see its costs. However, with the increasing complexity
of the software, they foresee it coming (see Section IV-B) and
recognize it as difficult to solve (see Section IV-C). On the
other hand, Companies B and C have reported “microservice
coupling” as found in the present, expected in the future,
and difficult to solve. Therefore, this debt was expected to
be considered important by practitioners.

Regarding “‘unplanned data sharing/synchronization,” we
found that all three companies reported it as important, but
they have very distinct answers to the previous RQs. Com-
pany A postponed working on the database; thus, it is impor-
tant to address this issue soon. Company B reported this debt
for all previous rankings, but they considered other debts
more important than this one. One possible interpretation of

37438

A

Unnecessary settings

Unplanned data sharing/synchronization

Misusing shared libraries g

Unplanned data sharing/synchronization
d

AP

Misusing shared libraries

Unnecessary settings

this result is that some of the practitioners in Company B
believe that database sharing or synchronization approaches
are adequate for their needs. In contrast, others are more
skeptical of those approaches: they seem to discuss data shar-
ing/synchronization approaches, but not all agree on doing so.
Our method identified a disagreement among practitioners
from the company. With this information, they could now
discuss it internally. Company C, on the other hand, has this
debt as the last for the first two rankings (found and foreseen)
and as one of the last debts in the ranking of difficulty to
solve. However, they consider this debt one of the three
most important for them. One possible interpretation of the
results from Company C is that they believe that this debt
is important, but they have it under control. They shared
databases and performed synchronizations among different
services, but deliberately did so in situations they presumed
they were right. Thus, they seemed to have planned these
cases carefully.

2) THE DEBTS THE PRACTITIONERS MOSTLY DISAGREE

There are three debts for which the companies have distinct
points of view: “misusing shared libraries,” ‘“‘inadequate use
of APIs,” and “excessive diversity.”” The causes of these dif-
ferences may be the context of the projects or other unknown

factors.

VOLUME 10, 2022

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

IEEE Access

Company A has already reported the use of shared libraries
to accelerate the development process (see Section IV-B).
Company C reported that it was common to use such libraries.
Companies A and C reported that it was challenging to
remove misused shared libraries later. However, they do not
consider this debt very important because they believe most
of the shared libraries’ use was correct. If this is the case,
an in-depth study would help identify good practices while
using shared libraries in microservices. If this is not the case,
they may suffer from the costs of this debt in the future,
as reported by companies with more mature microservice
architectures [2]. On the other hand, Company B identifies
“misusing shared libraries” as one of the most important
debts to be mitigated.

“Inadequate use of APIs” varies among companies. For
Company A, this is one of the three most important debts; for
Company B, it has medium importance; and for Company C,
this debt is one of the three less important debts. In general,
practitioners reported that it is important to have good APIs,
but they did not make further comments regarding that spe-
cific debt, even though we asked.

Regarding the “Excessive diversity,” there are consid-
erable differences among companies. No practitioner from
Company A voted for this debt. Company A seems to have
good control of diversity, which might explain the number of
votes for that debt (see Figure 10). Company B reported that
they have some diversity but that it is not important. They
did not have any costly issues related to this debt. Finally,
Company C reported a very distinct result compared to the
other companies: this debt was one of the most important to
them. Company C appear to be the company with the most
diverse set of technologies. Some practitioners have reported
concerns regarding their current policy of not limiting the
technologies used by their microservices.

3) THE LESS IMPORTANT DEBTS

Other two debts were considered less important by practi-
tioners: “‘unnecessary settings’ and “insufficient metadata.”
However, there are some differences among the companies.
We discuss these differences below.

None of the three companies is concerned with the ‘““‘unnec-
essary settings” because they report it as a problem that
cannot be avoided in microservices. Company A was the only
company to comment that might try to mitigate it in the future,
without explaining how, since it is a future concern.

“Insufficient metadata,” on the other hand, seems to
be more context-dependent and had distinct votes from
the different companies. The low number of votes might
be related to the uncertainty in the previous responses
(see Sections I'V-A and IV-B).

E. HOW CAN COMPANIES PRIORITIZE WHICH MS-ATDs
TO AVOID OR REPAY? (RQ5)

As mentioned in Equation 1, the risk of an MS-ATD is
the probability of its occurrence multiplied by its negative
impact. The more people foresee the debt, the more likely it is

VOLUME 10, 2022

to happen, and the fewer people know how to solve the debt,
the more likely it is to persist for a longer time. Therefore,
we combine (multiply) the weighted sum of votes for the
foreseen debts (defined in Equation 4) and the weighted sum
of votes for the debts practitioners do not know how to solve
(defined in Equation 6) as the probability of an MS-ATD
to occur. Additionally, we used the importance given by the
practitioners as the impact of the debt because it is more likely
that practitioners consider important debts that have a more
significant impact on their contexts. This interpretation is the
basis for the calculation of Equation 5.

