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ABSTRACT In computing, research findings are often anecdotally faulted for not being reproducible.
Numerous empirical studies have analyzed the reproducibility of a variety of research. Our objective,
in this study, is to quantify the current state of reproducibility of research in computing based on prior
research, using three reproducibility factors—Method, Data and Experiment—to measure three different
degrees of reproducibility. Twenty-five variables traditionally utilized to document reproducibility are
identified and grouped into three factors, namely Method, Data and Experiment. These variables describe
the extent to which these factors are documented for each paper. Approximately 100 randomly selected
research papers from the International Conference on Information Systems series, for the year 2019, are
surveyed. Our findings suggest that none of the papers documented all the variables. In fact, the results show
that relatively few variables for each factor are documented. Some of the variables vary across different
categories of papers, and most papers fail in at least one of the factors. Reproducibility scores decrease with
increased documentation requirements. Reproducibility may improve over time, as researchers prioritize
reproducibility and utilize methods that ensure reproducibility. Research documentation in computing is
remarkably limited, resulting in a dearth of reproducible factors. Future research may study the shifts and
trends in reproducibility over time. Meanwhile, researchers and publishers must increase their focus on
the reproducibility aspects of their papers. This study contributes to our understanding of the status quo of
reproducibility in computing research.

INDEX TERMS Reproducibility, computing, method, data, experiment.

I. INTRODUCTION
While reproducibility is historically accepted as a measure of
trustworthy science, in recent years there has been a renewed
and urgent focus on this area of research [1]–[3]. Certainly,
reproducibility should automatically be a critical considera-
tion of every research paper [4]. Not only does reproducibility
allow researchers to build on published results but it also
facilitates the review process [5], [6]. Reproducible research
is becoming an imperative, ensuring transparency and build-
ing trust. In addition, reproducibility supports the sharing
of methodologies, optimizing collaboration and the rapid
dissemination of research [7]. Recently, however, researchers
in various disciplines have raised concerns about the repro-
ducibility of published results [8]–[10]. A 2016 survey in
Nature found that many of these scientists across a wide
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range of disciplines had a personal experience of failing to
reproduce a result, and that most scientists believed that sci-
ence was currently facing a ‘significant’ reproducibility crisis
[11], [12]. Key outlets such as the WSJ [13], the
Economist [14] and the Atlantic [15]–[17] have all published
extended pieces on reproducibility. Thus, reproducibility is
not only a challenge in computing; rather, it is pervasive chal-
lenge across most disciplines. The fields of psychology [18],
biology [19], [20], biomedicine [9], neuroscience [21], drug
development [22], chemistry [23], climate science [24], eco-
nomics [25] and education [26] among others, have reported
reproducibility problems [20]. A recent study estimated the
cost of funding irreproducible research at approximately
$28 billion a year in the U.S. alone [27], [28]. A well-
known effort to replicate findings from prominent social
and cognitive psychology studies showed fewer significant
findings and smaller effect sizes than the original studies [18].
And while reproducibility is considered a fundamental aspect
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of reliable research, studies show that a substantial number
of published research results cannot be reproduced [11],
[18], [29]–[35]. This circumstance is particularly true for
the papers presented at major conferences and published in
top journals. In many cases, even the primary researchers
are unable to reproduce their own findings [22], [36]–[38].
In principle, it should be possible to specify a methodology
with sufficient detail that anyone can reproduce it exactly, and
yet, practically speaking, there are fundamental, technical and
social barriers to doing so [38].

The reproducibility problem is more pronounced in com-
puting research perhaps because the computing discipline
is multidisciplinary, and the artifacts, both tangible and
intangible, are developed and validated in the context of
socio-technical approaches to research [39]–[44]. Computing
research spans sub-disciplines that include business comput-
ing, compilers, embedded and real-time systems, networking,
operating systems, user-centered applications and mobile and
web applications, among others [45]. In the sub-discipline of
software development, advances in research and applications
are aided by algorithms, programming languages, tools and
models of quality assurance and testing and so forth. But
design and coding are subjective processes. Reproducibility is
difficult to effectuate when there is no proper documentation
of design specifications, pseudocode, prototype, etc. of how
the artifacts are developed [45]. Version control is an added
challenge. Compounding the problem are big datasets. Mean-
while, the computational methods necessary to process and
analyze those datasets has prompted newways of considering
reproducibility [3]. In addition to a substantial lack of repro-
ducibility in computing research, identifying reproducibility
problems is itself challenging [2], [3]. This is due to the lack
of both frameworks and methods, and the tools necessary to
identify reproducibility problems. Further, while there is a lot
of buzz about reproducibility, there are very few studies that
have actually assessed reproducibility [46]–[48] and there
are a scant number of frameworks or models to evaluate
reproducibility [49]–[52]. This empirical study attempts to
fill many of these gaps. This is a descriptive analytic study
that sheds light on the current state of reproducibility in
computing by examining papers from a recent conference on
information technology. Adapting an existing model in the
study of reproducibility in artificial intelligence research and
applications [31]–[33], we develop and offer a framework and
check list for undertaking reproducibility studies in comput-
ing in general. Further, this framework is operationalizedwith
an applied, hands-on check list to evaluate the studies. The
usefulness is its potential to be applied to a research paper or
a report prior to submission and peer review, or publication.
In other words, it provides ex ante support as opposed to other
models (e.g., code testing) that are ex post [49], [50], [53].
The model described here can be applied to all aspects of
a research paper or publication, namely, data, experiment
(or analysis) and method. Lastly, the framework outlined
and applied here is not restricted to one or another sub-
discipline of computing; rather it can be applied across the

board [39], [54]. The framework and check list described
here will be useful to both researchers and practitioners in
the reproducibility assessments of their work. We build on
prior work to argue that numerous factors—including those
falling under documentational, experimental and method-
ological categories—prevent a high degree of reproducibility
of computing research [55], [56]. Empirical work that studies
reproducibility in the different sub-disciplines of computing
has been sporadic and ad hoc at best. This study aims to fill
that gap by investigating and shedding light on the nature
and dimensions of the reproducibility of current research in
the computing discipline. We examine papers published as
part of the proceedings of a prestigious business computing
and information systems conference, applying an adapted
reproducibility evaluation framework and methodology
from [31] and [32].

