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ABSTRACT Rainfall induced landslide is one of the main geological hazard in Italy and in the world.
Each year it causes fatalities, casualties and economic and social losses on large populated areas. Accurate
short-term predictions of landslides can be extremely important and useful, in order to both provide local
authorities with efficient prediction/early warning and increase the resilience to manage emergencies. There
is an extensive literature addressing the problem of computing landslide susceptibility maps (which is a clas-
sification problem exploiting a large range of static features) and only few on actual short terms predictions
(spatial and temporal). The short-term prediction models are still empirical and obtain unsatisfactory results,
also in the identification of the predictors. The new aspects addressed in this paper are: (i) a short-term
prediction model (1 day in advance) of landslide based on machine learning, (ii) real time features as good
predictors. The introduction of explainable artificial intelligence techniques allowed to understand global
and local feature relevance. In order to find the best prediction model, some machine learning solutions
have been implemented and assessed. The obtained models overcome the ones available in literature. The
validation has been performed in the context of the Metropolitan City of Florence, data from 2013 to 2019.
The method based on XGBoost achieved best results, demonstrating that it is the most reliable and robust
against false alarms. Finally, we applied explainable artificial intelligence techniques locally and globally
to derive a deep understanding of the predictive model’s outputs and features’ relevance, and relationships.
The analysis allowed us to identify the best feature for short term predictions and their impact in local cases

and global prediction model. Solutions have been implemented on Snap4City.org infrastructure.

INDEX TERMS Landslide prediction, machine-learning, explainable artificial intelligence, snap4city.

I. INTRODUCTION
Landslides are increasingly frequent geologic events which
may involve rural areas, as well as cities and impact on
largely populated areas. These phenomena are responsible
each year of several losses and casualties; according to [1],
from 2004 to 2016, 55997 people were killed in 4862 non
seismic landslide events worldwide, with a major incidence
in Central America, Caribbean islands, South America, along
the Andes mountain chain, Asia, East Africa, Turkey and the
Alps in Europe. The same authors identified rainfall as the
main triggering factor of 79% of non-seismic landslides.

In Europe Italy is the country most affected by landslides,
with about 2/3 of known landslides [2]; in fact, over 620’000
known landslides, covering almost 24’000 km? (7.9% of the
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whole national territory), are present, according to the Italian
landslide inventory [3]. From 1971 to 2020, 1079 fatalities
have been caused by landslides in Italy, along with 1416 casu-
alties and over 146’000 displaced people and homeless [4].
Tuscany is an Italian region highly affected by landslides,
since about 91700 landslides are recorded [5], covering
2107 km? (9% of the territory). The province of Florence, due
to its geological setting, mainly made of clay-sandy deposits
and its morphology, made of alternating valley and hills,
is quite susceptible to landslides. These phenomena represent
areal risk for the population and one possible solution for its
reduction is the setting up of early warning systems. Typi-
cally, “wake-up call” and early warning systems are setup
to inform the population about the occurrence of landslides
in quasi real time. Short term predictions, ranging from a
few hours to one/two days, could save a relevant number of
people. Thus, the short-term prediction of landslide events
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could be a very powerful tool in the hands of authorities
to organize evacuations and manage an emergency since its
very inception, thus preventing human injuries due to such
catastrophic events.

The most common approaches rely on statistical or empir-
ical approaches. In particular, as to rainfall induced land-
slides, in [6] and [7] authors highlighted the correlation of the
amount of rainfall in the days preceding the landslide event
(from 3 to 245 days), by means of statistical analysis [6], [7],
while other scholars used the empirical method of rainfall
thresholds to identify rain conditions associated with such
landslide triggering [8], [9]. Machine learning approaches
are widely used in landslide hazard mapping [10] which can
be regarded as a classification rather than a prediction tools.
Those approaches produce landslide susceptibility maps — to
identify areas that could experience a landslide in the future.
This kind of maps can be useful for long term land usage plan-
ning, but not for early warning purposes, since they do not
give any information about the possible time of occurrence
of the event.

In current state of the art, there are very few examples
about using machine learning for short term forecast landslide
occurrence [11]. In landslide events, the triggering is caused
by the loss of cohesion in the soil, due to its saturation
from rainwater or from the raising of groundwater level. This
reduction of cohesion leads to the reduction of the shear stress
of the slope, therefore restraining the factor of safety. In fact,
in [11], the main analyzed factors were precipitation duration,
mean intensity, and total volume (cumulated rainfall), thus
obtaining with machine learning a TSS (true skill statistic)
of 0.59. On such reasons the groundwater level (which is,
in turn, influenced by rainfalls, in just previous days) is
an important factor in the occurrence of landsides, as also
remarked into the review of the state of the art reported
in [12].

Other relevant factors in terrain slope stability are the
type of vegetation and soil, the slope of the topographic
surface, profile curvature, distance from rivers, altitude, and
soil landslide critic level (as assessed by experts). They are
key factors, they change slowly over time and may influence
the stagnation level of rainwater in the soil [13]. Therefore,
they influence somehow the consistency of the soil, and
thus the groundwater level is an important factor correlated
with the land instability and the occurrence of landslide
events [9]. In many research works, field data have been the
starting point for computing predictions, taking into account
databases of registered geological and natural events (e.g.,
earthquakes, landslides, floods, river or lakes overflows) as
reference event values. In most cases, events have been cat-
alogued by experts according to their severity, depth, size,
and persistence over time, and they are typically collected
from blogs (RSS, etc.) or web pages [14], [15], recom-
mendation systems of alert (e.g., like the ones from Civil
Protection, national institutes of geophysics, etc.), sensor
networks, statistical data and annual reports, etc., [16]. More-
over, current studies on landslide identification are based on
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optical images using pixel-based or object-oriented methods,
and the digital terrain model (DTM) is combined with optical
images and digital elevation model (DEM) derivatives to
identify translational landslide scars using object-oriented
methods [17], [18].

The creation of accurate forecasting models useful for
early warning activities may be grounded on a wide range
of data provided by different (static and real time) sources,
thus, taking into account recent events and the short-term
conditions. This is one of the greatest difference with respect
to solutions which are computing susceptibility maps. Data
aggregation implies to manage a variety of: licenses, pro-
tocols, standards, tools and formats. Thus, a multitude of
historical and real-time data must be analyzed, so data size
and their processing speed are considerable. When it comes
to the combination of these aspects, we can consider to
be in the context of Big Data, for volume, variety, veloc-
ity, veracity, and value of data. Moreover, with the aim of
producing predictions in a data driven approach, many dif-
ferent machine learning and deep learning algorithms have
been applied in a variety of use cases: Logistic regression
(LR), Support Vector Machine (SVM), Random forest (RF),
Boosting, Convolutional Neural Network (CNN), as stated
in [14], [17], [19]-[21]. The SIGMA algorithm, which was
firstly developed in Emilia Romagna Region [6] and then
tested in India [22], is a landslide early warning model
based on the analysis of the probability related to exceedance
of defined rainfall amounts. The latter has been also used
and calibrated in our study area, which is the Province of
Florence and then compared with some machine learning
algorithms.