Figure 11 presents both the ranking calculated from Equa-
tion 10 and the normalized priority scores for each company
and debt defined at Equation 11. Additionally, Figure 11
shows colors for the debts with high, medium, and low pri-
orities. Table 8 presents another visualization of the ranking
calculated from Equation 10 for each company.

Companies can use our ranking to prioritize their debts
in their own contexts. Below, we present four examples to
explain how our prioritization ranking can be helpful.

Based on the information presented by practitioners, our
method found that microservice coupling is a major con-
cern for all three companies. This debt received many
votes from all companies as foreseen, difficult to solve, and
important to avoid. Combining these votes into our ranking
makes this debt stand out with the higher priority score
among all the studied MS-ATDs. Other companies with
mature microservice architectures have also reported this
MS-ATD to be important [2]. Thus, the results of this study
underscore that microservice coupling arises very early and
should be addressed as soon as possible to prevent the debt
from increasing. As the number of microservices increases,
it becomes increasingly difficult to remove the coupling in
microservices.

The next example shows how our method can capture con-
textual information regarding MS-ATDs. “Excessive diver-
sity” is the last MS-ATD recommended for Companies A
and B, but it is one of the three first debts recommended to
be prioritized for Company C. Our qualitative data revealed
that Company C had internal concerns regarding diversity,
but the leaders did not want to enforce any limitations on the
teams. The same concerns did not exist for Companies A and
B. On the other hand, for Company C, our method captured
internal concerns, allowing them to discuss how to address
the issue internally.

In the next example, “Insufficient metadata” was identi-
fied as having a low priority. Practitioners were not convinced
that this debt could be a problem in their projects. This debt
involves understanding the big picture of the microservices,
including their communication and the impact of the costs
across many microservices and teams. Practitioners in the
early stages of migration to microservices may not have
enough information to be certain about this debt. They might
not have a good overview of the architecture because they are
focused on their own services, or they might not have enough
microservices for this debt to be visible. Whatever the case,

37439

IEEE Access

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

=)

o

o

10,0
8,0
6,
4,
2,

10,0 il 10,0 il 10,0 =17/ 47 WA 39 60
0,0

A B C A B C A B c A

Microservice coupling Misusing shared libraries Unplanned data

sharing/sync

Inadequate use of APIs

2,3 87 2,9 2,9 2,3 2,0 18 33 0,8 0,6 4,6

B C A B C A B C A B C

Unnecessary settings Insufficient metadata Excessive diversity

FIGURE 11. Priority ranking calculated through Equations 9 and 10, normalized between 1 and 10. Red bars indicate debts with high priority. Orange bars
indicate debts with medium priority. Green bars indicate debts with low priority.

TABLE 8. Priority rankings of the proposed MS-ATDs calculated through Equation 10.

Company A Company B

Microservice coupling

Inadequate use of APIs

Misusing shared libraries

Unnecessary settings

Insufficient metadata

there is much uncertainty, and this debt does not seem to be
sufficiently significant at the current stage of development.

Finally, as the last example, ‘“Misusing shared libraries™
was recommended with high priority to Company C, despite
only a small percentage of practitioners having voted for it as
important 10. This is an interesting result because our method
found reasons to believe this debt could be a problem and
properly warned practitioners of such concerns. This debt is
the most foreseen (see Table 5) and difficult to solve (see
Table 6) for Company C. There is a high probability that
this debt will arise and have high costs if not properly miti-
gated. The costs reported by mature companies regarding this
debt are considerable [2], and the practitioners were properly
warned and may discuss it internally.

F. OVERALL REMARKS

Practitioners tend to ignore ‘‘unnecessary settings.” They
believe that this debt cannot be removed while using
microservices and they just accept it. A similar circumstance
happens with the “‘excessive diversity,” another debt practi-
tioners do not give much importance. When the debt arrives,
it is difficult to repay because practitioners might resist not
using the technologies they have adopted until the present
date.