The rest of the paper is organized as follows: First, we pro-
vide a comprehensive review of reproducibility. We then
provide an overview of the reproducibility framework used
in this study and follow this section with a description of
research methods. We then provide the results and analysis
of our study. Finally, we highlight the scope and limitations
of our study and offer conclusions.

II. LITERATURE REVIEW
Publications are at the epicenter of academic life,
observe [44]. Computing is in a unique position among scien-
tific disciplines because researchers in the discipline typically
eschew the publication process and disseminate their cutting-
edge research at conferences. Unlike peer-reviewed publica-
tions with multiple review layers, conferences utilize an entry
process with a single review stage. Thus, conferences have
had a profound impact on the way research is conducted by
computing researchers and have provided those researchers
with a distinct advantage. To be competitive in the academic
world, researchers must play the publishing game, which
emphasizes numerical metrics of success [44]. The pressure
to publish innovative ideas is biased towards bringing pre-
liminary findings to the public arena as quickly as possible
and circumventing the thoughtful, if relatively lengthy, peer
evaluation and review process that has been the cornerstone
of good research. Compounding this situation is the trend
that novelty is replacing research grounded in theory [44].
The inevitable outcome is the degradation of research qual-
ity. Simultaneously, computer-based models and tools are
being used in scientific research at an exponential rate, but
reproducibility methods have not kept pace, leading to skep-
ticism about the results generated by computational methods
[39], [57]. As a result, a currently popular discourse is the pro-
motion of awareness and policies designed to intervene, such
as the contemporary Association for Computing Machin-
ery (ACM) policy on the scrutiny of outputs and systems
and badging [58]. The ACM construes research to be repro-
ducible [29] when its findings can be generated by another
team utilizing a different dataset. Journals, too, have begun
to demand better documentation and, to the extent possible,
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more openness (e.g., making data available publicly). IEEE
has also set up The Ad Hoc Committee on Open Science and
Reproducibility. The goal of the 2020 Ad Hoc Committee
on Open Science and Reproducibility ‘‘is to analyze models,
practices and experiences in supporting open science and
reproducibility within the IEEE Computer Society (CS) and
at peer societies and publishers’’ [59]. Against this backdrop,
many studies have emerged that look at aspects of repro-
ducibility across the different sub-disciplines of computing.
For example, in a recent IEEE study approximately 60% of
IEEE conferences, magazines and journals have no policies
and procedures in place to ensure research reproducibil-
ity [60]. In another example, [61] report that fewer than
approximately 15% of MobiHoc papers (2000-2005) that
utilized simulations (114 out of 151 papers) for MANET
analysis were repeatable. [62] verified 134 papers published
in the IEEE Transactions on Image Processing and found
that only 33% of the papers published the datasets, while
only 9% of the papers made available the code needed for
reproducibility. Recently, [5] looked at about 600 papers
from ACM conferences and journals and identified repeata-
bility weaknesses in approximately 32% of the papers. Their
study also found that a few researchers were unwilling to
share their code and data. In instances where they were
shared, too little information was provided to repeat the
experiment. [63] evaluated the computational reproducibility
of 204 papers and their ability, as independent researchers,
to acquire the resources necessary to reproduce a paper’s
findings. The authors were able to retrieve the tangible prod-
ucts from 44% of the sample but only able to reproduce the
results for 26% [63]. [64] analyzed data from Scopus, which
showed that the reproducibility problem was prevalent in
several other fields as well. [65] suggested that it was difficult
to confirmmost results in current conferences. Recent studies
[5], [66], [67] have also shown that the peer-review process
by itself is incapable of ensuring reproducibility, an obvi-
ous point given the process is not designed to check for
reproducibility. Additionally, according to [68], the ‘‘publish
or perish’’ mentality is a significant problem: ‘‘Innovative
findings produce the rewards of publication, employment and
tenure; replicated findings produce a shrug.’’ [67] and [69]
suggest that in the future reproducible submissions should
always be the default and that doing reproducible research
will become imperative [6]. To that end, scientists, institu-
tions and funding agencies have been pushing for the devel-
opment of methodologies and tools that preserve software
artifacts. Still, the consensus is that long-term reproducibility
remains, in computing research, elusive [70]. This is a prob-
lem given that the scientific method depends on reproducibil-
ity to back up the development of scientific knowledge.
When scientists cannot conduct the same experiment and
obtain the same findings as the initial researchers, the event
implies the hypothesis is false [71]. Therefore, the failure
to reproduce findings affects the very integrity of science
[9], [67], [72], [73]. To wit, there are very few empirical
studies of reproducibility in computing [74], [75], and the

few studies that were done focused on granular methods to
test reproducibility such as access to data, code compilation,
software quality testing, etc. [39], [76]. Furthermore, not only
are there very few studies on reproducibility but there are also
even fewer methods to study reproducibility [77]–[79]. Thus,
there is a paucity of studies as well as methods making it ben-
eficial to undertake additional studies and develop broader
methods. This is a motivation for our study. To reiterate,
this study makes a modest attempt to shed light on both
aspects. In addition, it is only recently that attempts are being
made to develop automated tools to assist with reproducibility
[77], [79]–[81]. However, nearly all of these are at the
development stage [79], [81]. In summary, very few studies
exist, as highlighted above, and they have typically focused
on ex post reproducibility. This study is different in that
it conducts a reproducibility evaluation before a paper is
published. To ensure reliability in computing research, steps
must be taken to increase the reproducibility of the research
[31]–[33], [82]–[85]. In the meantime, the current - and
unfortunate - state of reproducibility in computing research
must be documented.