A. RELATED WORDS

The problem of computing landslide susceptibility and risk
maps, displacements, and short-term predictions has been
addressed through different approaches and this section
presents the state-of-the-art of Artificial Intelligence solu-
tions, as summarized in Table 1. The main goal of the paper is
on short term prediction for early warning, while the related
works addressing similar problems could be useful to identify
features and context. In the context of this paper, the keyword
susceptibility is used to describe the production of maps
providing the proneness of the terrain to sliding, which can
be regarded as long-term prediction and which is a different
goal.

Nam and Wang in [23] used Stacked Autoencoders com-
bined with RF for the landslide susceptibility assessment. The
areas of study were in Oda and Gotsu Cities in the Shimane
Prefecture, in Japan, where 90 landslides occurred due to
extreme precipitation from May to October 2013. The data
referred to the Digital Elevation Model (DEM), remote sens-
ing and geological factors, all static variables. Researchers
compared SVM, Stacked AutoEncoders (St-AE), Sparse
Autoencoders (Sp-AE), and RF classifiers. As a result, they
identified the best solution combining St-AE with RF, obtain-
ing a True Positive Rate (TPR) of 0.93.

VOLUME 10, 2022



E. Collini et al.: Predicting and Understanding Landslide Events With Explainable Al

IEEE Access

TABLE 1. Related works, different approaches analysing landslides.

Authors Landslide Features Dataset Model Results
Target
Nam and susceptibili | Altitude, Slope, Plan curvature, Distance to Oda City and Stacked AE St-AE + RF
Wang, 2020 | ty stream, SPI (Stream Power Index), TWI Gotsu City in combined with || TPR [ 93.2% |
[23] (Topographic Wetness Index), NDVI (Normalized | Shimane RF
Difference Vegetation Index), NDWI (Normalized | Prefecture
Difference Water Index), Rainfall, Distance to Japan
road, Geological age, Lithology
Huang et susceptibili | Elevation, Aspect, Plan Curvature, Surface Sinan Country | fully connected | FC-SAE
al., 2020 ty roughness, Surface cutting depth, Slope Form, of Guizhou sparse AE True pos 6177
[24] Geomorphic map, Total surface radiation, Surface | Province in True neg 5677
temperature, Average annual rainfall, Topographic | China False pos 1279
wetness index, Distance to river, MNDWI False neg 780
(modified normalized difference water index), PPR 82.85%
Population density, Land use types, Distance to NPR 87.92%
road, BSI (bare land soil index), NDBI ( >
normalized difference building index ) Accuracy 83.20%
Pham et al., | susceptibili | DEM, Aspect, Slope, CTI, SPI, Curvature, Lai Chau CNN with CNN-FMO
2020 [25] ty NDVI, NDWI, NDBI, Distance to river, River province in Optim.Moth RMSE 0.3685
density, cumulative rain for 4 months, Historical Vietnam Flame MAE 0.2888
landslides occurrences, Algorithm AUC 0.889
OA 80.11%
Pei, Meng displaceme | Water Level, Velocity of the water, Precipitation, Three Gorges CNN CNN
and Zhu, nt Periodic Displacement Reservoir area RMSE/mm 9.97
2021 [26] MAE/mm 8.29
Karunanaya | prediction Overburden Badulla and RF RF
keetal., of riskiness | Land use Nuwara Eliya [ TPR [ 98.15% |
2019 [27] Slope districts, Sri
Rainfall Lanka
Cheng et susceptibili | LULC (land-use/land-cover) types, Recharge of Tsengwen RF RF
al., 2021 ty ground water, Distance to the bank of rivers, River OA 99.7
[28] Distance to old landslides, Distance to dip slope, Watershed, %
Geological line density, Distance to roads, River Central Kappa 0.99
density, Aspect, Slope, NDVI, Wetness Taiwan Coefficient
Wang et al., | stability Slope, Elevation, Curvature, Aspect Santai County | XGBoost
2021 [29] Accuracy 0.89
Recall 0.94
Ngo et al., susceptibili | Altitude, slope degree, profile curvature, distance Iran RNN, and AUC 0.88
2021 [30] ty to river, aspect, plan curvature, distance to road, (CNN) MSE 0.007
distance to fault, rainfall, geology and land-use RMSE 0.083
Thai Pham, susceptibili | LCF (Landslide Conditioning Factors), Uttarakhand, ADtree, Recall 0.717
Binh, etal., | ty Overburden Depth, Land Cover, Geomorphology, India BAADT, FPrate 0.285
2019 [31] Distance to Rivers, Distance to Roads, Curvature, RSADT, Precision 0.771
Aspect, Slope, Valley Depth, SFM (Slope Forming RFADT Kappa 0.433
Material) RMSE 0.397
AUC 0.931
Tien Bui, Susceptibili | LS (European Slope length and Steepness factor), Sarkhoon ABSGD, SGD, ABSGD
Dieu, etal., | ty SPI (Stream power index), TPI (topographic watershed, LR, LMT, FT Accuracy 0.776
2019 [32] position index), TWI (topographic water index), Iran Sensitivity 0.833
TRI (topographic roughness index), Land use, Specificity 0.835
Lithology, Average Annual precipitation, Altitude, RMSE 0411
Slope, Aspect, General curvature, Plan curvature, RMSE 0.861
Longitudinal curvature, Tangential curvature,
distance to stream, distance to road, distance to
fault
Zhang, susceptibili | Aspect, Slope, Altitude, Lithology, Mean Annual Fugu County | IOE (Index of (LR)-IOE
Tingyu, et ty Precipitation, Distance to roads, Distance to rivers, | of Shaanxi | Entropy [ AuC [ 08184 |
al., 2018 Distance to faults, Land use, NDVI Province, method), (LR)-
[33] China IOE, (SVM)-
I0E
Abrahamet | prediction Rainfall data Idukki, India SIGMA Accuracy 79.31%
al., 2021 Sensitivity 0.88
[22] Specificity 0.79
Likelihood 5.62%
Ratio
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The Autoencoders have been also used by Huang et al.,
to predict the landslide susceptibility in the Sinan Country of
Guizhou Province in China [24]. In that case, 306 landslide
events were registered from the 1980s to 2010s. The data
sources for landslide predictions regarded 27 environmental
static factors considering: topographic, geological, hydrolog-
ical, and land covers features. The tested solutions were:
SVN, Backpropagation Neural Network (BPNN), and Fully
Connected Sparse Autoencoder (FC-SAE). The reported val-
idation metrics have been the True Positives (TP), True
Negatives (TN), False Positives (FP), False Negatives (FN),
Positive Predictive (classification) Rate (PPR), Negative Pre-
dictive (classification) Rate (NPR), Accuracy. The FC-SAE
architecture achieved its best results with an Accuracy of
85.2%, compared to 81.56% for the SVN and 80.86% for
the BPNN.

