IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 6, 2022, accepted February 24, 2022, date of publication March 10, 2022, date of current version March 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3157812

Performance Monitoring Counter Based

Intelligent Malware Detection

and Design Alternatives

JORDAN PATTEE, SHAFAYAT MOWLA ANIK, AND BYEONG KIL LEE ", (Senior Member, IEEE)

Department of Electrical and Computer Engineering, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA

Corresponding author: Byeong Kil Lee (blee@uccs.edu)
This work was supported in part by UCCS, and in part by NVIDIA Corporation.

ABSTRACT Hardware solutions for malware detection are becoming increasingly important as software-
based solutions can be easily compromised by intelligent malware. However, the cost of hardware solutions
including design complexity and dynamic power consumption cannot be ignored. Many of the existing
hardware solutions are based on statistical learning blocks with abnormal features of system calls, network
traffics, or processor behaviors. Among those solutions, the performance of the learning techniques relies
primarily on the quality of the training data. However, for the processor behavior-based solutions, only a
few behavioral events can be monitored simultaneously due to the limited number of PMCs (Performance
Monitoring Counters) in a processor. As a result, the quality and quantity of the data obtained from archi-
tectural features have become a critical issue for PMC-based malware detection. In this paper, to emphasize
the importance of selecting architectural features for malware detection, the statistical differences between
malware workloads and benign workloads were characterized based on the information from performance
counters. Most malware can easily be detected with basic characteristics, but some malware types are
statistically very similar to benign workloads which need to be handled more in-depth. Hence, we focus on
multiple steps to investigate critical issues of PMC-based malware detection: (i) statistical characterization
of malware; (ii) distribution-based feature selection; (iii) trade-off analysis of detection time and accuracy;
and (iv) providing architectural design alternatives for hardware-based malware detection. Our results show
that the existing number of performance counters is not enough to achieve the desired accuracy. For more
accurate malware detection in real-time, we propose both accuracy improvement schemes (with additional
PMCs, etc.) and hardware acceleration schemes. Both schemes provide accuracy improvement (5~10%)
and detection speedup (up to 10%) with the additional hardware cost (less than 1% of the chip complexity).

INDEX TERMS Hardware acceleration, machine learning, malware detection, workload characterization.

I. INTRODUCTION

As Internet technologies and smart devices are explosively
growing, data is becoming more prevalent. Threat data has no
exception. Research on computer security has dedicated a sig-
nificant amount of effort to malware detection with multiple
approaches, but automated analysis and detection of malware
remain open issues. Software-based detection can remove
harmful programs with a static signature-based detection
mechanism. However, the detectors can be easily compro-
mised as the usage of obfuscation techniques becomes more
common in malware, which allows the malware to generate

The associate editor coordinating the review of this manuscript and

approving it for publication was Kostas Kolomvatsos

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

new patterns of signatures at runtime [1], [2]. Another issue
of the static signature-based detectors is that they can also
impact the performance of the host processor. For the past two
decades, security has been a second or third consideration in
computer systems design because priority has always been
given to performance, power, and area (PPA). Consequently,
in a performance-oriented architecture design, inherent secu-
rity risks exist that are associated with architectural modules
such as branch prediction, caches, instruction prefetching
module, etc. These architecture-level vulnerabilities are diffi-
cult to remove due to the conflict of interests between system
performance and security. In contrast, dedicated hardware
towards security such as ARM TrustZone can be operated
without burdening the host processor. However, the hardware

28685

https://orcid.org/0000-0002-0260-2238
https://orcid.org/0000-0002-9442-3340

IEEE Access

J. Pattee et al.: Performance Monitoring Counter Based Intelligent Malware Detection and Design Alternatives

still needs to share physical resources, which leads to the
risk of side-channel information leakage [3]-[5]. Therefore,
existing architecture-level solutions are usually not generic.

To address unsolved issues on malware detection, security
providers recently focus on machine learning to improve
security solutions [6]-[17]. However, there are still various
issues that exist for applying machine learning to cybersecu-
rity. For example, meaningful labeled datasets are not readily
available, and the computational workload is too large to
handle the big data.

Workload characterization is a very important step in
designing processors or processor modules, and it can help
to understand application behaviors on each architecture
component. Characterized results are being used to design
processors or hardware acceleration modules. In this paper,
we focus on multiple steps to resolve critical issues of PMC-
based malware detection including statistical workload char-
acterization, statistical distribution based feature selection
(feature tailoring), tradeoff analysis of detection time and
accuracy, and architectural implications for hardware-based
malware detection. Based on our experimental results and
analysis, the existing number of performance counters is not
enough to meet the desired accuracy in malware detection.
For more accurate malware detection in real-time, we pro-
pose two architectural design alternatives: detection hardware
with more performance monitoring counters and acceleration
hardware with existing PMCs.