Our goal with this study is to assess the current state of
reproducibility in empirical computing research. Our chief
proposition is that the documentation in computing research
is insufficient to reproduce the published findings; that is,
current documentation practices at top business, comput-
ing, and academic conferences cede much of the published
findings to non-reproducibility. We surveyed research papers
from the most prestigious information systems conference,
namely ICIS, to test the proposition. Our research contri-
butions are multi-fold: (i). we assess the contemporary sta-
tus of reproducibility in computing research and provide a
panoramic overview by conducting an empirical analysis;
(ii). we develop a framework and operationalize it with a
check list to verify reproducibility in computing papers, and
(iii). we investigate the implications of reproducibility for
computing research and offer prescriptive recommendations.

A. OVERVIEW OF REPRODUCIBILITY
There is consensus among researchers that empirical results
ought to be reproducible but the definition and meaning of
reproducibility is not clearly understood [18], [31]–[34].

For this study, we define reproducibility in empirical com-
puting research as:

‘‘the ability of an independent research team to produce
the same results using the same research method based on the
documentation made by the original research team (adapted
from [32]).’’

The reproducibility evaluation framework developed
by [31], [32] and utilized to analyze reproducibility in arti-
ficial intelligence research is the basis for this study. This
part of the narrative is largely paraphrased from their seminal
work. The key point to emphasize is that a separate group of
researchers ought to be able to generate the same findings as
the initial researchers primarily using the original documen-
tation. The documentation, therefore, is key to ensuring that
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the independent team can conduct the exact same research
and obtain the same results as the original team [31], [32].
Typical computing research documentation is comprised of
three parts: the documentation of the research method that
the original research team developed and aims to validate;
the data (if any) that is used in the research; and a description
of an experiment in text and code form. When the findings
of the initial research and those of the reproduced results are
similar, one can conclude it is possible to reproduce the initial
research.

B. REPRODUCIBILITY DOCUMENTATION
Documentation is the key starting point to reproducibility.
To reproduce the results of the research, the documentation
must include relevant information and must be specified to
a granular level. Researchers must clearly identify what is
relevant and how fine-grained the documentation must be
to make sure that results can be reproduced using only this
information [32]. Following this framework, we also grouped
the documentation into three categories: Method, Data and
Experiment. The documentation for the research method
includes the description of the computing research method
as well as its research question [31], [32]. Additionally, data,
along with the documentation describing the data and how it
can be used, are necessary for reproducibility. Therefore, data
engineering and preprocessing are important. The goal is to
make available the cleaned exact dataset. Version control is
also necessary. Finally, to compare results, the actual output
of the research is required [31], [32]. If the research involves
conducting an experiment, proper documentation detailing
the exact steps involved, including the analysis and results,
must bemade available [31], [32]. The hardware and software
used must be properly specified. While methods and data are
required in most research studies, experiments in computing
research, more likely dealing with tangible artifacts, are typ-
ically more ad hoc. Overall, the extent of documentation in
terms of method, data and experiment sits on a continuum of
degrees of reproducibility. The ‘gold standard’ is the ability
to share documentation for all three categories in an open
and transparent way (e.g., putting everything in a cloud envi-
ronment) [86], [87]; but the cost of such an infrastructure
could be high. Plus, maintenance and updates require ongoing
attention.

Following the lead of [31], [32] the documentation
factors —methods, data and experiment - enable the defi-
nition of the three degrees to which the original results can
be reproduced. The degrees are quantified into a numerical
score as described in the two Gundersen and Kjensmo papers.
R1: Experiment reproducible implies the inclusion of all
three factors, and by following the document, independent
researchers can reproduce the results; R2: Data reproducible
includes method and data and implies the research is poten-
tially a data-driven empirical study. Alternative researchers
ought to be able to arrive at similar findings using this
documentation; and R3: Method reproducible implies that

FIGURE 1. The three degrees of reproducibility (Source: [15], [16]).

the method alone is documented, and an independent set of
researchers may reproduce the results using this documen-
tation. Figure 1 depicts how the three degrees relate to one
another and which degree of reproducibility requires what
type of documentation.

Drawing from the literature and basing our research
squarely on the adaptation of the model developed and tested
in [31], [32], our goal, as stated, is to quantify the state of
reproducibility of empirical computing research. We mean to
show that the documentation of computing research is not
of a high-enough quality to reproduce the reported results,
and that the current documentation practices at a top busi-
ness computing and information systems conference do not
support the outcome that reported research results will be
reproducible.

III. RESEARCH METHODS
Following [32], [55], an observational study in the form of a
manual survey of research papers was conducted to generate
quantitative data about the state of the documentation quality
of business computing research. Each paper was read several
times to extract the values for the variables in each factor.
The research papers were reviewed, and a set of 25 variables
were manually identified. To compare results among papers
and groups of papers, we used three reproducibility metrics -
R1D, R2D and R3D - to score the documentation quality.
As stated, the research method in this study is adapted, with
several modifications, from [31], [32]. (For more details
regarding the methodology, please refer to those papers.)
Using a data-driven approach, visualization & descriptive
analytics [88], [89], well-established methods of analysis,
were applied to this dataset of papers to gain insight into
reproducibility [88], [90]. The emerging field of visual ana-
lytics allows us to graphically represent the data and thereby
visualize the results to gain insight [90]–[92]. By integrating
a proper design with visual techniques, charts and statistics
can be generated [93], [94]. Visual analytics help aggre-
gate, process and represent large amounts of data in easy-to-
understand charts [90], [92], [94]. The overall objective is to
tell the stories through visualization [90], [93]. Compared to
other types of analytics, descriptive analytics tends to bemore
data driven; its focus is on describing the data ‘as is’ with
no preconceived assumptions [91]. Descriptive analytics via
visualization eases the understanding of historical and current
trends to make meaningful decisions [89], [93], [94].
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A. SURVEY
To evaluate the hypothesis, we surveyed a total of 125 papers
from the 2019 Association for Information Systems (AIS)
proceedings of the International Conference on Information
Systems (ICIS 2019) (https://aisel.aisnet.org/icis2019/). The
ICIS’s own description (https://aisnet.org/page/ICISPage)
supports our choosing this set of papers:
‘‘The International Conference on Information Sys-