37440

Microservice coupling

Misusing shared libraries Misusing shared libraries

Insufficient metadata

Company C

Microservice coupling

Unnecessary settings

Inadequate use of APIs

Inadequate use of APIs
Insufficient metadata

Unnecessary settings

Other debts are deliberately taken during the migration
to microservices: ‘“‘unplanned data sharing/synchronization”
and “misusing shared libraries.”” Several practitioners have
reported that using existing databases instead of creating new
ones for the microservices may accelerate the migration pro-
cess. Therefore, they neither plan to have separate databases
nor plan the data sharing adequately. There has been less dis-
cussion regarding the synchronization of separated databases
because they mostly share it to avoid synchronization issues.
Regarding the debt ‘“misusing shared libraries,” practition-
ers hardly believe that the libraries they use are misused.
Still, they use them to accelerate the development process
and avoid dealing with latency across services. Practitioners
rarely think about the number of libraries being used, nor
track down the libraries that have constant updates and might
block several teams on the project. Practitioners should con-
sider alternatives and use shared libraries when none of the
other options is feasible.

Debts such as “insufficient metadata’ are difficult to iden-
tify. A possible reason is that this is a context-dependent issue
or that a broader view of the project is required, usually shared
by its architects, and frequently overlooked by microservice
developers, who are more concerned with the single services
they are developing. Such a situation is both an advantage and

VOLUME 10, 2022

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

IEEE Access

a disadvantage of the microservice architecture: practitioners
may focus on developing their own microservices without
worrying about the work of other teams; however, they lose
the overview of the big picture of the project.

“Inadequate use of APIs” is a debt easy to remove and
that is always in the middle of our rankings: it is never
the most found or foreseen debt, but it is also never in the
bottom of the rankings. Therefore, it is a common debt of
medium importance. This debt can be mitigated through good
practices in developing APIs.

Finally, “microservice coupling™ is one of the most impor-
tant issues that need to be avoided by teams. Our previous
study [2] also encountered the problem of coupling in more
mature microservice projects than those studied here. One
possible cause of coupling might be insufficient experience
by teams on how to delimit microservice boundaries, but
other causes may also be worth investigating.

The companies found our results useful in helping them
address MS-ATDs in their contexts. As future work, it would
be interesting to draw a threshold in our priority ranking
above which the debts should be fixed and below which it
is safe to postpone debt repayment.

G. MODELING UNCERTAINTY

As presented in Table 3, some practitioners answered ‘“‘not
sure” for the MS-ATDs found (RQ1) and foreseen (RQ2).
In our analysis (Section III-D), we considered those answers
to have a 50% probability of the MS-ATD occurrence. Such
a decision entails that two “not sure” count as one ‘‘yes.”
However, practitioners may have meant more or less than
50%. Although we do not have more information to model
this uncertainty, we could have chosen other more or less
conservative weights. Here, we discuss the changes in our
prioritization when “‘not sure” is assigned such other weights.

Other areas of research, such as health research (see, for
example, the results for the Behavioral Risk Factor Surveil-
lance System, BRFSS, a health-related survey from U.S.
residents [28]), completely ignore the uncertainty in their
analysis. On the other hand, in our case, the practitioners
wanted to express a chance of the debt to happen, although
they were not entirely sure. In other words, they expressed
a chance, a probability that leads us to the next subject to
discuss: the value of the probability. Nevertheless, we want
to see what would change if we use this approach in our
prioritization. Therefore, we compile the results where “not
sure” is given a value of 0.

In addition to the previous consideration, we want to
see what would change if we consider that the participants
are almost sure about the existence of the debt. Therefore,
we used a probability of 0.8. Similarly, we want to see the
changes if we consider that participants are skeptical about
the existence of the debt. For the last case, we used a proba-
bility of 0.2. Table 9 shows the changes in all our rankings,
including the final prioritization proposal, for all these values
compared to the value of 0.5, which we used in our previous
analysis. The numbers indicate the changes in the positions in

VOLUME 10, 2022

the ranking. The arrows indicate the direction of the change,
up or down, in the ranking.

As shown in Table 9, most of the changes are plus or
minus 1, and there are even fewer changes in the final pri-
oritization rankings. Therefore, our approach is not highly
affected by changes in the uncertainty probabilities. Since we
only collected which participants were unsure, we believe that
0.5 would give us a better chance to balance out skeptical and
pessimistic opinions from all possible values. The construc-
tion of the final prioritization ranking required us to select one
of these values. Otherwise, showing different rankings with
different probabilities would confuse participants.

As a future improvement, we suggest using a Likert scale
to gather more precise data on practitioners’ uncertainty. One
could model values or categories from “very improbable”
to “very probable.” Additionally, a “do not know” option
would help to exclude invalid answers to RQ1 and RQ2,
if any. However, these additions require caution because
they demand more attention and time from practitioners on
each debt. Therefore, they might increase the participants’
response times and affect their participation ratings in the
questionnaire.