Pham et al., in [25], used a Machine Learning (ML) tech-
nique for landslide susceptibility analysis, the CNN with
a specific optimization algorithm for parameters selection.
The study area of Lai Chau is a mountainous province in
Vietnam, the dataset consisted in 2374 points of landslides
and randomly selected non landslides with 12 area features
(Elevation, Aspect, Slope, Stream Power Index (SPI), Com-
pound Topographic Index (CTI), Curvature, NDWI, NDVI,
Normalized difference build-up index NDBI, Distance to
river, River Density, Precipitation in long term).

The exploited assessment metrics have been the Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), Area
under Receiver Operating Characteristics (AUC), Overall
Accuracy (OA). The proposed CNN architecture achieved
better results compared to Random Subspace, RF and CNN
using conventional Adagrad optimizer, with OA of 80.105%.

The CNN architecture has been also used by Pei et al.,
in [26]. Their study focused on the influence between time-
varying trigger factors and the periodic landslide displace-
ment. The specific area of this study is in Zigui, Hubei
Province, China. In order to find the best solution for land-
slide displacement, researchers compared the 1-D CNN with
the SVR. They stated that the 1-D CNN yields to more precise
predictions, due to its feature extraction ability, and indeed
results in terms of RMSE/mm and MAE/mm are 9.97 and
8.29, respectively, compared to the 15.35 and 11.14 obtained
by the SVR.

In the case study of Karunanayake et al., [27], for the
prediction of landslides riskiness, the implemented ensemble
learning techniques (RF) achieved better results compared to
deep learning techniques. The work is based on the Badulla
and the Nuwara Eliya districts in Sri Lanka. The dataset is
made up of 81 landslides registered in each district, including
measurements of the current weather and most significant and
dynamic geographical conditions of that area. As evaluation
metric, researchers chose TPR. The RF technique achieved
better results compared to the DNN (Deep neural network)
with a TPR on the test set of Badulla district of 96.29%,
compared to the 92.59% obtained by the DNN, and a TPR
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of 100% for the Nuwara Eliya district, whereas the DNN
correctly classified 26 out of 27 landslides. According to the
above summarized TPR percentages, decision tree models
outperformed the neural network models.

The ensemble learning techniques have been also used
in the work of Chen et al., [28] for computing of land-
slide probability in long term (susceptibility map), for the
area of Tsengwen River Watershed, Central Taiwan. Using
optimal hydrological, geological, and topographical vari-
ables, RF technique achieved an overall Accuracy of 99,7%.
Researchers stated that, despite different resolutions between
ground reference and susceptibility maps that could deter-
mine an exaggeration in the landslide mapping accuracy, the
used methods could provide reliable spatial and quantitative
information on landslides.

Wang et al., in [29] compared the SVM Classifier, RF,
and the XGBoost for the classification of landslide stability.
Researchers used the topographic features extracted by the
DEM elevation, slope, aspect, curvature and shape. The best
classification technique turned out to be the XGBoost, pro-
viding an Accuracy of 89% and a Recall of 94%, outperform-
ing the RF (which obtained an Accuracy of 88% and Recall
of 91%) and the SVM (which achieved an Accuracy of 76%
and Recall of 86%).

Thai Pham, Binh, ef al., in their research study [31]
assessed the problem of landslide susceptibility in
Uttarakhand, India using a Hybrid Machine Learning Algo-
rithm made of three meta-classifiers Bagging (BA), Random
Subspace (RS) and RF combined with ADTree as a weak base
classifier. RF-ADtree was the best hybrid model based on the
results of the paper achieving an AUC of 0.931.

Also Tien Bui, Dieu, et al. in [32] used a hybrid machine
learning approach but applied to the problem of Shallow
Landslides Prediction (which is a susceptibility map estima-
tion as claimed by the authors in their conclusions). The
method developed was a combination of a functional algo-
rithm, stochastic gradient descent (SGD) and an AdaBoost
Meta classifier. Researchers used 20 landslide conditioning
factors to produce a reliable landslide susceptibility map for
the Sarkhoon watershed in Iran.

The objective of producing reliable susceptibility maps for
the Fugu County of Shaanxi Province, China was assessed
by Zhang, Tingyu, et al., in [33]. They also used a hybrid
integration approach, but with the Index of Entropy (IOE),
Logistic Regression (LR) and SVM. The LR-IOE model is
the one with the highest accuracy of precisely 0.9011, it takes
into account rain by means of the annual average.

The SIGMA model has been used by Abraham et al., [22]
in order to compute landslide predictions in the area of study
of the Idukki district in India. Researchers used rainfall data
and divided the district of study into 4 reference areas accord-
ing to the topographic variability and location of rain gauges.
The used dataset covers years from 2009 to 2018 and the last
one has been used to validate the SIGMA model. The model
obtained a 79.31% mean Accuracy over the four areas.
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B. PAPER SCOPE AND STRUCTURE

There is a large literature on landslide for susceptibility
analysis, displacement, risk and prediction assessment, and
most recent solutions are adopting machine learning and deep
learning approaches. Susceptibility maps can be regarded as
long terms predictions (proneness) providing a spatial map
about probability of sliding. The estimation of susceptibility
maps is performed on the basis of a number of static and quasi
static variables describing the soil, terrain etc., and in some
cases annual average for rain, etc. The identified features have
been weather, rain, slope, vegetation, temperature, humidity,
wind, soil kind, altitude, etc. The addressed machine learning
techniques are: RF, XGBoost, CNN, and AE.

In this paper, the problem of computing short term pre-
dictions of landslide events has been addressed. Results can
be used for immediate evacuation and early warning of pop-
ulation, rather than for planning, which is the current main
use of susceptibility map. The new aspects we addressed in
this paper are: (i) a short-term prediction model (1 day in
advance) of landslides based on machine learning, which can
be used for early warning, (ii) a set of real time features as
good predictors. Some of them have been also considered
by the heuristics of the SIGMA predictive model [22]. The
introduction of explainable artificial intelligence techniques
allowed to understand and identify global and local feature
relevance. In order to find the best prediction model a number
of machine learning solutions has been implemented and
assessed (e.g., RF as in [28] for susceptibility, XGBoost as
in [29] for susceptibility maps, CNN as in [25], [30] for sus-
ceptibility maps, and AE). These models have been trained,
validated and compared one another and with the SIGMA
approach from the literature.