tems (ICIS) is the most prestigious gathering of information
systems academics and research-oriented practitioners in the
world. Every year its 270 or so papers and panel presenta-
tions are selected from over 800 submissions.’’

Studying a sample of documents from this conference,
wherein papers are chosen after a rigorous review process,
was deemed appropriate. Because the number of papers
under each topic in ICIS 2019 varies, we randomly selected
5 to 11 papers in each topic tomaintain a balance of topics and
avoid selection bias. As a result, a total number of 19 topics
and 125 papers were reviewed. Of these 125, 100 papers com-
prised empirical research, and 25 were conceptual. A panel
of researchers manually classified the papers into empirical
and conceptual research types. After dropping the conceptual
papers, researchers proceeded to analyze the reproducibility
performance of the 100 empirical papers. Table 1 shows the
number of published papers (the population size) and the
number of surveyed papers (sample size).

TABLE 1. Population size and sample size of papers.

The ICIS 2019 identified 26 total topics. During data col-
lection, five of the topics were dropped because there were
fewer than five papers on each topic. The remaining 19 topics
were aggregated into six major topics, as shown in Table 2.

We also analyzed the papers by paper length (full vs. short)
and topic (six topics). Figure 2 shows the breakdown of the
papers by topic (six topics) and paper length (full vs. short).
‘full’ indicates that the article is complete, while ‘short’
indicates that it is just part of the full article. Short papers
typically have a length of about 10 pages; full papers run
about 18 pages. There is a 50:50 balance of full and short
papers in the 100-paper sample reviewed. Of the 100 empir-
ical papers surveyed, most fall under the topics of analytics,
data science and smart systems (27%); business models, dig-
ital transformation and innovation (26%); and other topics
(21%). The distribution among the other three topics—cyber-
security, privacy and ethics of IS (11%), sustainable and soci-
etal impact of IS (8%) as well as human computer interfaces
(7%)—is relatively small. Note that regrouping the topics

TABLE 2. Aggregation of topics.

caused an imbalance in the number of papers surveyed.While
each of the three dominating topics includes more than three
sub-topics defined by ICIS, the other three topics include only
one or two sub-topics.

B. FACTORS AND VARIABLES
Adapting the process in [31], [32], we treated the three types
of documentation, namely Method, Data and Experiment,
as the factors specified by 25 different variables. Sixteen
of the variables from prior studies were deemed fit for the
study of reproducibility in Information Systems research.
An additional 12 IS-domain relevant variables were added,
for a total of 25 variables. Table 3 shows the factors, variables
and their description.

Unless otherwise specified, each variable in Table 3 was
encoded as a 1 or 0, where 1 represents an explicit mention of
the variable in the paper, and 0 represents no explicit mention.
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FIGURE 2. Distribution of papers by paper length and topic.

For example, while reviewing the variable ‘Goal’, each paper
was reviewedmanually for an explicit mention of the research
goal, such as ‘‘Our research goal is. . .’’ or ‘‘The goal of the
research is to. . .’’. Similarly, all variable codes weremanually
assessed by each researcher for all papers. The codes for each
paper were then compared, and any resulting discrepancies
were resolved by a combined re-evaluation of the paper in
question until a consensus was reached. In this way, an inter-
rater reliability of 90%was achieved. To reiterate, we used the
reproducibility metrics from [31], [32] to quantify whether a
paper is R1D, R2D, or R3D reproducible, and to what degree.

IV. RESULTS AND ANALYSIS
The data was analyzed using Python for its data prepro-
cessing, descriptive statistics, and correlation analysis capa-
bilities. Tableau, the business intelligence tool, was used to
visualize the reproducibility outcomes. We initially present
below the descriptive statistics for the metrics and factors.

Table 4 presents the descriptive statistics for the three
composite reproducibility metrics. R1D is a composite score
that covers Method, Data and Experiment, while R2D covers
Method and Data and R3D represents the value of Method
only. The mean for R3D (0.6657) is the highest, followed by
R2D (0.5634) and R1D (0.4256). These outcomes demon-
strate that most papers tend to share the documentation for
Method only, rather than for all three (including Data and
Experiment).

Table 5 below presents the descriptive statistics for the
three factors measuring reproducibility. The average of
Method (0.6657) is the highest, followed by Data (0.4611)
and Experiment (0.15). Again, these outcomes suggest
that there is a trend for sharing the methodology, which
makes methodologymore reproducible. Some papers, though
deemed empirical, did not conduct an experiment (e.g., an
analysis) involving data, which may a least partially explain
why Data and Experiment are less reproducible. In addi-
tion, data sharing is still challenging for several reasons,

TABLE 3. Method, data and experiment and the variables that specify
them.

including ownership, confidentiality, copyright and compet-
itive advantage. Finally, the experiments may not be suffi-
ciently standardized.
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TABLE 3. (Continued.) Method, data and experiment and the variables
that specify them.

TABLE 4. Descriptive statistics for the three composite reproducibility
metrics.

TABLE 5. Descriptive statistics for the three reproducibility factors.