H. IMPLICATIONS FOR RESEARCH AND PRACTICE

We received positive feedback from practitioners, indicating
that our approach is helpful in decision-making regarding the
prioritization of MS-ATDs. A few examples: “We would like
to try it again with a more mature project.” (Company A);
“We are of course interested in going deep. (...) [We need] a
serious internal discussion among the developers, architects,
and management.” (Company B). Company C is going to
adjust its priorities based on the MS-ATDs we discussed and
asked for additional information on the debts.

Our prioritization method is lightweight and can be applied
periodically by companies to manage the risk of ATD dur-
ing the development process, for example, within an agile
architecture framework such as CAFFEA [29]. The risk of
a debt changes according to project needs and should be re-
evaluated. The requirements for this method are to have a list
of MS-ATDs that can be discussed (for example, as in this
study, one can use an existing catalog [2]) and one facilitator
(researcher or practitioner) who is familiar with the debts and
can present them to the remaining participants, collect the
answers, and compute the rankings.

Researchers may apply the prioritization method in this
study to investigate ATDs from other studies. We envision
that the technique can be applied not only for MS-ATDs,
but also for any ATD within an organization. However,
more research is needed. Researchers also have the raw data
available to facilitate comparisons with their own findings.
Additionally, there are several suggestions for future and
in-depth work that might be useful for research purposes,
such as supporting the early identification of microservice
coupling, shared libraries, and database sharing and synchro-
nization, which are some of the most costly debts in our

37441

IEEE Access

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

TABLE 9. The changes in the rankings when using different probabilities (0, 0.2, and 0.8) for the uncertainty (“not sure”) answers, in comparison with the

results with probability 0.5, for each MS-ATD.

Final
Debt Company MS-ATDs encountered MS-ATDs foreseen
prioritization
(see Table 4) (see Table 5)
ranking (see Table 8)
0 0.2 0.8 0 0.2 0.8 0 0.2 0.8
A
B 1 1
Insufficient metadata v -
c I
A
. . . B 21 14 14
Microservice coupling L R
C 21 21 11 11
A 11 11 11
Inadequate use of APIs B 1] 1)
C 11 11 11 11
A
Excessive diversity B 11 11
C
A 17 11 1t 11
Unplanned data sharing/synchronization | B 1t 11
C 11 14 14
A 14 14 14
Misusing shared libraries B 11 11 21 14 11 11
C 21 1]
A 14 14 14 14
Unnecessary settings B 14 1] 1] 11 11
C 14 14 14

list, or investigating the benefits of using our prioritization
approach continuously in agile development processes.

V. LIMITATIONS

Given the availability constraints of companies and practi-
tioners, we used a subset of MS-ATDs identified in a previ-
ous study. Therefore, the final prioritization results may be
partial. Still, we selected the most common MS-ATDs found
in seven companies experienced with microservices from de
Toledo et al. [2]: we considered them also to be the most
likely to be relevant to the companies participating in this
new study. In addition, the practitioners in this study acknowl-
edged the importance of the selected MS-ATDs during the
interviews. The companies involved can also follow a similar
procedure to prioritize additional debts and enrich the existing
prioritization list. In this case, there is no need to collect the
answers for RQ1 again, RQ2, and RQ3 for the MS-ATDs
investigated previously.

The prioritization procedure presented here is based on our
interpretation of the research context. The value 0.5, used for
the answers “not sure” and “partially’” impacts our results,
especially for responses that are mainly composed of those
options. Our interpretation of this result is that, since it is not

37442

possible to obtain a better approximation of the uncertainty
or the partiality of a solution, the probability of the value
being close to 0.5 is high because some practitioners might
be very uncertain. By contrast, others might be very sure of
their answers. Therefore, on average, the values tend to be
0.5. Further studies could attempt to obtain a more precise
estimation of this probability.

The practitioners might not know the debts or might have
a different understanding of a specific debt (e.g., shared
databases might be understood as coupling by some practi-
tioners and as a very distinct debt by others), which might
affect their answers regarding the existence of the debt,
or whether they know how to solve it. To reduce this
threat, we presented and described each MS-ATD before
asking questions. The practitioners were asked to provide
their answers immediately after the explanation. We also
collected information on practitioners’ satisfaction with our
descriptions and interpretations. Only three interviewees
reported difficulties in understanding our explanations for
one question each.

It was also challenging to interpret the situations in which
the participants answered: “not sure” or ‘“‘partially.” We
considered those as a 50% probability of the answer being

VOLUME 10, 2022

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

IEEE Access

113

yes.” However, this interpretation may not be accurate.
Practitioners and researchers should interpret these rankings
cautiously. For example, the second element in the priority
ranking might be the best to start with for a specific company.
However, such an interpretation is a reasonable approxima-
tion of all the answers because some practitioners have more
knowledge than others and some solutions are less partial
than others. Therefore, we considered that, on average, the
answers converged to 50%. Our rankings are suggestions for
discussion by practitioners and researchers. The raw data are
provided in Table 3 for further interpretation.