Related work: Basic motivation of this research starts from
the intention to effectively use architectural profile informa-
tion for malware detection. The main purpose of PMCs is to
profile and tune the system performance at the architectural
level [18]-[20]. Recently, PMCs are widely used in various
domains including system power estimation, firmware modi-
fication, and malware detection [3], [19]. One of the primary
drawbacks of using PMC:s is the limited number of monitor-
ing counters in a processor. Based on our investigation, more
profile data from the performance counters can provide more
accurate detection results. Recently, machine learning tech-
niques have been used for classifying malware [13], [20]-[25]
with multiple types of data including performance counter
information. Garcia-Serrano et al. [21] discuss the feasibil-
ity of unsupervised learning to detect attacks. Conversely,
Zhou et al. [26] claim incapability and difficulty of malware
detection with the hardware performance counters in terms
of detection accuracy. Our research focuses on improving the
detection accuracy; as well as latency by adding additional
hardware modules. Based on our previous research [27],
we perform more characterizations on benign malware appli-
cations’ profiles from PMC events. Also, we design the
hardware architecture to improve the accuracy and detection
latency by adding more PMC modules and the hardware
module for the detection.

The rest of the paper is organized as follows. In Section II,
we describe a statistical characterization of malware work-
loads from data collection to feature tailoring. The pro-
posed malware detection is described in Section III, which

28686

includes details about statistical distribution based detection,
supervised learning framework, etc. In Section IV, evaluation
results are explained and compared with multiple approaches,
and accuracy issues are also discussed. Implications for hard-
ware design to improve the performance are provided in
Section V, and we conclude with section VI.

Il. STATISTICAL CHARACTERIZATION OF MALWARE

For the characterization of malware, PMCs are used to collect
the data from microprocessors. Due to cost and area issues,
processors have only a limited number of counters (registers),
and only a few processor behavioral events can be simul-
taneously captured. In our data collection procedure, four
architectural events from four PMCs are collected at the same
time. Recent microprocessors tend to have more PMCs with
registers for multiple purposes [18], [19].

A. DATA COLLECTION FROM PMCS

We use perf tool of Ubuntu 18.04 on the Intel Xeon pro-
cessors (Skylake microarchitecture) to capture the behav-
iors of microarchitectural features. Both 20 benign samples
and 20 malware samples are used for collecting architec-
tural information and characterizing each workload from the
architectural point of view. Each malware sample includes
a combined 10 profiles of the same category of malware.
Therefore, 200 benign and malware profiles were used for
our experiments, respectively. Each profile is captured for
30 minutes of processor behaviors of a malware applica-
tion. We assume that 30 minutes is enough time to statisti-
cally characterize differences between malware and benign
applications. We collect malware applications from multiple
sources including Virus Total [28] and Virus Sign [29]. The
majority of the malicious samples comprised of Linux ELFs.
The distribution of malware types used in our experiments is
Trojans (40%), spyware (20%), adware (15%), worms (15%),
and keyloggers (10%). Some types of malware including
rootkits and ransomware were excluded in our experiment
due to the lack of sources. For benign samples, we monitor the
behaviors of Ubuntu applications including media player, text
editor, photo editor, package manager, Firefox [33], rhythm
box [34], etc. In addition, several shell scripts which include
multiple benign applications are also monitored. To avoid any
contamination or infection from malware under the exper-
iment, data collection is performed on isolated Linux con-
tainers (LXCs). LXCs are chosen over virtualization through
a virtual machine because containers provide the isolated
systems on the host OS; instead of emulating the hardware.
Among perf attributes, we capture 40 hardware events —
4 events as a group. The 40 events are based on two types of
events which are HARDWARE and HW_CACHE as shown
in Table 1. We make four events as a group since the processor
we use for data collection has only 4 counters.

Some malware profiles have all-zero counts for some peri-
ods from the perf monitoring. We assume those malware
instances are hibernating and could be active at a specific
event or time, so those applications should be included in

VOLUME 10, 2022

J. Pattee et al.: Performance Monitoring Counter Based Intelligent Malware Detection and Design Alternatives

IEEE Access

TABLE 1. Perf events used for characterization.

Type Event
PERF_TYPE_ CPU Cycles, INSTRUCTIONS, BUS Cycles, CACHE

HARDWARE References, CACHE Misses, BRANCH Instructions,
BRANCH Misses

PERF_TYPE L1D Prefetch Accesses, L1D Read Accesses, L1D Read

HW_CACHE Misses, L1D Write Accesses, L1D Write Misses, L1D

Prefetch Misses, L11 Prefetch Accesses, L1I Read
Accesses, L11 Read Misses, L11 Write Accesses, L11
Write Misses, L11I Prefetch Misses, LL Prefetch
Accesses, LL Read Accesses, LL Read Misses, LL
Write Accesses, LL Write Misses, LL Prefetch Misses,
DTLB Read Accesses, DTLB Read Misses, DTLB
Prefetch Accesses, DTLB Write Accesses, DTLB Write
Misses, DTLB Prefetch Misses, ITLB Prefetch
Accesses, ITLB Read Accesses, ITLB Read Misses,
ITLB Write Accesses, ITLB Write Misses, BPU Read
Accesses, BPU Read Misses, BPU Write Accesses,
BPU Write Misses

the experiments. For each experiment, we collect the PMC
information for five hours for each malware application and
benign application.