Table 6 displays the descriptive statistics for the absolute
scores, the sums of variables listed under the three factors
Method, Data and Experiment. Similarly, the overall absolute
score (Abs Overall) represents the sum of variables across
the three factors. On average, each paper has approximately
13.77 reproducibility variables, in which 9.32 are Method,
4.15 are Data, and only 0.3 are Experiment. It is noticed that
overall, there are 25 variables, in which 14 are for Method,
9 for Data, but only 2 for Experiment. Each paper has at least

5 variables forMethod, andmore than 50% of the papers have
more than 10 variables for Method. Each paper also has at
least one Data variable, and about 25% of the papers have
three or fewer Data variables. More than half of the papers do
not show reproducibility for the Experiment factor.

TABLE 6. Descriptive statistics for absolute scores.

Table 7 presents the descriptive statistics for the variables
comprising the factor Method for the 100 empirical papers.
The frequency count indicates the number of papers that
explicitly mentioned the variable. For example, the frequency
count of 86 for ‘Goal’ indicates that 86 papers mentioned the
research goal. Over 90% of the documentation surveyedmen-
tioned the problem statement (97%), research method (93%)
and conclusion (94%).

Table 8 presents the descriptive statistics of the sample of
100 empirical papers for the variables making up the Data
factor. The frequency count, again, represents the number of
papers with the specific variable. All 100 papers surveyed
mentioned the source of data, whether primary or secondary.
More than half of the documentation surveyed provided the
model results (65%) and evaluation criteria (57%).

Table 9 presents the descriptive statistics for the two vari-
ables comprising the factor Experiment for the 100 empirical
papers. Only 7% of the documentation shared the method’s
source code, and only 23% identified the software used for
analysis.

Table 10 shows the mean score of the three reproducibility
factors in each topic. Cyber-security, Privacy and Ethics of
IS as paper topics have the highest average Method score
(0.7143), Analytics, Data Science and Smart Systems papers
score highest in Data (0.5062). Papers in Business Models,
Digital Transformation and Innovation provide the highest
score in Experiment (0.2115).

Table 11 shows the mean value of R1D, R2D and R3D by
topics. Analytics, Data Science and Smart Systems (0.4439),
Business Models, Digital Transformation and Innovation
(0.4462) and Other Topics (0.4478) have the highest R1D
score. Analytics, Data Science and Smart Systems have the
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TABLE 7. Descriptive statistics for the 14 variables of method.

highest R2D score (0.5917) while Cyber-security, Privacy
and Ethics of IS have the highest R3D score (0.7143).

A. FACTORS
Figure 3 depicts three diagrams that spider plot the means
for the variables in each of the three factors of Method,
Data and Experiment for the sample of empirical papers.
Under the Method factor, the problem statement, research
method, and conclusion have the highest scores; more than
90 percent of the papers contain these variables. Algorithm,
machine learning, and prediction appeared least often. Under
the Data factor, data source, evaluation criteria and model
results are mentioned most often, and data preprocessing is
barely discussed at all. Under the Experiment factor, even
though there are only two variables, it appears that the fre-
quency of method source code and software used are below
30 percent, indicating that most papers do not give suffi-
cient details about the experiments to support reproducibility.
Comparing the spider plots reveals that the business com-
puting research papers we examined pay more attention to
the Method factors, with many variables scoring above 80.

TABLE 8. Descriptive statistics for nine variables of data.

TABLE 9. Descriptive statistics for two variables of experiment.

TABLE 10. Average method, data and experiment scores in each topic.

Variables such as problem statement, research method and
conclusions, which have scores over 90, are typically given
priority in these papers. In contrast, the Experiment variables
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FIGURE 3. Spider plot with variables of method, data, and experiment for the papers.

TABLE 11. Average R1D, R2D and R3D of topics.

score at 20 or less, indicating that experiment details are scant
or absent. These findings are understandable: it is relatively
more difficult to explain the details of software and code
than the details of other aspects of the research. Likewise,
typical empirical papers in business computing research are
more data-driven, and focus on association or correlation
rather than on causality, for which experiments are more
appropriate.

B. REPRODUCIBILITY METRICS
The results for the reproducibility metrics appear in Figure 4.
These bar charts show the distribution of scores for Method,
Data and Experiment, and none of them follow a normal
distribution. The charts show the mean values for variables
for each of the factors described in Table 3. For example,
Figure 4 shows papers usually have a better score in the
Method factor, indicated by the range of the scores between
0.6 and 0.8. Papers in the Experiment factor typically have

a lower score. The scores of many papers fall in the range
of 0.1 to 0.75 for Experiment, indicating that the papers
mentioned very little about their experiments. Relevant infor-
mation, such as source code or details about the software used
for analysis, while important for artifact design, matters little
to data-driven research. The Conclusion variable score is in
line with the descriptive statistics provided earlier. Generally,
business computing researchers have a strong awareness of
the details in regard to Method, while reproducibility can be
improved further by providing more details about Data and
Experiment.

FIGURE 4. Distribution of papers scores.

Figure 5a depicts bar charts of the frequency of the com-
posite reproducibility metrics R1D, R2D and R3D for all
papers. Figure 5b depicts the distribution for the six groups of
topics. To recap, R1D is a composite score that covers all the
values of Method, Data and Experiment; R2D covers Method
and Data; and R3D covers Method only. Figure 5(a) shows
distinct variations in the frequency distributions. Most of the
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papers have an R1D of 0.2 to 0.5, while a few have an R1D
in the range of 0.6 to 0.8. According to the analysis by topic
for R1D, Figure 5(b) shows that papers in analytics, data
science and smart systems, as well as business models, digital
transformation and innovation have the highest R1D score,
at over 0.44. As indicated by the composite reproducibility
score, reproducibility for R1D is not high. The bar charts
for R2D (figure 5a) show that the highest frequency ranges
are from 0.3 to 0.5, and no papers have an R2D below 0.1.
This finding shows that reproducibility performance is much
higher when Experiment is not included. For R3D, Figure 5a
shows that the highest frequency falls in the interval of 0.6 to
0.8, and almost no papers have an R3D measuring below
0.25. In terms of distribution by topic (Figure 5b) papers in
analytics, data science and smart systems have the highest
average R2D score (over 0.59), and papers in each topic
have a mean score of over 0.47. Cyber-security, privacy and
ethics score the highest in R3D (0.71), followed by analytics,
data science and smart systems papers (0.68). This means
that overall, the reproducibility performance of Method is
better than that of Data and Experiment. And analytics, data
science, and smart systems papers usually produce better
reproducibility levels than papers in other topics, although the
difference is not significant.