Finally, it is possible that other companies not included
in our study have successfully implemented a different pri-
oritization or refactoring strategy and applied it to different
MS-ATDs than those discussed in this work. However, none
of the companies in this or previous studies reported a similar
prioritization approach. We performed a lightweight litera-
ture review at the beginning of this study, but we did not find
any other strategies for prioritizing MS-ATDs. Our work is
exploratory and can be considered a starting point for future
research. More studies are necessary to investigate additional
MS-ATDs and to further validate and potentially improve our
approach.

VI. RELATED WORK

Lenarduzzi et al. [8] monitored the evolution of code TD in a
small to medium-sized company that migrated a monolithic
system to microservices. They concluded that the migration
reduced the overall code TD. The authors did not study
architectural TD, which was the focus of this study.

Taibi et al. [7] defined a taxonomy of 20 microservice anti-
patterns, based on 27 interviews with experienced practition-
ers. Several of these anti-patterns are related to migration:
“no DevOps tools,” ““too many technologies’ (the same as
excessive diversity in our paper), “I was taught to share”
(which we defined as misusing shared libraries), “‘static con-
tract pitfall” (i.e., APIs that are not properly versioned),
“mega-service,” ““shared persistence’ (part of our unplanned
data sharing or synchronization), ‘“‘sloth” (too many cou-
pling among the microservices, resulting in a distributed
monolith), and “trying to fly before you can walk” (i.e.,
migrating to microservices while the practitioners lack the
necessary skills). In our study, we considered the overlapping
anti-patterns to be MS-ATDs. (For discussing the relation-
ship between architectural anti-patterns and ATDs, see de
Toledo et al. [2]). Additionally, we created rankings for the
identified MS-ATDs and investigated how to prioritize them.

Martini et al. [30] identified and prioritized ATDs through
architectural smells in a multiple case study. They analyzed
four software projects in the same company. Their approach
consisted of using a tool called Arcan [31] to identify archi-
tectural smells leading to ATD and then asking the prac-
titioners to prioritize the debts found. Their approach was
limited to ATDs that can be identified through architectural
smells. On the other hand, our approach was tested with
microservice-specific ATDs and used a risk-based approach

VOLUME 10, 2022

for prioritization, combining information from the present,
the foreseen future, and the importance given by practitioners.

Pigazzini et al. [32] presented an approach also supported
by Arcan [31] to identify candidate microservices in mono-
lithic Java projects. The approach begins with the identi-
fication of architectural smells that can hinder migration.
Despite their relation to migration, the identified anti-patterns
were detected in the monolithic architecture before migration.
By contrast, we only considered ATDs in microservices dur-
ing and after migration.

Panichella et al. [33] proposed metrics to compute and
visualize the coupling between microservices, which may
help evaluate the cost of coupling in a given context. Their
approach can help practitioners find and measure microser-
vice coupling, but it is focused on a single MS-ATD and
does not propose ways to prioritize debts. Our case study
highlights situations in which practitioners might not have
promising approaches for measuring microservice coupling.
The method proposed by Panichella et al. [33] may be useful
in such cases.

VIi. CONCLUSION

This paper presents our investigation of how ATD issues
specific to microservices, MS-ATDs, accumulate in three
companies that are migrating to such an architectural style.
We carefully conducted our study with the practitioners by
giving them presentations on the MS-ATDs and double-
checking that they were on the same page with the expla-
nation of the MS-ATDs. We then asked practitioners which
MS-ATDs they considered difficult to remove (tackle) and
which ones were the riskiest in the present and future of their
projects. We discussed the answers given by the practitioners
considering their contexts and created rankings for the most
found, foreseen, difficult to solve, and important MS-ATDs
for each of the participating companies. We also proposed
an approach to prioritize MS-ATDs based on risk and dis-
cussed it with participants. The participants also reported
that the results and the prioritization method were useful
and may be used in their contexts. For example, participants
from one company said that our approach would help people
become aware of the issues they have not yet seen. Thus,
they are be able to take action to mitigate the negative conse-
quences (interest) of the debts.

Our most important findings related to individual
MS-ATDs were as follows: (i) “Misusing shared libraries”
is a common debt during migration to microservices. Com-
panies start using shared libraries because of the convenience
of reusing code from their original architectures. However,
these companies may be good candidates for high costs due to
misuse of such libraries in the future, as identified in previous
studies [2], [7]. (ii) It is common for companies to share
databases during the early stages of migration to microser-
vices to accelerate the migration process. (iii) Microservice
coupling occurred frequently, possibly related to practition-
ers’ lack of experience in creating microservices. However,
they postpone the discussion of the debt to the late stages,

37443

IEEE Access

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

possibly because the costs of the debt are small at the
beginning of the migration. One possible interpretation of
this result is that practitioners might not have proper ways
or tools to measure the growth of microservice coupling.