B. STATISTICAL CHARACTERIZATION AND

FEATURE TAILORING

Based on the data collected from the performance monitoring
counters, we observe some features to differentiate malware
and benign samples. One of the features is the sum for each
hardware event over the 30-minute profiling period. The
magnitude and frequency of the PMC access for the malicious
and benign profiles can be distinguishable characteristics
based on our observation. The executable malware has single
counter magnitudes up to 100x smaller than benign samples’
profiles. However, there is not a clearly defined decision
boundary for the two classes: resulting in some overlap. This
decision can be made with statistical criteria and the help
from machine learning with well-labeled data. Figure 1 shows
the significant difference in PMC measurements between the
two for the number of cache references. The average numbers
are also showing the differences in both cases. Average cache
references in benign applications are almost 90 times. Based
on our observation, the frequency and magnitude of the access
values can be used as unique criteria that separate malware
profiles from benign profiles.

Figure 2 shows the comparison of benign and malware
samples in terms of sum for each hardware event. The ratios
between benign and malware are ranging from 30x to 100x.
The sum of events can be used to detect malware, but only
considering the sum can skew the results because the per-
formance features from malware datasets are irregularly dis-
tributed, and numerous malware samples have zero counts
for most of the sampling time. Therefore, we determine that
the sparseness of the events monitored from the PMCs can
be one of the characteristics associated with malware. The
sparseness of the events, as another characteristic, can be
obtained from the data, where the numbers from the sum of
events are divided by the sum of non-zero events per sample —
we refer to the feature as effective sum. The ratios between

VOLUME 10, 2022

benign and malware of the effective sum are ranging from
1x to 66x. The ratio of 1x indicates that some malware types
have very similar behaviors to benign applications based on
architectural profiling. We need to have more analytic criteria
to differentiate the similarity of the effective sum between
malware and benign applications’ profile.

PMC Accesses for Cache References

1 @ ame ¢ @ L]
=
.o
go8
2
o
806
©
E
o
Z 04
v
3
5
£ 02 ® Benign: Average Cache References: 20,265
o
8 ® Malware: Average Cache References: 224

0 []

0 20 40 60 80 100 120

Sum of Cache References le3

FIGURE 1. PMC accesses for cache reference.

Based on more in-depth analysis and observation, we come
up with a metric called Degree of Distribution (DoD) as one
of the differentiation criteria between malware and benign.
Mean and standard deviation values are used to get the Degree
of Distribution of the sum and the DoD of the effective sum as
shown in equation (1). If the standard deviation is 0, the DoD
value will be 1. In case the standard deviation is increased,
DoD values will be less than 1. For a group of malware, DoD
values will be relatively small due to the intermittent events.

Given two datasets — sum and effective sum, DoD values
are extracted as shown in Figure 3. For each PMC event,
we extract the average DoD value from 20 malware and
20 benign samples, respectively. Figure 3 shows the char-
acterization results of each PMC event to the DoD. In the
case of the sum datasets, the two graph lines are almost flat
which reveals that there are no unique features between the
malware and benign profiles. However, for the effective sum
datasets, distinct features can be observed between benign
and malware applications — especially for 6 performance
events (marked with a red circle) including L1 data events and
L1 instruction prefetch events among 40 PMC events. We use
these 6 distinguishing performance events as the selected
features for supervised learning.

IIl. MALWARE DETECTION BASED ON STATISTICAL
CHARACTERIZATION

Generally, hardware-based malware detection has some
advantages: it can provide a capability for dynamic mech-
anisms without relying on static signatures, and hardware-
based detection also delivers faster processing time. However,
one of the disadvantages is the cost of architectural resources
(e.g., additional registers and logic). Modern processors
provide a few special registers and hardware modules for

28687

IEEE Access

J. Pattee et al.:

Performance Monitoring Counter Based Intelligent Malware Detection and Design Alternatives

Number of events Ratios between benign and malware

120

100

— 80
o
=
$ 60
®
E 40
g
e 20
.o
S o
o S T T T ST Y S
= QP € O 0 C U O U L L Y U LW VUV L OO UV L Y
T 0 Q@ ¥ 0 B G @ Y B oG o@m W ow B ow B oy ow B
] A= A - A A O O B B A
o e PS3LUL3000US0=220uUu=So0=2=09
= 5 2 & 2 o 9 O o = o O o o
] AL g 25sg3dag<C<ygsa<aT<L Y s <
o« U2 0 2c®gRQd Vg S5STBTolIgs
280 f FEXTEZFZIEZEZFE
= = S & e XD I nLe EF 2 g 84
I & c Codpga>@g -2 5082
=)] o = S-~-o0ac D = = o
om DJ - - — -
a5 =
- -
]

LL Read Accesses

LL Read Misses

LL Write Accesses I

FIGURE 2. The number of events ratios between benign and malware.

performance monitoring and performance tuning, but that is
not enough to capture various architectural events if they are
used for other purposes such as malware detection rather than
performance tuning. Based on our observation, PMC-based
malware detection can be useful if we properly use statistical
characterized information and machine learning mechanism
to fill some potential gaps, since malware does have some
unique characteristics in terms of workload behavior. In this
paper, we use a statistical characteristic feature — DoD -
based on performance counters in one of our experiments for
malware detection.