Figure 6 shows the analysis by paper length (full vs. short).
The scatter plot with trend lines shows blue squares represent-
ing short papers and orange crosses representing full papers.
The X- and Y-axis depict the average scores of Method and
Data respectively. The chart shows a high correlation between
Data and Method in both paper lengths: also, if a paper
performswell for Data, it is likely to performwell forMethod,
too (p<0.05). Thus, the quality of reproducibility in terms
of referring to the Method and Data metrics, shows a sig-
nificantly positive relationship with the coefficient estimates
(0.77 for short VS 0.57 for full) greater than 1. The R-squared
for short papers (0.1613) is slightly higher than that for a
full paper (0.1066), indicating that for short papers a larger
variation in Data scores can be explained by the Method
scores. Papers that share details on their method are highly
likely to share details of their data, especially for short papers.

Figure 7 is a scatter plot that shows the linear associ-
ation between overall reproducibility - R1D (which is the
weighted average of Data, Method and Experiment) and
the reproducibility of method and data - R2D (which is the
weighted average of Data and Method). The blue square
represents short papers, and the orange cross represents full
papers, with the size of the square representing the com-
posite reproducibility R1D score. The chart shows that R1D
increases as R2D increases for both types of papers, with
R2D significantly accounting for more than 67% (p<0.0001,
R2

= 0.6722) of the variation in R1D. In other words,
overall reproducibility is largely determined by the disclosure
in the data and method sections. Compared to short papers
(0.74), R2D of the long papers tend to have a stronger impact
on R1D indicated by a higher coefficient estimate (0.93).
Most of the highest-scored papers at the top-right corner are

FIGURE 5. (a): Distribution of R1D, R2D & R3D for all papers
(b): Distribution of R1D, R2D & R3D by topic Note: A: Analytics, data
science and smart systems, B: Business models, digital transformation
and innovation, C: Cyber-security privacy and ethics of IS, H: Human
computer interface, O: Other topics, S: Sustainable and societal
impact of IS.

long papers. Therefore, papers with high R2D scores always
have higher R1D scores, and long papers generally reflect
higher reproducibility.

Figure 8 is a scatter plot that shows the linear association
between method reproducibility R3D (method score only)
and overall reproducibility R1D (weighted score of all three).
The orange crosses stand for papers with an experiment
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FIGURE 6. Correlation of paper scores in data and method.

FIGURE 7. Association between R2D and R1D scores by paper type.

setup and the blue circles stand for papers without an exper-
iment setup. The size of the point represents the R1D score.
Regardless of experiment setup, R1D goes up as R3D goes
up. However, for papers with an experiment setup, the rela-
tionship is statistically significant (p<0.0001) and R3D can
explain 31% of the variation in R1D (R2

= 0.3108).
On the other hand, papers without an experiment setup do

not have a statistically significant relationship between R3D
and R1D (p>0.05). Most of the highest-scoring papers at the
right corner are papers with experiment setups. Therefore,
papers with high R3D (method) scores tend to have high R1D
(overall reproducibility) scores, and papers with experiment
setups tend to be more reproducible.

Figure 9 is a scatter plot that shows the linear associ-
ation between R2D (the weighted average score of Data
and Method) and R3D (score of Method). The blue circles
represent papers without data preprocessing, and the orange
cross represents papers with data preprocessing. The chart
shows that R2D tends to increase as R3D grows, regardless
of whether the data preprocessing is shared or not. The coef-
ficient estimates for both with and without data preprocess-
ing are statistically significant (p<0.05). The R-squared for
papers without data preprocessing (0.6621) is higher, about
66% of the variation in R2D can be explained by R3D.

FIGURE 8. Association between R3D and R1D scores by experiment.

The coefficient estimate for papers without data preprocess-
ing (0.78) is also higher, indicating that each unit increase
in R3D will result in a greater increase in R2D. Therefore,
papers without data preprocessing can be made more repro-
ducible by having a more rigorous methodology.

FIGURE 9. Association between R3D and R2D scores by data
preprocessing.

Figure 10 shows a series of box plots for the six groups
of research paper topics analyzed. Papers on topics such as
human computer interface, as well as the sustainable and
social impact of business computing have a lower average
R1D (reproducibility for method, data and experiment) and
R2D (reproducibility for method and data) scores. The results
imply that, for these papers, the data availability is poor
and little to no source code or details on methodology are
provided in the research literature. Hence, it makes repro-
ducing the experiments harder for some of the papers under
these topics. But given the empirical nature of papers in this
conference, it is likely most of the research did not require
experiments.

Figure 11 is a quadrant chart that maps the relationship
between the Method and Data scores. The color of each dot
represents the average composite R1D score, and the dot
size represents the number of papers surveyed for each topic.
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FIGURE 10. Reproducibility metrics for the groups of six topics.