Solutions have been trained and validated by using data in
the Metropolitan City of Florence since 2013 till 2019. The
area is quite prone to landslide events, thus, producing results
to explain the approach and the phenomena. The research
activity (named PCA4City, civil protection for the city) has
been partially funded by Foundation Cassa di Risparmio di
Firenze and has been developed in collaboration with the
Department of Earth Science of the University of Florence.
The solution has been developed exploiting the data available
in the area and the smart city infrastructure and living lab
named Snap4City: https://www.snap4city.org.

The structure of this paper is as follows. Section II
describes the architecture of PC4City while stressing its rela-
tionships with the Snap4City framework adopted in the area.
Section III describes the exploited data and the identified
and computed features. In Section IV both adopted machine
learning techniques and SIGMA model have been presented
along with their running parameters and metrics for result
assessment. Section IV.B presents the results of the valida-
tion phase after training. Section V is focused on the local
and global explanation of the best results obtained with the
XGBoost method. Conclusions are drawn in Section VI.
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FIGURE 1. P4CITY datasets and solution in the context of Snap4City
architecture.

Il. PC4City ARCHITECTURE

According to the above reported state of the art, some solu-
tions aiming at computing some early warnings have been
proposed. Early warning systems can be regarded as 24 hours
predictors or early pattern detectors.

The complexity in this case is mainly due to data hetero-
geneity and its amount to be processed in short time. The
solution presented in this paper is called PC4City, and it has
been set up by exploiting the Snap4City architecture and ser-
vice, which is in place in the Florence/Tuscany area, as well
as in other regions of Europe [34], [35]. The Snap4City
framework (briefly exploited in Figure 1, with its application
within PC4City project) allows to collect data of any kind,
to save them into a big data store where they can be queried
for recovering specific historical data segments. The same
storage can be used to collect data in real time and to save
data analytic results.

The general workflow included activities of:

« Data ingestion, historical and real time data to be
updated, for example rainfall, weather, data coming
from satellites regarding vegetation, etc.

« Dataset construction for predictive model training and
validation. This activity is preparing the dataset for the
next step where the predictive model is produced and
validated.

o Predictive Model training and validation. This activ-
ity is focused on producing the Predictive Model (Model
Fit) (for example, based on machine learning or other
solutions). The produced model is validated in other
areas to assess its reliability, sensitivity and robustness.

o Model execution, takes in input both real time data
and Model Fit to produce predictions which could be
estimated 24 hours in advance and may be used to
inform civil protection authorities, municipality, etc. The
resulting model assesses in real time the probability of
landslide events as early warning/prediction.
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FIGURE 2. Grid and landslide events in the florence metro area (Tuscany,
Italy) since 2013 up to 2019. An area where 1.5 M inhabitants live.

« Publication of results on specific Dashboards, Mobile
Apps, etc.

In PC4City, data ingestion processes, as well as activation of
data analytics, are performed by using Node-RED processes
on docker containers. Node-RED flows can exploit the plat-
form MicroServices with a specific library of node.js [35].
In addition, Data Analytics processes have been developed by
using Python and/or Rstudio. In the case of PC4City, some
Node-RED IoT Applications have been developed for data
ingestion and specific Python processes have been devel-
oped for implementing the Predictive Model Training and
validation and for the Model Execution. The IoT App in
Node-RED governing the Python for Model Fit Execution
may also decide to send alerts via Telegram, SMS, email.
Finally, resulting data, as well as previous data, are visually
presented by using a Dashboard exploiting the Dashboard
Builder.

Ill. FEATURE AND DATA PREPARATION

In order to test and validate our approach we have collected
a large dataset in Tuscany, in the Florence province (also
called Metropolitan City Area) since 2013 till 2019, with
the aim of developing and validating a solution for early
warning and 1-day ahead prediction of landslide events. In the
observation and analysis area, historical data regarding land-
slide events have registered 341 landslides since 2013 up
to 2019 [6]. To each and every landslide event we assigned
an ID, the date of occurrence of that landslide, latitude and
longitude expressed in EPSG:4326. Those points are located
in their actual coordinates, and for each of them a given num-
ber of parameters is accessible such as: wideness, severity,
duration, etc.

A. GRID DEFINITION

With the aim of computing a prediction / early warning in
each point of the area, a dense grid of points was defined
where the prediction could be estimated. The size of the
grid is a critical aspect, since the prediction should be as
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much precise as possible, while data would not be accessible
with high precision and too big number of points would be
prohibitively expensive for computation.

Therefore a compromise is needed, the grid size has been
defined according to the size of landslide events, at least 1/2
to be sure to sample the event. For these reasons, the grid has
been defined as a compromise (points distance of 1000 mt
in both directions, obtaining 3582 areas, covering the whole
Florence Metro area of 3514 Km”?2, and a little more at the
borders) as depicted in Figure 2, where RED dots are the
events of landslide registered in 2013-2019.

The area presented a large number of landslide events
having a relevant range of different features in terms of:
criticism, altitude, slope, vegetation, cumulated rain, type of
soil, etc. As a result, the set of points in the grid may have
a set of associated data that would be taken from: sensors
(for example: rain, temperature, humidity, etc.), geographical
information systems of the territory, satellite services, and
from the landslide occurred dataset, too.

B. FEATURE SELECTION

The features in each area segment of the grid have been
selected by analyzing the state of the art in studying landslides
and from specific authoritative providers in the area. This
allowed us to identify a number of possible features that may
influence (and/or may be used as short-term predictors of)
landslide events, and also to take into account terrain features
as identified by long terms susceptibility analysis. One of the
most relevant features influencing landslides is the soil water
content. These aspects can be directly measured with sensors
in the soil, which is unfeasible for large areas and usually
rain sensors on ground are not adopted. The same information
could be indirectly measured based on the rainfall received in
past days. The value of rain in each area of the grid cannot
be estimated due to the lack of dense sensors, whereas data
coming from satellite are very heavy to be processed and
not precise, since also clouds contain water while covering
the view of the terrain. On these reasons we have decided
to indirectly measure the amount of rainfall which reaches
the ground from a number of sensors (so called SIR Sensors
in Tuscany). The values of sensors have been interpolated
by using IDW (Inverse Distance Weighting) algorithm [36],
which is also used in Snap4City to create Heatmaps. On the
basis of such scattered data, we have estimated 4 derived
features: Dayl, Day3, Day5, Day30, which compute for each
day the amount of rain in mm arriving on ground within a spe-
cific area on the last day, 3 days, 5 and 30 days, respectively,
as performed in SIGMA model [22].