Degree of Distribution (malware vs. benign)
o-benigh_sum -s-malware_effective_sum —<benigh_effective_sum

----- malware_sum

e
@

0.55
0.50
045,
0.40
0.35
0.30
0.25
0.20

Degree of Distribution (Average)

0.15
40 PMC Events

FIGURE 3. Characterization of each PMC event to the Degree of
distribution (average value) of 20 malware and 20 benign samples - sum
and effective sum.

Figure 4 shows the comparison of malware classification
with 6 events (tailored) and the case with 40 events (full).
For each sample, we extract the average DoD value from
40 PMC events. The threshold lines (red-dotted line) for
malware detection are based on the DoD values (average) for
each sample, where the case with 40 events has a slightly
better threshold line than the case with only 6 events but
the results are comparable. The DoD values can be directly
used for malware detection with an appropriate threshold
value, but there will surely be exceptions, and using a static
number (e.g., threshold value) is not a good idea for the detec-
tion mechanism. In our research, we combine the statistical
information (DoD) with a supervised learning approach for
binary classification to improve the detection accuracy with
a smaller number of events.

28688

PMC Events

LL Write Misses I
LL Prefetch Misses I
DTLB Read Accesses I
DTLB Read Misses I
DTLB_Prefetch... I
DTLB Write Accesses NN
DTLB Write Misses I
DTLB_Prefetch Misses I
ITLB Read Misses I
ITLB Write Accesses NN
ITLB Write Misses NN
BPU Read Accesses I
BPU Read Misses NN
BPU Write Accesses I
BPU Write Misses NN

ITLB_Prefetch Accesses I

ITLB Read Accesses NN

A. SUPERVISED LEARNING BASED MALWARE

DETECTION WITH PERFORMANCE MONITORING
COUNTER INFORMATION

1) FEATURE SELECTION (TAILORING) FOR

MACHINE LEARNING

As a pre-processing strategy of machine learning, feature
selection is very important, and will determine the qual-
ity of results and processing time [30], [31]. The proposed
features based on statistical distribution are applied to the
machine learning framework and the results are compared
to the results from the features based on attribute evaluation.
There are many attribute evaluators such as correlation, gain-
ratio, info-gain, or oneR attribute evaluator that are available
with a tool called Weka [32]. Weka is a collection of machine
learning algorithms for data mining tasks, which provides
multiple tools for data preprocessing, classification, regres-
sion, clustering, association rules mining, and visualization.
The attribute evaluators have very different rankings for the
40 features, so the top 10 features from multiple evaluators are
initially trained and tested using machine learning classifiers
in our experiments. The attribute evaluator that yielded the
best classification results is the cfsSubsetEval (Correlation-
based Feature Subset Selection). The top 6 features from the
cfsSubsetEval were then selected for further classification
training/testing with different options and compared to the
proposed DoD-based features.

2) BINARY CLASSIFICATION

A malware detection scheme is a binary classification:
malware or not. There are many classifiers for binary clas-
sification [35]. For this experiment, we use 10 classifiers
that include Bayes network, logistic classification, multi-
layer classification, OneR, decision trees, JRIP, Bagging,
AdaBoostM1, KStar classification, and random forest [32].
Figure 5 shows the overview of the complete learning frame-
work from prepossessing to classification. Data sets are split
into 3 different methods — standard, 3-fold, and 5-fold cross-
validation. The standard dataset split uses 70% of the samples

VOLUME 10, 2022

J. Pattee et al.: Performance Monitoring Counter Based Intelligent Malware Detection and Design Alternatives

IEEE Access

1.0

0.9 L
. .
000 e%0y o00%e,y, "

20 benign samples

.

08
0.7 e *° .

0.6 . .

0.5 . L rs
0.4 .

0.3 -
0.2

0.1 20 malware samples
0.0

Degree of Distribution (Average)
.

malware vs. benign

(a) Malware classification with 40 PMC events

1.0
0.9

.
L2
o‘..oo.

.
o®? e %,

07 %o s T 4 e, 20 benign samples
0.6 L4 .

0.5

0.4 . >

0.3

0.2

01 20 malware samples
0.0

Degree of Distribution (Average)

*e
malware vs. benign

(b) Malware classification with 6 PMC events

FIGURE 4. Malware classification with 6 events [tailored] is comparable
to the case with 40 events [full] (some exceptions are observed in the
case with 6 events).

for training and 30% of the samples for testing data [36].
N-fold split means that the first 1/N portion of the dataset
is used for testing and next 1/N portion of the dataset is used,
and so on. Therefore, every data point will be in the testing
set once, and in the training set N-1 times. Cross-validation
which is the N-fold split method provides more training and
testing cases and can reduce overfitting and underfitting [37].

PmMC
Event #1
Raw Host Event #2 Feature Supervised Trained Testing malware
Event#3 || | e T s or
Data Processor Tailoring Training Model (Classification) [

FIGURE 5. Overview of the complete learning framework from
prepossessing to classification.

