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ABSTRACT Image segmentation is a challenging problem in medical applications. Medical imaging has
become an integral part of machine learning research, as it enables inspecting interior human body with no
surgical intervention. Much research has been conducted to study brain segmentation. However, prior studies
usually employ one-stage models to segment brain tissues, which could lead to a significant information loss.
In this paper, we propose a multi-stage Generative Adversarial Network (GAN ) model to resolve existing
issues of one-stagemodels. To do this, we apply a coarse-to-finemethod to improve brain segmentation using
a multi-stageGAN . In the first stage, our model generates a coarse outline for both the background and brain
tissues. Then, in the second stage, the model generates a refine outline for the white matter (WM ), graymatter
(GM ), and cerebrospinal fluid (CSF). We perform a fusion of the coarse and refine outlines to achieve high
results. Despite using very limited data, we obtain an improved Dice Coefficient (DC) accuracy of up to
5% compared to one-stage models. We conclude that our model is more efficient and accurate in practice
for brain segmentation of both infants and adults. In addition, we observe that our multi-stage model is
2.69−13.93minutes faster than prior models. Moreover, our multi-stage model achieves higher performance
with only a few-shot learning, in which only limited labeled data is available. Therefore, for medical images,
our solution is applicable to a wide range of image segmentation applications for which convolution neural
networks and one-stage methods have failed. This helps to advance the process of analyzing brain images,
thus providing many advantages to the healthcare system, especially in critical health situations where urgent
intervention is needed.

INDEX TERMS Brain segmentation, coarse-to-fine, generative adversarial network, semi-supervised
learning, multi-stage method.

I. INTRODUCTION
Magnetic resonance imaging (MRI ) employs a magnetic
field to generate detailed images of tissues without using
harmful radiations [1], [2]. However, these images tend to
be segmented manually, a process that is considered time-
consuming and clinically expensive [3]. Hence, automated
segmentation of infant and adult brain images has received a
substantial research attention [4], [5]. However, training deep
learning models requires large sets of labeled images [6].
Due to the limited sets of data in medical applications
[7], [8], semi-supervised learning techniques has been used
to address this issue by means of unlabeled image [9], [10].
Segmentation results can be improved by adopting unlabeled
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images [11] or images with weak annotation, such as image
level tags [12].

For object detection, a one-stage method is normally
used to predict the class probability and position infor-
mation [13], [14]. With the recent success of two-stage
method, many models took advantage of that for semantic
segmentation. Recently, Xiaohao et al. [1] proposed a two-
stage image segmentation method using a convex variant
of the Mumford–Shah model and thresholding. In computer
vision, two-stage methods are used for generating global
information in the first stage and local information in the
second stage [15], [16]. Good results can be achieved
by fusing the global information and local information
together [17], [18]. In addition, the adoption of multi-stage
Generative Adversarial Networks (GAN ) in medical imaging
remains unexplored.
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In this paper, we propose a coarse-to-fine method to
improve brain segmentation using a multi-stage GAN with
three generators, referred to as G, as follows:
• In the first generator, our model generates a coarse
outline for both background and brain tissues. The main
role of the first G is to generate coarse segmentation
information to guide the third G.

• In the second generator, two inputs, image x and a
random vector z, are taken to encourage generating as
many different values for each x as those of z.

• In the third generator, an encoder and decoder are
used along with a dense skip connection to combine
features from different scales. This generator generates
an outline for (i) white matter (WM ), (ii) gray matter
(GM ), and (iii) cerebrospinal fluid (CSF). This process
is similar to that of human learning in a clinical practice.
Specifically, the role of the third G is to generate more
detailed results using the coarse segmentation from the
first G.

We evaluate our proposed multi-stage generative adver-
sarial model on two datasets of brain tissues, including
infant and adult brain. Our model achieves higher results
compared to the state-of-the-art models. In particular, despite
using very limited data, we obtain an improved Dice
Coefficient (DC) accuracy of up to 5% compared to one-
stage models. In addition, we observe that our multi-stage
model is 2.69 − 13.93 minutes faster than prior models.
Therefore, for medical images, our solution is applicable to
a wide range of image segmentation applications for which
convolution neural networks and one-stage methods have
failed. This helps to advance the process of analyzing brain
images, thus providing many advantages to the healthcare
system, especially in critical health situations where urgent
intervention is needed.

The rest of this paper is organized as follows. Section II
presents the prior studies and techniques related to brain
segmentation. Section III presents the design of multi-stage
model. Section IV presents our experimental design and
evaluation. Section V presents our results and discussion.
SectionVI discusses the validity threats to our results. Finally,
Section VII concludes the paper and discusses directions for
future work.

II. BACKGROUND AND RELATED WORK
This section presents the prior studies and the techniques
related to brain segmentation. First, we describe in detail
semi-supervised learning. Second, we describe generative
adversarial networks (GAN ). Finally, we show how loss
functions are used to improve the stability of training GAN
models.

A. SEMI-SUPERVISED LEARNING
Training a deep model using a small datasets may cause
overfitting [11], [19]. To prevent overfitting, large amounts
of unlabeled data with a small amount of labeled data
should be used [20], [21]. Training deep models using

FIGURE 1. The illustration of semantic labels.