A second parameter which may be related to the landslide
proneness may be the geological nature and the terrain
slope. Geology is known to be a controlling factor when it
comes to large and deep landslides, while small and shallow
landslides (depth < 2 m) are somehow independent from the
bedrock’s geological nature, since they are usually located
in more surficial soil’s layers. On the other hand, the terrain
slope, which is known as one of the main controlling factors
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of shallow landslides, may radically change in different parts
of the same area. A Digital Terrain Model has been created by
processing the Lidar survey carried out in 2017 and available
among the Open Data of the Metropolitan City of Florence.
The Slope feature has been associated to each area of the
grid (as a percentage). Please note that these values change
sporadically over time. Therefore, an update performed every
month / year would be more than enough.

An additional aspect to consider is the land usage of
the area. For this purpose, land use and land cover datasets
of regional government, and in particular Tuscany Region
geoserver, could provide the data. This has allowed to asso-
ciate a value describing the type of Ground to each grid area
in terms of identifiers referred to the CORINE Land Cover,
CLC technical guidelines [37]. This work has been performed
on a QGIS tool. Please note that these values change very
slowly along time, and thus they have to be updated once a
month or year.

A similar view, but for a different purpose, has been the
identification of the vegetation which may also influence
landslide events. Vegetation may keep the land connected
to the ground. To this end, Copernicus satellite data have
been collected exploiting the services of Snap4City Plat-
form (https://www.snap4city.org/671 [38]) which automat-
ically harvests, downloads and processes several different
kinds of Copernicus data. The vegetation level may change
over time, and thus the satellite data can give the precise and
almost real time information on the vegetation level. On the
other hand, some processing has been made, since the satellite
data may be influenced by clouds coverage, and they need
also to be remapped from large to small grid areas.

Features have been enriched with some conditioning fac-
tors coming from the historical archives of the Regional
Hydrological and Geological Sector (SIR). Tuscany region
has a network in telemetry consisting of over 700 sensors
for meteo-climatic data monitoring; such sensors are located
in a homogeneous manner throughout the regional territory.
7 conditioning factors were obtained from these sen-
sors involving wind speed, temperature, precipitation, daily
hydrometric level and data providing information related
to groundwater resources (water table data). Another fea-
ture enrichment was made with data regarding temperature,
moisture and average wind speed from the historical archive
‘ilmeteo.it.” Compared to SIR data, ilmeteo.it could provide
information associated with larger areas, such as cities (in our
case the municipality of Florence).

Regarding the insertion of landslide data, 341 registered
landslide events have been mapped over time to the grid,
based on their positions and date of occurrence and they have
been labeled with the following criteria: value of 1 has been
assigned to all grid cells included in an area of 1.5 km radius,
centered on the coordinates of each landslide, in the previous
day of its occurrence (for a total of 2342 areas impacted
by landslide events); the value of O has been assigned to all
other cells. The haversine formula has been used for distance
evaluation. Please note that 7 years, multiplied by 365 daily
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TABLE 2. Features details.

Feature Description Unit |Example

Date Observation date, in the format Day |2013-01-
YYYY-MM-DD 14

Latitude Latitude of the area, EPSG:4326 Deg |[43.86239
format

Longitude Longitude of the area in the Deg |[11.51586
EPSG:4326 format

Altitude Altitude of the area m 467.204

Slope Acclivity of the area % 45.942

Vegetation Vegetation of the area % 0.262

Ground Soil type at the event site (class 223-
UCSs) Oliveti

Dayl Rainfall on the day before the mm 12.453
observation

Day3 Rainfall on the 3 days preceding mm 15.072
the observation

Day15 Rainfall on the 15 days preceding | mm 16.160
the observation

Day30 Rainfall on the 30 days preceding | mm 51.515
the observation

Temperature Mean Temperature on the °C 6.965
observation day (IIMeteo.it)

MinTemperat | Minimum temperature on the °C 2.99

ure observation day (IIMeteo.it)

MaxTemperat | Maximum temperature on the °C 9.942

ure observation day (IIMeteo.it)

Humidity Humidity (average) on the % 92.96
observation day (IIMeteo.it)

WindSpeed Average wind speed on the Km/ 5.991
observation day (IIMeteo.it) h

VelMedSIR Average wind speed on the m/s 0.9
observation day (SIR)

VelMaxSIR Maximum wind speed on the day | m/s 1.8
of observation (SIR)

LevelSIRFre phreatimetric data on the m -4.34
observation day (SIR)

LevelSIRIdr Water (river) level recorded on m 0.8
the observation day (SIR)

PrecipSIR Precipitation on the observation mm 0
day (SIR)

MinTempSIR | Minimum temperature on the °C 0.5
observation day (SIR)

MaxTempSI Maximum temperature on the °C 3.5

R observation day (SIR)

values on 3582 areas make a dataset of 9.153010 million
elements, among which 2342 represent areas affected by
landslide events.

At the end of the process, for each grid point, the features
composing the dataset have been the ones reported in Table 2.
Please note that most of them are new features describing
the short-term condition of the area, and thus they need to
be actualized every day.

IV. DATA ANALYTIC SOLUTIONS

On the basis of the above-described dataset, a number of
techniques to predict landslide events has been tested. Aim-
ing at creating an early warning can be traced back to the
estimation of areas presenting a high probability of landslide
event occurrence in the next day, as in this case. Therefore, the
dataset included several items representing non-slide events
(referred hereafter as negative events) and items represent-
ing landslide cases (referred hereafter as positive events).
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As described in the previous section, the considered dataset is
composed of about 9 million estimations, among which 2342
positive events (labeled with Value = 1). The input dataset
was composed by the following variables:

X = independent variables = {Latitude, Longitude,
Altitude, Slope, Vegetation, Dayl, Day3, Dayl5,
Day30, Ground, Temperature, MinTemperature, Max-
Temperature, Humidity, WindSpeed, VelMedSIR,
VelMaxSIR, LevelSIRFre, LevelSIRIdr, PrecipSIR,
MinTempSIR, MaxTempSIR }

o Y = dependent variable = {Value of the day after}, 0 no
sliding, 1 land sliding.

In order to build the model, we have divided the dataset into
two groups: training set (80%) and test set (20%). The selec-
tion of the data belonging to the two sets has been performed
randomly but considering the same ratio of distributions for
both positive and negative cases in training and test sets.

Layer (type) Output Shape Param #
Conv2D convad (Conv2D) (None, 1, 22, 16) 32
MaxPooling20 max_pooling2d (MaxPooling2D) (None, 1, 22, 16) ]
conv2d_1 (Conv2D) (None, 1, 22, 32) 544
max_pooling2d 1 (MaxPooling2D) (Nonme, 1, 22, 32) -]
MaxPooling2D
conv2d_2 (Conv2D) (None, 1, 22, 64) 2112
Conv2D
max_pooling2d 2 (MaxPooling2D) (None, 1, 22, 64) e
MaxPooling2D
conv2d_3 (Conv2D) (None, 1, 22, 64) 4160
Conv2D max_pooling2d 3 (MaxPooling2D) (None, 1, 22, 64) ]
MaxPooling2D flatten (Flatten) (None, 1408) ]
dense (Dense) (None, 64) 98176
dense_1 (Dense) (None, 1) 65

Total params: 97,089
Trainable params: 97,889
Non-trainable params: &

| output

FIGURE 3. The adopted CNN model architecture.