IV. EVALUATION

A. COMPARISON OF FEATURE TAILORING METHODS

The proposed DoD-based features are compared to the fea-
tures selected from the feature tailoring method based on
the attribute evaluation in Weka. Table 2 shows the two lists
of features, where only one event is common. DoD-based
features are all L1 cache events — 4 data cache events and
2 instruction cache events. On the other hand, the attribute
evaluation-based features include representative architectural
events such as cache, branch, and bus cycle. Based on the
extracted features, we see that malware characteristics are
closely related to data read and write to import malicious data.
The two lists of features are used for binary classification
through supervised learning with 3 different training and
testing frameworks.

VOLUME 10, 2022

B. DISCUSSION ON ACCURACY

Table 3 shows the malware detection results from super-
vised learning using the proposed feature tailoring methods.
Detection will be based on the process IDs. All processes
are monitored with the information from the performance
monitoring counters. Five accuracy metrics were used for
accuracy comparison, including false positive, true negative,
f-measure, AUC-ROC (Area Under Curve - Receiver Oper-
ating Characteristic), and AUC-PRC (Area Under Curve -
associated Precision/ReCall) [38]-[40].

TABLE 2. Feature comparison from two tailoring methods.

Degree of Distribution (DoD) Attribute Evaluation
L1D Read Accesses Cache References
L1D Read Misses Cache Misses
L1D Write Accesses Branch Instructions
L1D Write Misses Branch Misses
L1I Prefetch Accesses Bus Cycles
L1I Read Accesses L1D Read Accesses

As shown in Table 3, six DoD-based features show better
accuracy overall, compared to six attribute-based features.
Among the tailoring with 3 different datasets, ‘6-DoD-
standard’ shows the best accuracy in all accuracy metrics.
Therefore, the degree of distribution (DoD) can differentiate
malware from benign samples and can also provide highly
accurate malware detection through the machine learning
framework.

TABLE 3. Accuracy comparison.

Category Fa}ge True‘: F- AUC AUC

Positive ~ Negative = measure (ROC) (PRC)
6-attrib-standard ~ 0.44 0.56 0.93 0.85 0.92
6-attrib-3-fold 0.46 0.54 0.93 0.85 0.94
6-attrib-5-fold 0.42 0.58 0.94 0.86 0.98
6-DoD-standard 0.15 0.85 0.97 0.99 1.00
6-DoD-3-fold 0.26 0.74 0.95 0.96 0.98
6-DoD-5-fold 0.25 0.75 0.96 0.97 1.00

AUC (ROC): Area Under Curve - ROC (Receiver Operating Characteristic)
AUC (PRC): Area Under Curve - PRC (associated Precision/ReCall)

The proposed malware detection method is based on hard-
ware components’ activities, therefore malware types includ-
ing previously unseen malware samples will not affect the
detection accuracy. In addition to testing our scheme with
cross-validation, we use the data augmentation scheme to
generate the trace profile of malware variants by changing
the interval of the activities, combining multiple malware pro-
files, etc. The proposed method can efficiently detect newly
generated malware variants within a 5% error rate.

C. TRADEOFF ANALYSIS: DETECTION TIME vs. ACCURACY
Generally, malware is active only for a very short period,
and some malware hibernates until a specific event occurs.
Based on our analysis, more accurate results can be achieved
if we have more microarchitectural information from more

28689

IEEE Access

J. Pattee et al.: Performance Monitoring Counter Based Intelligent Malware Detection and Design Alternatives

performance monitoring counters simultaneously. However,
most microprocessors have a small number of performance
counters (e.g., 4~8) running at the same time, which means
that some behavior events can be missed when sampling
processor behaviors. Accuracy for a detection algorithm is
very important, but effective (dynamic) accuracy will be
worsened if we cannot get proper datasets because of the dor-
mant nature of malware and the sampling period. Therefore,
an additional hardware module to extract statistical informa-
tion with additional PMC registers is required to collect more
profile information simultaneously and to promptly extract
meaningful statistical information. With more PMC registers,
more events such as branch behaviors and TLB behaviors
can be used as classification features that can improve the
performance in terms of accuracy.

Based on our experiments and analysis, the detection rate
is 10~20ms and classification accuracy is 90~97%. The
detection rate depends on the sampling rate for capturing
profile information, and the classification accuracy depends
on the number of PMC registers. By adding more PMC reg-
isters, classification accuracy is improved (5~10%), but the
detection rate shows very limited improvement (up to 10%)
due to calculating more information, even with hardware
acceleration. The accuracy improvement (95~99%) provides
more confidence in detection.

V. IMPLICATIONS FOR HARDWARE DESIGN FOR
PERFORMANCE IMPROVEMENT

To improve the accuracy of malware detection, more per-
formance features are required. But there are not enough
PMC registers in modern microprocessors to monitor a large
number of profiling events. However, adding more registers
to microprocessors needs more manufacturing costs and oper-
ational costs. As a compromised way, an additional set of
PMC:s should be logically combined with existing counters
since existing counters are not always actively used. Alter-
natively, a large set of profiling events can be captured with
the shorter sampling time with existing PMCs without adding
more PMC registers. Detailed schemes are described in the
following subsections.