Given that “Misusing shared libraries” and “Microservice
coupling” were common MS-ATDs in our study, other orga-
nizations may also consider them. The procedure of creating
rankings reported in this paper may help other organiza-
tions prioritize fixing or avoiding MS-ATDs during migra-
tion before their costs increase. Overall, we believe that our
results will help understand the relationship between ATDs
and microservices.

Our study is fully replicable by researchers. The raw data
are also available, allowing researchers to use such data in
their approaches and facilitating comparison of the results.

Future work includes: running in-depth studies on the
companies participating in this study to understand the
consequences of their current architectural decisions; analyz-
ing other companies migrating to microservices; investigat-
ing possible metrics; quantifying debts and costs; exploring
deeper the aspects that practitioners emphasize when they
consider an MS-ATD important.

REFERENCES

[11 M. Fowler. (Jul. 2015). Microservice Trade-Offs. [Online]. Available:
https://Martinfowler.com/articles/microservice-trade-ofts.html

[2] S.S.de Toledo, A. Martini, and D. I. K. Sjgberg, ““Identifying architectural
technical debt, principal, and interest in microservices: A multiple-case
study,” J. Syst. Softw., vol. 177, Jul. 2021, Art. no. 110968.

[3] T. Besker, A. Martini, and J. Bosch, “A systematic literature review
and a unified model of ATD,” in Proc. 42th Euromicro Conf. Softw.
Eng. Adv. Appl. (SEAA), Aug. 2016, pp. 189—-197. [Online]. Available:
http://ieeexplore.ieee.org/document/7592796/

[4] B. Foote and J. Yoder, “Big ball of mud,” in Proc. 4th Patterns Lang.
Program. Conf. (PLoP), N. Harrison, B. Foote, and H. Rohnert, Eds.
Monticello, IL, USA: Addison-Wesley, 2000, pp. 653-692.

[5] J. Lewis and M. Fowler. (2014). Microservices: A Definition of This
New Architectural Term. [Online]. Available: https://www.Martinfowler.
com/articles/microservices.html

[6] V. Bushong, A. S. Abdelfattah, A. A. Maruf, D. Das, A. Lehman,
E. Jaroszewski, M. Coffey, T. Cerny, K. Frajtak, P. Tisnovsky, and
M. Bures, “On microservice analysis and architecture evolution: A sys-
tematic mapping study,” Appl. Sci., vol. 11, no. 17, p. 7856, Aug. 2021.

[7]1 D. Taibi, V. Lenarduzzi, and C. Pahl, “Microservices anti-patterns: A
taxonomy,” in Microservices: Sci. Eng., A. Bucchiarone, N. Dragoni,
S. Dustdar, P. Lago, M. Mazzara, V. Rivera, and A. Sadovykh, Eds. Cham:
Springer International Publishing, 2020, pp. 111-128.

[8] V. Lenarduzzi, F. Lomio, N. Saariméki, and D. Taibi, “Does migrating a
monolithic system to microservices decrease the technical debt?”” J. Syst.
Softw., vol. 169, Nov. 2020, Art. no. 110710.

[9] J. Bogner, T. Boceck, M. Popp, D. Tschechlov, S. Wagner, and
A. Zimmermann, “Towards a collaborative repository for the documen-
tation of service-based antipatterns and bad smells,” in Proc. IEEE Int.
Conf. Softw. Archit. Companion (ICSA-C), Mar. 2019, pp. 95-101.

[10] P. Di Francesco, P. Lago, and 1. Malavolta, “Architecting with microser-
vices: A systematic mapping study,” J. Syst. Softw., vol. 150, pp. 77-97,
Apr. 2019.

[11] P. D. Francesco, I. Malavolta, and P. Lago, “Research on architecting
microservices: Trends, focus, and potential for industrial adoption,” in
Proc. IEEE Int. Conf. Softw. Archit. (ICSA), Apr. 2017, pp. 21-30.

[12] T. Besker, A. Martini, and J. Bosch, “The pricey bill of technical debt:
When and by whom will it be paid?” in Proc. IEEE Int. Conf. Softw.
Maintenance Evol. (ICSME), Sep. 2017, pp. 13-23.