The trend line shows a positive association between the aver-
ageMethod score and the average Data score. Documentation
of topics with a higher Method score tend to have a higher
Data score. Examples include analytics, data science and
smart systems. Analytics, data science and smart systems lead
in Data, while cyber-security, privacy, and ethics of business
computing lead inMethod. On the other hand, sustainable and
societal impact as well as human computer interface have a
below-average Method and Data score, and thereby have a
relatively low R1D score. However, business models, digital
transformation and innovation are the only topics that tend
to share more about data and less about method, while still
gaining a high average composite reproducibility score for
R1D. Therefore, when publishing their research, researchers
should consider sharing more specifics regarding the method
and data of their studies to increase the reproducibility. Doing
so will no doubt enhance the overall quality of the research.

Figure 12 is a quadrant diagram that maps the relationship
between Experiment and R1D (Method, Data and Experi-
ment) scores. The color of the dots represents the average
composite R1D score, and the size of each dot represents
the number of papers surveyed for each topic. The trend line
shows a positive association between the average Experiment
score and the R1D. Topics such as analytics, data science
and smart systems outperformed for both scores. In fact,
Other Topics (see Table 2 above) is dominant in R1D, while
business models, digital transformation, and innovation are
notable in Experiment. Sustainable and societal impact as

FIGURE 11. Average of method and data scores by topic.

well as human computer interface remain below-average for
Experiment and R1D, and thereby are the least reproducible.
To increase the overall reproducibility of the business com-
puting research, a disclosure of the experiment process is very
important to consider when publishing the research findings.

FIGURE 12. Average of experiment and R1D scores by topic.

Figure 13 depicts a pair of boxplots for the reproducibility
metrics R1D (Method, Data and Experiment), R2D (Data
and Method) and R3D (Data) for all the papers. Compared
to the R1D of short papers (with the mean below 0.4), the
R1D of full papers has a higher mean value (above 0.4). The
mean values for R2D and R3D are also slightly higher for full
papers. The implication here is that full papers tend to have
more detailed explanations than short papers and are likely
to include more details for Method, Data and Experiment.
Hence, full papers are generally more reproducible than short
papers. To encourage reproducibility, the authors should con-
sider publishing their papers with fuller content.

Figure 14 is a bar chart showing the count analysis for
Conclusion, grouped by paper length (full vs. short). Accord-
ing to the figure, the number of papers (with and without
conclusions) for full and short papers is the same. Almost all
the papers, regardless of length, provide a conclusion for the
study.
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FIGURE 13. Reproducibility metrics for full and short paper.

FIGURE 14. Distribution of full and short papers with and without
conclusions.

Figure 15 is a bar chart comparing the average scores of
composite R1D and the three factors for full and short papers.
The chart shows that full papers outperformed short papers
in the composite reproducibility score R1D (0.464 vs. 0.387)
as well as for the three factors: Method (0.696 vs. 0.636),
Data (0.507 vs. 0.416) and Experiment (0.19 vs. 0.11). Short
papers are less likely to share, especially for the Data (0.416)
and Experiment (0.11) factors, and therefore are less repro-
ducible. Short papers do not typically elaborate the details
of the data or experiments, nor do they provide the tools for
analysis. To increase reproducibility, researchers or publish-
ers are encouraged to publish full papers, including details on
the data, method and experiments. Conferences may consider
reevaluating the option to submit short papers.

Figure 16 is a set of bar charts showing the distribution
of the absolute scores for Method, Data and Experiment. The
absolute score represents the sum of the variables listed under

FIGURE 15. R1D Score and reproducibility factors by paper type.

each of these three factors. It is notable that there are, in total,
14 variables for Method, 9 for Data, and only 2 for Experi-
ment. To examine individual papers more closely, we apply a
random rule of thumb. We assume that a factor, to be desig-
nated as reproducible, has at least half of the variables present.
A paper is method reproducible when it has seven or more
variables, data reproducible for more than four variables,
and experiment reproducible with at least one variable. For
Method, only 5% (2+3) of the papers are not reproducible,
and 70% (18+28+17+5+2) of the papers have more than
eight variables. Forty-two percent (15+15+6+5+1) of the
papers are Data reproducible. Interestingly, 72% of the papers
have neither of the two variables in the Experiment factor,
indicating that only 28% of the papers have Experiment
reproducibility. This finding could be attributed to the fact
that most of the papers in the conference are data-driven, not
experiment-driven.

FIGURE 16. Distribution of Absolute Scores.

Figure 17 is a bar chart showing the distribution of the
overall absolute score, which is the sum of all the variables.
There are 25 variables in total representing the reproducibility
performance. A paper is defined as reproducible if more than
12 variables across the three factors are present. Sixty-seven
percent (12+10+14+10+10+4+4+2+1) of the papers
have more than 12 reproducibility variables, and 11%
(4+4+2+1) have 18 or more variables. Typically, a majority
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FIGURE 17. Distribution of overall absolute score.

of the variables shared are under Method, while very few
share the variables under Experiment.

V. DISCUSSION
Analyzing the reproducibility for the 100 papers, we found
that 67 papers, or 67%, are reproducible. As many as 95%
of the papers are Method reproducible, 42% are Data repro-
ducible, while only 28% are Experiment reproducible. Many
papers in the field of business computing performed well for
Method, but further improvements of reproducibility perfor-
mance can be made for Data and Experiment.