A. PMCS vs. ACCURACY

1) WITH ADDITIONAL PMCs

For large-scale systems, it is meaningful to add more hard-
ware resources to existing processors to provide a more
secure computing environment. Generally, most micropro-
cessors already have PMC registers for performance mon-
itoring. In our research, we come up with a new scheme
to utilize both existing PMCs and newly added PMCs for
malware detection. As shown in Figure 6 (a), two different
operation modes can be designed: normal mode and per-
formance tuning mode. In normal mode, two PMC mod-
ules will be used for malware detection which can provide
more accuracy. In performance tuning mode, only half of the
PMC will be used for detection while the other half will be

28690

used for profiling behaviors for performance tuning. Hard-
ware cost estimation for additional PMC is also described in
Figure 6 (b).

Performance
tunmg mode Normal mode
[detection] ~ [detection mode]

Performance
tuning mode
[profiling] |

lr——

existing || duplicated |
PMC |

(a) Additional PMC

. Duplicated PMC
Design features (vs. single PMC)
Area 2X

2X (normal mode)
1X~2X (perf tuning mode)

1X+A (more ALU ops)

Power

Latency

(b) Hardware cost (for additional PMC)

FIGURE 6. Duplicated PMC to improve the detection accuracy in normal
mode by using more profiling information. In performance tuning mode,
only duplicated PMC will be used for malware detection.

If we increase the PMC registers double, the area will be
increased almost twice. Operation power in normal mode will
be increased 2X, while power consumption in performance
tuning mode will be 1X~2X depending on the availability of
the malware detection. The latency of malware detection will
be slightly increased because of more computational latency
to extract the statistical information from more profiling
information. The latency will be 1X+A rather than 2X+A
due to the parallel capturing of microarchitectural behaviors.

2) WITH EXISTING PMCs

Instead of adding more PMCs, a large number of profiling
events can be captured with a shorter sampling period with
the existing PMCs. As shown in Figure 7, assuming the
existing PMC module has 6 monitoring counters, the PMC
module can capture 6 events during the sampling time, T.
With this scheme, the PMC module can capture 12 events
during the same sampling time (T), where each event will be
monitored only for T/2. Area and power consumption will not
be changed with this scheme, but the latency can be leveraged
by the number of distinctive features and monitoring time for
each feature. Also, the accuracy of malware detection can be
improved from more profile events.

B. HARDWARE ACCELERATION MODELS:
PRE-PROCESSING MODULE vs. DEDICATED

DETECTION MODULE

For the acceleration of detection, two different approaches
can be considered depending on the design budget as
described in Figure 8: (i) adding a pre-processing mod-
ule to generate the statistical metadata which will be

VOLUME 10, 2022

J. Pattee et al.: Performance Monitoring Counter Based Intelligent Malware Detection and Design Alternatives

IEEE Access

Sampling time, T/2

i[_Event1
|

Event2
Sampling time, T Event3

—_—— Event4
| Event5

B

existing

existin
PMC 9l ===

PMC I | e

—_——— =
—_—— ==

===

(a) Existing single PMC module with more profiling events

Design features Single PMC
Area 1X
Power 1X

Latency 1X+A (more ALU ops)

(b) Hardware cost

FIGURE 7. Existing PMC module (6 event monitoring counter) with more
profiling events and a shorter sampling period.

Selected events

[features]
o
I I
| pre- Metadata
I PMC I—> pl;ggedss;gg - to host
hardware accelerator
I I

(a) Pre-processing module

Selected events

[features]
| |
| | detection
PMC —» module —» malware?
I | (stat-ALU)
| |

Dedicated processor

(b) Dedicated detection module

FIGURE 8. Additional hardware modules for improving detection latency.
Pre-processing module as a hardware accelerator vs. dedicated detection
module for ALU and decision operation. Hardware cost varies on budget

and goal.

sent to the host processor for machine learning operation;
(i) adding a dedicated detection hardware module to dynam-
ically calculate statistical data and learning-based decision
module. Two hardware approaches for malware detection
can be applied to either existing embedded processors or
new application-specific processors. Additional hardware
cost varies on design goal and budget. Based on our design
estimation, the complexity of the hardware acceleration mod-
ule will be less than 1% of the entire chip for both approaches.

Operations: All processes will be monitored through
the proposed detection mechanism with the information

VOLUME 10, 2022

from PMCs. The period of data capturing per event process
can be calibrated depending on the demand and resource
availability. Selected events (features) can be dynamically or
statically updated according to the learning results to improve
detection accuracy. Based on our performance estimation,
both combinational schemes provide accuracy improvement
(5~10%) and detection speedup (up to 10%) with the addi-
tional hardware cost.

VI. CONCLUSION

Malware detection with hardware solutions is becoming more
important as malware becomes more advanced. Many exist-
ing hardware solutions use behavioral data from PMCs.
However, due to the limited number of PMC:s, the selection of
architectural features is a critical issue to provide high-quality
data for malware detection. To address the issue, we come up
with a metric called Degree of Distribution (DoD) as one of
the differentiation criteria. Our experimental results show that
the DoD can differentiate malware from benign samples and
can also provide highly accurate malware detection through
the machine learning framework. The accuracy comes from
both a statistical feature with a smaller number of events and
machine learning schemes to boost the detection accuracy
with limited PMC registers. Based on our analysis, hardware
acceleration modules, as well as additional PMC registers are
required for more accurate malware detection in real-time.