A. MACHINE LEARNING MODELS ADOPTED

Most State-Of-The-Art works addressing the problem of
landslide prediction are formulated as a classification prob-
lem. As a further development we have investigated the pos-
sibility of predicting the occurrence of landslides 1-day in
advance for this case study in the Florence Metropolitan Area.
In this section, machine learning techniques are compared
with the aim of predicting landslide events. Therefore, each
model is presented with a short overview and related infor-
mation about how it has been used in this context.

Random Forest, RF, is a learning algorithm based on a
set that includes n collections of uncorrelated decision trees.
In our case, the model has been realized exploiting the Ran-
domForestClassifier of the sklearn library. In order to classify
the dataset, a high number of trees in the forest has been
used (n_estimators = 100), each reaching a maximum depth
given by: max_depth = 30. The criterion used to estimate the
quality of each division is entropy. Since the input Dataset
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INPUT Layer (type) Output Shape Param #
v dense (Dense) (None, 32) 736
i dense_1 (Dense) (None, 16) 528
Dense
| dense_2 (Dense) (None, 16) 272
I dense_3 (Dense) (None, 32) 544
dense_4 (Dense) (None, 22) 726

G Total params: 2,886

Trainable params: 2,806
QUTPUT Non-trainable params: @

G‘.
®

FIGURE 4. Autoencoder architecture model.
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FIGURE 5. Autoencoder model identified: (a) Precision and recall plot -
(b) Reconstruction error plot for the validation set.

is unbalanced (in terms of negative and positive events), a
weight to the classes in the dataset has been assigned, to give
the right meaning to each value (through class_weight).

eXtreme Gradient Boosting, XGBoost, is a specific
implementation of the Gradient Boosting method using more
accurate approximations to find the best tree model. A high
number of trees in the forest has been used for classifica-
tion (n_estimators = 180), each reaching a maximum depth
denoted by max_depth = 40.

Convolutional Neural Network, CNN, is useful to learn
spatial local features from input. It is a feedforward neural
network using convolution instead of general matrix multi-
plication in at least one of its layers. It can capture global
and local features with the aim of improving efficiency and
accuracy. The model architecture is composed of four pairs
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FIGURE 6. Sigma: (a) example of Sigma curves for duration from 1 to 100
days; from [1]; (b) flow chart of the algorithm: Cx represents the
cumulative rainfall in x days, while sigma symbol represents the standard
deviation.

of 2-dimensional convolutional layer, Conv2D, followed by
a MaxPooling2D layer that down-samples the input along its
spatial dimensions (height and width) by taking the maximum
value over an input window for each input channel. Then,
we added a flatten layer and finally we added 2 Dense layers,
the former with 64 neurons and Relu activation function
and the latter with a single neuron and a sigmoid activation
function. An automated hyperparameters optimization was
performed through a Randomized Search Cross-Validation.
The best model resulting from the whole parameter optimiza-
tion process and its related cross-validation is represented in
Figure 3. The model is compiled to minimize the log loss
(in our case, the binary_crossentropy metric) with an Adam
optimizer.

Autoencoders, AE, represents an unsupervised model
generating an output by compressing the input in a space of
latent variables. The model architecture is composed of five
Dense layers, the first 4 with Relu activation function and
the last one with linear activation function. The best model
resulting from the whole parameter optimization process and
its related cross-validation is represented in Figure 4. The
model is compiled to minimize the log loss (in our case,
the mean_squared_error metric) with an Adam optimizer.
The training process of the Autoencoder has been made only
on non-landslide data, as it occurs in anomaly detection the
typical process is learnt. Then, whenever a landslide event is
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given in input to the trained model, the reconstructed output
is likely not to follow the pattern of a typical process and
therefore it should be classified as an anomaly.

The used Autoencoder reconstruction error has been the
MSE and the threshold has been evaluated at 0.4 on the
test set, based on the precision and recall curves reported
in Figure 5a. If the reconstruction error is higher than
the chosen threshold, it will be classified as landslide; this
is visible in the reconstruction error for the validation set
on Figure 5b.

The decisional algorithm SIGMA has been taken into
account, too (see Figure 6). The Sigma model has been
calibrated for the city of Florence area according to the pro-
cedure described in [6], [22]. Since it is based on statistical
analysis of rainfall data, rain gauges with at least 20 years of
rainfall recordings have to be used and 9 rain gauges with the
proper data series have been identified in the study area. For
each rain station, the cumulative rainfall from 1 to n days is
analyzed and mean rain values and several standard deviation
values (from 1 to 3, with steps of 0.5 standard deviation) are
calculated. Then several Sigma curves, i.e., curves with the
same standard deviation value for several time intervals, are
defined (Figure 6a). Figure 6b reports the flow chart of the
Sigma algorithm for early warning. Such scheme compares
the cumulative rainfall in the days leading up to the event
with a sigma coefficient. In order to make this sigma value
more accurate, it was interpolated through the IDW algorithm
(same methodology used previously to estimate Day_i cumu-
lative rainfall and described in Section III), at each point in
the dataset. In the scheme reported in Figure 6b, values of C/,
C2, C3, C4, and C5 correspond to the Dayl, Day3, Dayl5,
and Day30 values in the dataset, respectively, while sigma
symbols stand for standard deviation multiples (expressed in
mm of rainfall) that must be exceeded to assign a level of
criticality.

B. METHOD FOR RESULTS’ ASSESSMENT

The comparison with the results obtained at the state-of-the-
art works as reported in Section 1.A, with respect to the
solution proposed is discussed in this section. As stated
above, most of the state-of-the-art works for landslide anal-
ysis are focused on estimating susceptibility maps (which is
a long-term proneness of landslide), rather than computing
predictions for early warning. For computing susceptibility
map, mainly static or quasi static feature metrics were used,
which do not depend on the specific short-term changes in
land. On the contrary, predictive models such as that pre-
sented in [11] and SIGMA [6], [22] are based on rain fall
data with some limited feature engineering, without the usage
of explainable Al for feature relevance assessment. For these
reasons, in order to identify a more precise prediction model
with respect to those available in the state of the art, we have
applied a large number of machine learning approaches and
SIGMA on the same area and data. To this end, we started
from the same machine learning models adopted for suscep-
tibility map and for prediction, and SIGMA.

31183



IEEE Access

E. Collini et al.: Predicting and Understanding Landslide Events With Explainable Al

TABLE 3. Comparison of results obtained using models for short terms
prediction of landslides, best results in bold.