[13] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study
on technical debt and its management,” J. Syst. Softw., vol. 101,
pp. 193-220, Mar. 2015. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0164121214002854

37444

[14] S. Newman, Monolith to Microservices: Evolutionary Patterns to Trans-
form Your Monolith, 1st ed. Sebastopol, CA, USA: O’Reilly Media,
2019.

[15] P. Di Francesco, P. Lago, and I. Malavolta, “Migrating towards microser-
vice architectures: An industrial survey,” in Proc. IEEE Int. Conf. Softw.
Archit. (ICSA), Apr. 2018, pp. 29-38.

[16] O. Zimmermann, “Mircroservices tenets: Agile approach to
service development and deployment,” Comput. Sci.-Res. Develop.,
vol. 32, nos. 3-4, pp.301-310, Jul. 2017. [Online]. Available:
http://link.springer.com/10.1007/s00450-016-0337-0

[17] E Montesi and J. Weber, “Circuit breakers, discovery, and API gateways
in microservices,” 2016, arXiv.:1609.05830.

[18] P. Niblett and S. Graham, ‘“Events and service-oriented architec-
ture: The oasis web services notification specification,” IBM Syst. J.,
vol. 44, no. 4, pp. 869-886, 2005. [Online]. Available: https://ieeexplore.
ieee.org/document/5386704

[19] F. Rademacher, S. Sachweh, and A. Zundorf, ‘“Differences between
model-driven development of service-oriented and microservice
architecture,” in Proc. IEEE Int. Conf. Softw. Archit. Workshops
(ICSAW), Apr. 2017, pp. 38—45. [Online]. Available: https://ieeexplore.
ieee.org/document/7958454

[20] J. W. Yoder and P. Merson, “Strangler patterns,” in Proc. 27th
Conf. Pattern Lang. Programs, 2020, p.25. [Online]. Available:
https://hillside.net/plop/2020/papers/yoder.pdf

[21] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, ‘““Managing technical
debt in software engineering (Dagstuhl Seminar 16162),” Dagstuhl Rep.,
vol. 6, no. 4, pp. 110-138, 2016.

[22] N.A.Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure it?
Manage it? Ignore it? Software practitioners and technical debt,” in Proc.
10th Joint Meeting Found. Softw. Eng., New York, NY, USA, Aug. 2015,
pp. 50-60.

[23] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From
metaphor to theory and practice,” IEEE Softw., vol. 29, no. 6, pp. 18-21,
Nov. 2012.

[24] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti, G. Tonin, F. Q. Da Silva,
A. L. Santos, and C. Siebra, “Tracking technical debt—An exploratory
case study,” in Proc. 27th IEEE Int. Conf. Softw. Maintenance (ICSM),
Sep. 2011, pp. 528-531.

[25] A. Martini and J. Bosch, “An empirically developed method to aid deci-
sions on architectural technical debt refactoring: AnaConDebt,” in Proc.
IEEE/ACM 38th Int. Conf. Softw. Eng. Companion (ICSE-C), May 2016,
pp. 31-40.

[26] R. K. Yin, Case Study Research and Applications: Design and Methods,
6th ed. Newbury Park, CA, USA: Sage, 2018.

[27] W. S. Cleveland, The Elements Graphing Data. Monterey,
CA, USA: Wadsworth Advanced Books and Software,
1985.

[28] Centers for Disease Control and Prevention. (Jul. 2020). Calculated
Variables in the 2019 Behavioral Risk Factor Surveillance System
(BRFSS). Department of Health and Human Services. [Online].
Available: https://www.cdc.gov/brfss/annual_data/2019/pdf/2019-
calculated-variables-version4-508.pdf

[29] A.Martini and J. Bosch, “A multiple case study of continuous architecting
in large agile companies: Current gaps and the CAFFEA framework,”
in Proc. 13th Work. IEEE/IFIP Conf. Softw. Archit. (WICSA), Apr. 2016,
pp. 1-10.

[30] A. Martini, F. A. Fontana, A. Biaggi, and R. Roveda, “Identifying and
prioritizing architectural debt through architectural smells: A case study
in a large software company,” in Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) (Lecture Notes in Computer Science), vol. 11048,
Madrid, Spain: Springer, 2018, pp. 320-335.

[31] F. A. Fontana, I. Pigazzini, R. Roveda, D. Tamburri, M. Zanoni, and
E. Di Nitto, “Arcan: A tool for architectural smells detection,”
in Proc. IEEE Int. Conf. Softw. Archit. Workshops (ICSAW),
Apr. 2017, pp.282-285. [Online]. Available: http://ieeexplore.
ieee.org/document/7958506/

[32] 1. Pigazzini, F. Arcelli Fontana, and A. Maggioni, “Tool support for
the migration to microservice architecture: An industrial case study,” in
Software Architecture (Lecture Notes in Computer Science), vol. 11681.
Cham, Switzerland: Springer, Sep. 2019, pp. 247-263.