It will be highly possible for malicious software designers
to be aware of the proposed detection algorithm when it is
widely used. As one of the solutions, the periodic update
of the tailored features could prevent form any tricks by
reflecting the latest malware behaviors.

In future works, a more detailed architectural design for
a dedicated accelerator to provide more efficiencies in chip
area, power, and processing time will be investigated. Also,
malware workloads need to be architecturally categorized,
so that specific architectural features can be reflected in the
hardware design of the detection module.

REFERENCES

[1] M. Al-Asli and T. Ghaleb, “Review of signature-based techniques in
antivirus products,” in Proc. ICCI, Apr. 2019, pp. 1-6.

[2] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,” in
Proc. BWCCA, 2010, pp. 297-300.

[3] N. Patel, A. Sasan, and H. Homayoun, “Analyzing hardware based mal-
ware detectors,” in Proc. DAC, 2017, pp. 1-6.

[4] A. Damodaran, F. Di Troia, C. A. Visaggio, T. H. Austin, and M. Stamp,

“A comparison of static, dynamic, and hybrid analysis for malware detec-

tion,” J. Comput. Virol. Hacking Techn., vol. 13, no. 1, pp. 1-12, 2017.

L. Nataraj, A Signal Processing Approach Malware Analysis. Santa Bar-

bara, CA, USA: Univ. California, 2015.

M. Alazab, S. Venkatraman, P. Watters, and M. Alazab, ‘“Zero-day mal-

ware detection based on supervised learning algorithms of API call signa-

tures,” in Proc. 9th Australas. Data Mining Conf., vol. 121, Ballarat, NSW,

Australia, Dec. 2011, pp. 1-20.

S. Huda, J. Abawajy, M. Alazab, M. Abdollalihian, R. Islam, and

J. Yearwood, ‘“Hybrids of support vector machine wrapper and filter based

framework for malware detection,” Future Gener. Comput. Syst., vol. 55,

pp. 376-390, Feb. 2016.

[8] E.Raft, J. Sylvester, and C. Nicholas, “Learning the PE header, malware
detection with minimal domain knowledge,” in Proc. 10th ACM Workshop
Artif. Intell. Secur., New York, NY, USA, Nov. 2017, pp. 121-132.

[5

[6

—

[7

—

28691

IEEE Access

J. Pattee et al.: Performance Monitoring Counter Based Intelligent Malware Detection and Design Alternatives

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]
[33]

[34]

M. Rhode, P. Burnap, and K. Jones, “Early-stage malware prediction
using recurrent neural networks,” Comput. Secur., vol. 77, pp. 578-594,
Aug. 2018.

H. S. Anderson, A. Kharkar, B. Filar, and P. Roth, Evading Machine
Learning Malware Detection. New York, NY, USA: Black Hat,
2017.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, 2015.

J. Saxe and K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” in Proc. 10th Int. Conf.
Malicious Unwanted Softw. (MALWARE), Oct. 2015, pp. 11-20.

S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi, ‘“Malware
detection with deep neural network using process behavior,” in Proc.
IEEE 40th Annu. Comput. Softw. Appl. Conf. (COMPSAC), Jun. 2016,
pp. 577-582.

W. Huang and J. W. Stokes, “MTNet: A multi-task neural network for
dynamic malware classification,” in Proc. Int. Conf. Detection Intru-
sions Malware, Vulnerability Assessment. Cham, Switzerland: Springer,
Jul. 2016, pp. 399-418.

T. Shibahara, T. Yagi, M. Akiyama, D. Chiba, and T. Yada, “Efficient
dynamic malware analysis based on network behavior using deep learn-
ing,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2016,
pp- 1-7.

M. Sebastin, R. Rivera, P. Kotzias, and J. Caballero, “AVclass: A tool for
massive malware labeling,” in Proc. Int. Symp. Res. Attacks, Intrusions,
Defenses. Cham, Switzerland: Springer, 2016, pp. 230-253.

S. Ni, Q. Qian, and R. Zhang, “Malware identification using visualiza-
tion images and deep learning,” Comput. Secur., vol. 77, pp. 871-885,
Aug. 2018.

'W. Bircher and L. John, “Complete system power estimation: A trickle-
down approach based on performance events,” in Proc. ISPASS, 2007,
pp. 158-168.

J. Demme, “On the feasibility of online malware detection with perfor-
mance counters,” ACM Comput. Archit. News, vol. 41, no. 3, pp. 559-570,
2013.

M. Bahador, “HPCMalHunter: Behavioral malware detection using hard-
ware performance counters and singular value decomposition,” in Proc.
ICCKE, 2014, pp. 703-708.

A. Garcia-Serrano, “Anomaly detection for malware identification using
hardware performance counters,” 2015, arXiv:1508.07482.

M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Ponomarev,
“Malware-aware processors: A framework for efficient online malware
detection,” in Proc. IEEE 21st Int. Symp. High Perform. Comput. Archit.
(HPCA), Feb. 2015, pp. 651-661.