Model XGBoost | RF CNN Auto SIGMA
encoder

MAE 0.000173 0.000334 0.000600 | 0.009218 0.004169
MSE 0.000173 0.000334 0.000259 0.009218 0.004169
RMSE 0.0131 0.0182 0.0160 | 0.0960 0.064572
Accuracy 0.99 0.99 0.99 0.99 0.99
Sensitivity 0.79 0.36 0.24 0.19 0.06
Specificity 0.99 0.99 0.99 0.99 0.99
TSS 0.78 0.35 0.23 0.18 0.05
PfA 0.01% 0.02% 0.01% 0.11% 0.39%
Precision 0.63 0.35 0.33 0.64 0.003
F1 score 0.70 0.36 0.27 0.29 0.007
MCC 0.70 0.36 0.28 0.35 0.01
OA 2.40 1.72 1.55 1.64 1.02
Kappa 0.70 0.36 0.27 0.29 0.01
AUC 0.89 0.68 0.99 0.92 0.53

Therefore, the results have been evaluated by using a large
set of metrics defined as follows:

1 N R
MAE, MAE = ¥ Z,-:] lyi — ¥il 1)
Mean Squared Error (MSE),
1 N N2
MSE = =3 (v =) 2
RMSE = vMSE A3)
TP + TN
Accuracy = + 4)
IN + FP+ FN + TP
A P
Sensitivity = —— &)
TP + FN
Specificit Ll (6)
ecificity = ———
P YT IN P

TSS = sensitivity + specificity — 1 @)
probability of false alarm, P.f.A = P(positive|negative)

Recall * Precizion
F1 score, F1 — score = 2 % — (8)
Recall + Precision

Matthews correlation coefficient (MCC),
TP x TN — FP %« FN

~ (TP + FP)(TP + FN)(IN + FP)(IN + FN)
©

McCC

Overall Accuracy (OA),

OA = Accuracy + F1 + MCC (10)
K ind X Pr (a) — Pr(e) (11
appa index, k = ———
PP 1 — Pr(e)
AUC: Area Under the Receiver Operating Characteris-
tics (ROC) Curve.

C. ASSESSMENT OF RESULTS AND BEST

MODEL SELECTION

In this work, we have compared the architectures used in the
state of the art for susceptibility (RF as in [27], [28], CNN
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FIGURE 7. ROC Curves for 1-day ahead landslide prediction, in
(a) XGBoost, (b) RF, (c) CNN, and (d) AE.

as in [26], XGBoost as in [29], etc.) with respect to their
adoption for 1-day ahead landslide prediction in the area of
Tuscany, Italy; with the adoption of different features since
features used in susceptibility do not have short term predic-
tive capabilities, as they are in most cases static for the whole
year or season. As a result, the XGBoost model achieved
better results compared to the Autoencoders, CNN, RF, and
SIGMA (which is a predictive model on [6], [22]) models.
As to SIGMA we assumed condition of early warning when
High Criticality is assessed.

Table 3 shows the obtained results for landslide event pre-
dictions using machine learning models: RF, XGBoost, CNN,
Autoencoders, and the SIGMA. In the machine learning
model, the features have been those reported in Table 2 . They
include a mist of features for land description (e.g., accliv-
ity, slope, vegetation), and dynamic contextual data such
as those describing rain fall, temperature, humidity, wind
speed, water levels, etc. For the machine learning approaches,
due to the unbalanced dataset, we have balanced the num-
ber of landslide cases in training dataset and test dataset in
order to improve the RF, CNN and XGBoost performance.
As to Autoencoder, all points located within a radius of less
than 5 km of any landslide have been removed from dataset
to prevent a non-landslide point, located in the vicinity of
a landslide, from presenting values of conditioning factors
extremely similar to those associated with an actual landslide
event.

According to Table 3 , on the basis of MAE metric, the
best model resulted the XGBoost with a MAE of 0.000173,
compared to 0.000334 of the RF, 0.0006 of the CNN
and 0.009218 of the Autoencoder. According to the results
obtained in [11] as TSS = 0.59, the solution proposed is
better ranked, thus reaching a TSS of = 0.78. Noteworthy
is that SIGMA [6], [22], provided an MAE of 0.0041, and
a TSS of 0.05. A different comparative assessment can be
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FIGURE 8. Global feature relevance as mean of the absolute SHAP global
features importance for XGBoost (only the first 20).
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obtained from the analysis of ROC curves, as reported in
Figure 7. In this case, the CNN turned out to be the best
(see AUC), though presenting an unsatisfactory sensitivity
and TSS. As a conclusion, the best model for short term
prediction of landslides, namely one day in advance early
warning, resulted to be XGBoost (in terms of MAE, TSS,
and OA).
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FIGURE 10. Local feature relevance via SHAP, as interpretation of events
in terms of feature values: (a) and (b) are events with predictions of
landslide, (c) a non-landslide event.
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FIGURE 11. Time trend of SHAP values of most relevant features around
the landslide event of 21-12-2019: values estimated by using data
collected in the neighboring area of the event.

V. EXPLANATION OF THE PREDICTIVE MODEL

In order to better understand the relevance of features and
their dependencies and correlation, we have applied tech-
nique for explainable Al, and interpreted the values predicted
by the XGBoost model via SHAP (SHapley Additive exPla-
nation), both globally and locally. SHAP allows to understand
the predictive model outputs and to explore relationships
among features [39]. Theoretically, it is an approach from
game theory explaining the output of machine learning mod-
els with respect to the values of features which act as score
players in a coalition. In this case, the SHAP analysis allowed
us to understand which factors are the most influential in the
prediction of a landslide or not. To this end, we trained the
SHAP explainer with the entire training dataset to estimate
both global and local explanations, as described in the fol-
lowing subsections.

A. GLOBAL XGBoost MODEL EXPLANATION

In Figure 8, the graph describes the overall impact of
features on predictions. The relevance of features is calcu-
lated as the average of the absolute Shapley values of the
entire dataset. For example, features contributing most to
the prediction of a landslide event, or its absence are Day3,
MaxTempSIR, and LevelSIRIdr. Therefore, we discovered
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that precipitation, temperature, water level in rivers, humid-
ity are the main aspects as to predicting landslide events.
Regarding temperature, localized temperatures such as
MaxTempSIR (from Regione Toscana) resulted to be more
relevant than the generic area temperature: MaxTempera-
ture which can be retrieved from generic services such as
https://www.ilmeteo.it/. As expected, meteorological phe-
nomena play an important role in short-term prediction rather
than other land location-related features, which can be valid
for susceptibility analysis as vegetation, slope, ground kinds.
Among variables concerning location, the most influential
one is Latitude, as it describes the geological aspects of the
territory and this could change in different areas.