[33] S.Panichella, M. Rahman, and D. Taibi, ““Structural coupling for microser-
vices,” in Proc. 11th Int. Conf. Cloud Comput. Services Sci., 2021,
pp. 280-287.

VOLUME 10, 2022

S. S. De Toledo et al.: Accumulation and Prioritization of Architectural Debt

IEEE Access

SAULO SOARES DE TOLEDO received the B.Sc.
degree in computer science from the Federal Uni-
versity of Campina Grande, Paraiba, Brazil, the
M.Sc. degree in computer science from the Federal
University of Campina Grande, in 2016, and the
Licentiate degree in informatics from the State
University of Paraiba, Paraiba. He is currently pur-
suing the Ph.D. degree with the University of Oslo,
Norway, focusing on architectural technical debt in
microservices and collaborating with several large

European companies.

He is also an Experienced Software Developer, who has worked in several
roles, including as a Full-Stack Developer, a Tech Lead, and a Software
Architect, mainly with agile teams. His research interests include technical
debt, software architecture, and microservices.

ANTONIO MARTINI (Member, IEEE) received
the M.Sc. degree from the University of Parma,
ITtaly, in 2011, and the Ph.D. degree from the
Chalmers University of Technology, Gothenburg,
Sweden, in 2015.

He is currently an Associate Professor with the
University of Oslo, Norway. He is also a part-time
Researcher with the Chalmers University of Tech-
nology. His experience covers software engineer-
ing and management in several contexts, such as
large, embedded software companies, small, web companies, business to
business companies, and startups. He has also received several funds for the
commercialization transfer to practice of research results. He has worked as a
Principal Strategic Researcher with CA Technologies (now Broadcom) for a
technology transfer project in the context of a Marie Curie EU project related
to the Tecniospring+ program. He has led a ten year project focusing on man-
aging technical debt, collaborating with several large companies in Northern
and Central Europe. He is also a Scientific Advisor for a startup and a Creator
of a tool to manage technical debt. He also worked as a Software Developer
and an Independent Consultant. He has published more than 50 contributions
to top software engineering conferences and journals. His research interests
include technical debt, software architecture, technical leadership, and agile
software development. He is active in the research community as an editor
and a reviewer for top IEEE software engineering conferences and journals,
such as IEEE Sortwark and IEEE TRANSACTIONS ON SOFTWARE ENGINEERING.
He is involved in the organization of IEEE conferences, such as TechDebt @
ICSE, ICSA, and SEAA Euromicro.

VOLUME 10, 2022

PHU H. NGUYEN received the B.Sc. degree from
the Hanoi University of Science and Technology,
Vietnam, in 2005, the M.Sc. degree from the Eind-
hoven University of Technology, The Netherlands,
in 2010, and the Ph.D. degree from the University
of Luxembourg, Luxembourg, in 2015.

He is currently a Researcher at SINTEF, mem-
ber of the Trustworthy Green IoT Software Group,
developing new tools and methodologies for soft-
ware development and operation of intelligent and
trustworthy systems spanning across the IoT, edge, and cloud continuum,
with a particular focus on sustainability. He has experience from working in
international research projects as well as research and development projects
with industry in Norway. He is an active reviewer and an organizer/PC
member of high-impact journals, conferences, and workshops. He was
awarded a certificate for exceptional contributions, support, and commitment
in the organization of the Sixth IEEE International Conference on Software
Testing, Verification, and Validation (ICST 2013), IBM Award for displaying
exceptional personal dedication, teamwork, and contribution to the ibm.com
project 2007, and the first prize at the LuxDoc Science Slam 2014 for
communicating research to public.

DAG I. K. SIOBERG (Member, IEEE) received
the M.Sc. degree in computer science from the
University of Oslo, in 1987, and the Ph.D. degree
in computing science from the University of
Glasgow, in 1993.

Since 1999, he has been a Full Professor in
software engineering with the University of Oslo.
He has five years of industry experience as a
| Developer and a Group Leader. He has been the
m co-founder of four start-up companies. In 2001,
he formed the Simula Research Laboratory, Software Engineering Depart-
ment, and was its leader, until 2008. He has been an Associate Editor of
the IEEE TRANSACTIONS ON SOFTWARE ENGINEERING AND EMPIRICAL SOFTWARE
ENGINEERING. His research interests include the software life cycle, including
agile and lean development processes, software quality, skill assessment, and
empirical research methods in software engineering.

;} ~

37445