H. Hossein, “Ensemble learning for effective run-time hardware-based
malware detection: A comprehensive analysis and classification,” in Proc.
DAC, Jun. 2018, pp. 1-6.

G. Dahl, “Large-scale malware classification using random projections
and neural networks,” in Proc. ICASSP, 2013, pp. 3422-3426.

B. Athiwaratkun and J. Stokes, ‘“Malware classification with LSTM and
GRU language models and a character-level CNN,” in Proc. ICASSP,
2017, pp. 2482-2486.

B. Zhou, “Hardware performance counters can detect malware: Myth or
fact?” in Proc. ASIACCS, 2018, pp. 457-468.

J. Pattee and B. K. Lee, “Design alternatives for performance monitoring
counter based malware detection,” in Proc. IEEE 39th Int. Perform. Com-
put. Commun. Conf. (IPCCC), Nov. 2020, pp. 1-2.

Virus Total Academic Malware Samples. Accessed: Aug. 5,2021. [Online].
Available: https://www.virustotal.com/intelligence/

Virus Sign Malware Samples. Accessed: Jun. 10,2021. [Online]. Available:
https://samples.virussign.com/samples

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, 2015, pp. 1-14.

L. Bottou, “Global training of document processing systems using graph
transformer networks,” in Proc. Comput. Vis. Pattern Recognit., 1997,
pp. 489-494.

M. Hall, “The weka data mining software: An update,” in ACM SIGKDD
Explor. Newslett., vol. 11, no. 1, pp. 10-18, 2009.

Firefox. Accessed: ~May 20, 2021. [Online]. Available:
https://www.mozilla.org/en-U.S. /firefox/linux/
Rhythm Box. Accessed: May 20, 2021. [Online]. Available:

https://help.ubuntu.com/community/Rhythmbox

28692

(35]

(36]

(371

[38]

(39]

(40]

V. Bahel, S. Pillai, and M. Malhotra, “A comparative study on various
binary classification algorithms and their improved variant for optimal
performance,” in Proc. IEEE Region Symp. (TENSYMP), Jun. 2020,
pp. 495-498.

D. M. W. Powers and A. Atyabi, “The problem of cross-validation: Aver-
aging and bias, repetition and significance,” in Proc. Spring Congr. Eng.
Technol., May 2012, pp. 1-5.

B. Ghojogh and M. Crowley, “The theory behind overfitting, cross
validation, regularization, bagging, and boosting: Tutorial,” 2019,
arXiv:1905.12787.

M. Rottmann, K. Maag, R. Chan, F. Hiiger, P. Schlicht, and H. Gottschalk,
“Detection of false positive and false negative samples in semantic seg-
mentation,” in Proc. 23rd Conf. Design, Automat. Test Eur., Mar. 2020,
pp. 1-16.

J. Davis and M. Goadrich, “The relationship between precision-recall and
ROC curves,” in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 233-240.

J. Keilwagen, I. Grosse, and J. Grau, “Area under precision-recall curves
for weighted and unweighted data,” PLoS ONE, vol. 9, no. 3, Mar. 2014,
Art. no. €92209.

JORDAN PATTEE received the bachelor’s degree
from the University of Colorado Colorado Springs,
in 2021. She worked at Symetrix Corporation as an
Application and Design Engineer. She worked at
the Laboratory for Intelligent Computer Architec-
ture (LiCA) as an Undergraduate Researcher and
she got an Excellent Student Award on her grad-
uation. She is currently a Graduate Student with
Kyushu University, Japan. Her research interests
include malware detection, deep learning, resistive
memory, and modeling.

SHAFAYAT MOWLA ANIK received the bach-
elor’s and master’s degrees from the Univer-
sity of Dhaka, Bangladesh, in 2015 and 2017,
respectively. He is currently pursuing the Ph.D.
degree with the University of Colorado Colorado
Springs. He is working at the Laboratory for
Intelligent Computer Architecture (LiCA) as a
Graduate Research Assistant. His research inter-
ests include deep learning, computer architecture,
malware detection, cybersecurity, low power, and
performance modeling.

BYEONG KIL LEE (Senior Member, IEEE)
received the Ph.D. degree in computer engineering
from The University of Texas at Austin, Austin,
in 2005. He is currently an Assistant Professor
with the Department of Electrical and Computer
Engineering, University of Colorado at Colorado
Springs. Prior to joining the Faculty at UCCS,
he worked at Samsung as the Vice President for
five years. For four years, he was an Assistant Pro-
fessor at The University of Texas at San Antonio

(UTSA). For five years, he was also a Senior Design Engineer at Texas
Instruments (TI). For ten years, he was also a Senior Research Staff at
the Agency for Defense Development (ADD). His research is published in
several international conferences and journals. His research interests include
computer architecture, application-specific embedded systems (mobile pro-
cessors), deep-learning-based intelligent computing, workload characteriza-

tion of emerging applications, parallel computing and parallel architecture

design, performance modeling, low power design, and early-stage power
estimation. He serves on the technical program committee and organizing
committee for some conferences and workshop, such as ISCA, ISPASS,
IISWC, ICCD, HPCA, ASAP, PACT, ICPP, and UCAS. He is a reviewer
for conferences and journals.

VOLUME 10, 2022