Figure 9 shows the distribution of SHAP values for each
feature, sorted by relevance. The x-axis represents the spe-
cific SHAP value, while the y-axis represents features. Each
dot/point represents the samples of our dataset, the color
of the point stands for the value of a specific feature, with
blue indicating a small value and red large values for that
feature. The horizontal position of the point denotes whether
the feature value leads to a positive or negative prediction.
For example, as to feature LevelSIRIdr or Humidity or rain
values (Day1, Day3, Day15, Day 30), high values (red dots)
contribute positively to the prediction of a landslide. We can
get a confirmation from the graph that high rainfall values
associated with high temperatures and high levels of water
within the soil have their main correlation with the prediction
of landslide events.

B. LOCAL XGBoost MODEL INTERPRETATION

In addition to the global interpretation of the entire dataset on
the XGBoost model, each single point, and thus the eventual
landslide prediction, can be interpreted locally using SHAP.
The local explanation highlights the features which provided
major contribution to the prediction.

Figure 10 illustrates 3 examples of local interpretation of
events: (a) and (b) as landslides, and (c) as a non-landslide.
This SHAP plot decomposes final classification into the sum
of contributions for input variables highlighting their con-
tributions. The base value, in our case 0.4311, represents
the value that would be predicted by the model if there
was no knowledge of the features for current output. SHAP
values are calculated in log odds. Features which increased
prediction value towards a positive classification as landslide
events are shown in red on the left, while features which
lowered prediction value towards a negative classification
are shown in blue. In our case, in Figure 10a the value of
VelMaxSIR, MaxTempSIR, Day3 and Humidity contributed
significantly to the classification of the observation as a land-
slide event. In Figure 10b, values related to rainfall in the
last days, LevelSIRIdr and Humidity gave a relevant contri-
bution to the landslide event prediction. While, in Figure 11c,
values of features: Day3, MaxTempSIR, MaxTemperature,
Temperature and LevelSIRdr have been determinant for
the identification of the observation into a non-landslide
event.
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FIGURE 12. (a) SHAP(Humidity) values vs Humidity, (b) SHAP(LevelSIRIdr)
values vs LevelSIRIdr values, (c) SHAP(Day30) values vs Day30 values,

(d) SHAP(PrecipSIR) values vs Day30 PrecipSIR, (e) SHAP(Day3) values vs
Day3 values.

A more detailed analysis of the landslide event of
21-12-2019 has been reported in Figure 11, where the trends
of the SHAP values of the most relevant features according to
Figure 8 have been plotted with respect to the time/days. It is
noteworthy that in coincidence of the day before the event,
most SHAP values of the relevant features took a relevant
value at the same time. And in particular for this event:
LevelSIRIdr, Day3 and MaxTempSIR.

C. FEATURES DEPENDENCY

In this section, some features associated with high SHAP
values are furtherly analyzed. In order to understand the effect
that a single feature has on the output of the model, the SHAP
value of the features has been plotted against the feature
value for all instances of the dataset under consideration.
The analysis reported in Figure 12 presents the graphs for
the most relevant features with respect to the feature having
major influence or dynamic with them. Each point of the
graphs in Figure 12 represents an instance of the dataset.
On the horizontal line we have the actual value of the selected
feature, while the left Y axis presents the SHAP value asso-
ciated with the feature. When a value along Y is positive, the
feature contributes positively to the occurrence of landslide
event; if negative, it favors the classification of the instance as
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a non-landslide event. The fact that the slope is upward, as in
Figure 12a,b (where we have high values of variable with
high value of SHAP), means that a higher value of the feature
leads to a landslide event classification. Thus, high Humidity
values or high-water levels (LevelSIRIdr) are associated with
high SHAP values in predicting landslide events. Regarding
the colored bar on the right, this is a reference scale for
the values of a correlated second feature, the MaxTemp.
In Figure 12b, we can see that high temperatures are typically
associated with low SHAP values, thus no landslide. While
in Figure 12a, it can be seen that high temperature with high
level of humidity may lead to landslide. These graphs lead to
immediate interpretation of the model. For example, similar
values for a feature, as shown in Figure 12¢, can lead to
both positive and negative SHAP values to predict a landslide
value. This means that the mean value of Day30 associated
with high temperatures leads to higher SHAP values.

In Figure 12e, the high values of SHAP correspond to
almost any kind of value for Day3. This means that having
rain in the previous day is not enough to determine a land-
slide. In Figure 12d we see high levels of SHAP with low
levels of PrecipiSIR, which indicates the amount of rain on
the day after. This may lead to confirm that the landslide
may occur provided that water had the time to penetrate and
saturate the soil.

VI. CONCLUSION

In this paper, the problem of landslide event prediction
has been addressed, for early warning. A careful review of
related works and solutions proposed in literature has been
performed, making a comparative analysis of their results,
where possible. Most of the work in the literature focused on
computing susceptibility maps which is a sort of long term
estimation of landslides, its proneness being mainly based on
static feature of the land. State of the art approaches for early
warning (short term prediction) are empirical algorithms as
SIGMA, while most recent state of the art solutions are
based on machine learning. Their main limitations are rep-
resented by the fact that these systems have a low reliability
(unsatisfactory TSS, OA and F1), and they are based on a
limited number of features that have been considered relevant
a priori.

In this paper, we collected static and dynamic features
addressing the land description but also rain falls, tempera-
ture, wind, etc., in the previous days, in each point of a large
territory and over several year. Then, a number of machine
learning models has been tested to identify the best predictive
model. To this purpose, this paper reports the implementation,
tuning and testing of four machine learning methods, based
on RF, XGBoost, CNN and AE. Models have been trained
and validated by exploiting data collected in the context of
the Metropolitan City of Florence since 2013 up to 2019;
they have been compared with SIGMA decisional model,
which is currently adopted in both Emilia Romagna and
India. Comparative results showed that the method based
on XGBoost achieved better results in terms of Sensitivity,
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MAE, MSE, TSS, OA and RMSE, with respect to SIGMA
and to [6] which are the state-of-the-art references on pre-
dictions. Moreover, a further analysis based on Shapley addi-
tive explanation (SHAP) has been carried out, globally and
locally, for the XGBoost model which obtained best results.
In this way, a deeper understanding of the predictive model
outputs, as well as the relevance of features and their interde-
pendency, have been provided. Results proved that features
such as the amount of rain on the last 3 days, the max
temperature of the previous day, and the lever of water in
the river are the most relevant predictors, and a number of
other similar predictions may help, also on weather and water
level of different kinds; also stressing that land static features
are preconditions for landslide, yet they are not efficient in
creating an early warning system. From the computational
point of view the short-term prediction should be assessed
every day, while susceptibility maps usually are computed
once or twice per year. On the other hand, prediction models
can prevent disasters, whereas susceptibility maps are mainly
used for taking decision on planning.
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