The findings indicate that full papers generally score
higher in all the reproducibility metrics, and in all the three
factors. This outcome stems from the fact that short papers
inevitably cannot provide details in Method, Data and Exper-
iment. To encourage reproducibility, academic researchers
should prioritize publishing research documentation in full
context, with details explaining their method, data and exper-
iments. Reproducibility varies by topic. Other topics, includ-
ing healthcare, economics and design science, have high
reproducibility. It is also evident that topics such as the sus-
tainable and societal impact of IS as well as human computer
interface are the least reproducible and received the lowest
scores for all the reproducibility metrics. These topics are
emerging, and data availability is limited. It is likely the
papers are more case-driven or based on interviews and the
like, resulting in qualitative data as sources. In terms of
reproducibility by factor, cyber-security, privacy and ethics
perform the best in Method; analytics, data science and
smart systems lead in Data; while business models, digital
transformation and innovation are the topics that lead in
Experiment. It must be noted while we adapted the method-
ology from [31], [32], there are several key differences.
While [31] compares academic papers to industry papers
published in the period 2013-2016 and is a panel study, this
paper focuses only on academic papers that were published
during one year. While their studies focus on research in
artificial intelligence, this study focuses on business com-
puting/information systems research. Additionally, this study
analyzes the data based onmore specific topics and delineates
the reproducibility differences among the topics. We also

developed numerous additional charts to shed light on this
rich dataset.

VI. LIMITATIONS
Our research has a few limitations. First, the sample data
selected for review was limited because less than 30% of
the papers published in ICIS 2019 were reviewed. The
papers used for this research likely do not fully represent
the entire population of papers, thereby impacting general-
izability. In addition to the limited number of papers sur-
veyed, this study is a snapshot in time. Future studies could
examine conference papers over time and thereby identify
trends. Additional limitations include the validity of the data.
Although we cross-validated the results, human errors do
occur when conducting manual data collections and survey
type analyses. By and large these errors are minimized when
multiple teams cross-check individual paper classifications.
To reiterate, each paper was read and the reproducibility fea-
tures were coded by four coders. The four coders were trained
in the methodology and checklist template. Any differences
in coding were reconciled through discussion and consensus.
While the reading itself has elements of subjectivity, this
approach is typically used in this type of study. It should also
be noted that certain variables, such as algorithm, machine
learning, prediction and source code may not be relevant to
the overall theme of the conference and papers. Likewise,
considering they are data driven and associative, certain stud-
ies may not require experiments. It can also be argued that
the reproducibility score may depend on the research topic
itself. Research topics that are data-based and quantitative
in nature, would likely score better on Method and Data.
Furthermore, these papers are mostly data-driven research
and not about the design of computer artifacts. Therefore,
code is not a prominent issue in this study. This study is also a
descriptive analytic study of ‘data as is’ and determining the
relative absence or presence of reproducibility. This is not a
predictive study attempting to predict the absence or presence
of reproducibility. In the future, reproducibility models for
qualitative research may be developed. This study looked
at reproducibility through a documentarian’s lens. However,
there are other methods that can independently assess repro-
ducibility, or serve to complement similar studies. Finally,
one size does not fit all. In the future, more sophisticated
frameworks may be developed to suit the conferences and
journals of individual disciplines.

VII. CONCLUSION
Using visualization and descriptive analytics, this exploratory
study offers a panoramic view of the state of reproducibility
of business computing research. The study paints a mixed
picture. While 67% of the surveyed papers appear to be
reproducible, this outcome indicates there is significant room
for improvement in publishing reproducible papers. Among
the three factors of Method, Data and Experiment, none
of the papers meet all 25 criteria, leaving much room for
improvement. Data and Method are closely associated to
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one another, as expected, since data is typically utilized in
the analysis process. Experiment falls short, but it must be
acknowledged that the topics and nature of the conference
do not lend themselves well to experiments. Emerging and
sharply-focused topics—such as the economics of comput-
ing, health information technology, design science and future
of work, appear to have better quality reproducibility com-
pared to such other topics as sustainable and societal impact,
and human computer interfaces. Because they impact the
reproducibility mode one may apply, further research is war-
ranted to help delineate the differences among topics. Also,
research in several of the topics is more slanted towards the
conceptual. Additionally, we found that paper length (full vs.
short) also matters in terms of reproducibility. Full papers
with greater documentation are likely to provide more details
about the method, data and experiments (R1D), and they are
generally more reproducible. It seems an obvious suggestion,
but we offer advice to conferences that they accept only full
papers and peer reviewed papers; this would improve the
reproducibility of the findings, such as those in our study.
It is conceivable that the review process would also evolve
over time to include more reproducibility-related criteria for
evaluation.

From a prescriptive perspective, we offer several rec-
ommendations to enhance the reproducibility of computing
research. Our framework and check list are starting points
as they can be applied both to assess reproducibility before
a research study is carried out, and to evaluate a paper or
report arising from the research. A significant benefit is the
mitigation of the risk of carrying out a research project only
to discover it is not reproducible at a later stage. We suggest
prospective authors ask themselves the questions given in
the check list for their study area. This would be a major
departure from the traditional approach of merely making
code or data available at journal sites, repositories such as
GitHub, validating code post facto, etc. In addition, we sug-
gest that reproducibility analyses be conducted in the context
of data governance, ethics, awareness of intellectual property
issues, privacy, security, transparency and other issues. There
is also an urgent need to continue to build methods, models
and tools to conduct studies, both at the paper/project level
and at a large-scale macro level, for example, to assess the
reproducibility of entire sets of conference papers. These
are dauting tasks since we know from the literature review
there is an eclectic group of models and tools across the
broader scientific disciplines and the more specific sub-fields
of computing, and at the same time, one model may not fit all
research situations.Wewould be remiss if we did not mention
the need for additional research into the validation of the
reproducibility methods themselves.While studies, including
this one, are emerging to examine the presence of repro-
ducibility, there is a dearth of ‘how-to’ mechanisms. This gap
must be addressed. Though there is an increased awareness
for the need for reproducibility, better communication of the
benefits of rigor in computing research, and the risks and
consequences of a failure to reproduce or repeat/replicate

research findings, is needed so the larger benefits of comput-
ing and technology research can be harnessed.

Reproducibility in general, and in business computing
research specifically, is at a critical stage of development but
increased awareness and advances in reproducibility methods
and tools can accelerate the maturing process.
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