FIGURE 2. The illustration of semantic classes.

both labeled and unlabeled data encourages neural networks
to have a similar distribution [22], [23]. In particular,
semantic segmentation works by taking an image as an
input and generating a segmentation map as an output [16],
[24], [25]. Figure 1 and Figure 2 show the semantic
segmentation labels and semantic segmentation classes,
respectively.

Much research has applied semantic segmentation for
brain images, in particular, images for brain tissues.
Bdair et al. [26] proposed ROAM, a random layer mixup that
allows neural networks to be less confident for interpolated
data points on any selected space. Gillmann et al. [27]
proposed two architectures for brain tumor segmentation.
Their results have been evaluated using the pinnacle BraTS
confront2017 datasets. Similarly, Majib ett al. [28] pro-
posed a rethinking atrous convolution model for semantic
images. Differently from the above models, rethinking
atrous convolution model targets long range contexts, as it
does not require convolution layers. Instead, it utilizes an
atrous convolution with up-sampled filters to extract dense
feature maps. The model was evaluated on the PASCAL
VOC 2012 semantic image segmentation benchmark, con-
sisting of 3,475 finely annotated images and extra 20,000
coarsely annotated images. Their experimental results of the
sentiment task show that atrous convolution is necessary
when building more blocks cascadedly. The results also
show that the more blocks are added, the better the
performance.
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TABLE 1. Example GAN models applied in medical applications.

B. GENERATIVE ADVERSARIAL NETWORK (GAN)
GANs have demonstrated promising results for medical
image diagnostics [29] and brain image segmentation [21],
[25]. Figure 3 shows an overview of how GANs work.

Many researchers have applied generative adversarial
network for brain segmentation. Cirillo et al. [30] proposed a
3D volume-to-volume (GAN ) for segmenting brain tumors.
Their model achieved a good result when the generator
loss was weighted five times higher than the discriminator
loss. The proposed model was evaluated on the BraTS
2018 datasets. Their model outperformed previous models
with an overall accuracy of 0.66%. Delannoy et al. [31]
proposed a super resolution and segmentation framework
using generative adversarial networks to neonatal brain MRI
images. The framework consists of (a) a training of a
generating network that estimates the corresponding HR
image for a given input image and (b) a discriminator
network D to distinguish real HR and segmentation images.
In Table 1, we provide example GAN models applied in
medical applications.

C. LOSS FUNCTIONS
Loss functions have been developed to improve the train-
ing stability of GAN models [39], [40]. In this section,
we describe five loss functions that are used for GAN s.

1) MINIMAX GAN LOSS
Minimax GAN loss function consists of two components:
a generator and a discriminator. The generator attempts
to minimize the loss function, whereas the discriminator
attempts to maximize. Their formulas are given below.
Generator loss function [41]:

lGAND = −Ez∼pd [logD(x)]− Ex∼pg [log(1− d(x))] (1)

Discriminator loss function [41]:

lGANG = −Ez∼pg[log(1− D(X ))] (2)

In the discriminator loss function:
D(x) denotes the discriminator’s estimate of the prob-

ability that real data x is real.
E(x) denotes the expected value over all real data.
G(z) denotes the generator’s output for a given

noise z.
G(z) denotes the generator’s output for a given

noise z.

D(G(z)) denotes the discriminator’s estimate of the prob-
ability that fake data is real.

E(z) denotes the expected value over all generated
fake data G(z).

2) NON-SATURATING LOSS (NSGAN)
Non-saturating loss is used to solve the saturation problem.
Generator loss function [21]:

lNSGAND = −Ez∼pd [logD(x)]− Ex∼pg [log(1− D(x))] (3)

Discriminator loss function [21]:

lNSGANG = −Ez∼pg [logD(x)] (4)

3) WASSERSSTEIN LOSS (WGAN)
GAN s are commonly used in the area of computer vision [42],
[43], but the main problem is with training instability [28].
Many loss functions have been developed toward providing a
stable training ofGAN s [35]. Wassersstein (WGAN ) achieves
a good progress for training stability of GAN , but still suffers
from poor results. It has been argued that Wassersstein’s
poor result is due to the use of weight clipping. To address
tha, Adler and Lunz [44] proposed a better approach for
clipping weights. This resulting model is a modification of
the standard GAN . The discriminator training tries to make
the output bigger for real data than for fake data. The output
of the discriminator is a number, which does not have to be
between 0 and 1. More details can be found in [44].
Generator loss function [44]:

lNSGANG = −Ez∼pg [D(x)] (5)

Discriminator loss function [44]:

lWGAND = −Ez∼pd [D(x)]− Ex∼pg [D(x)] (6)

In these functions:
D(x) denotes the discriminator’s output for real data.
G(z) denotes the generator’s output for a given noise

z.
D(G(z)) denotes the discriminator’s output for fake data.

4) LEAST-SQUARES LOSS (LSGAN)
This model proposed a − b coding scheme for the discrimi-
nator where a, b denote to the labels of fake and real data.
Generator loss function [21]:

lLSGANG = −Ez∼pg [D(x − 1)2] (7)

Discriminator loss function [21]:

lLSGAND = −Ez∼pd [D(x)− 1]2 − Ex∼pg [D(x
2)] (8)

5) WASSERSSTEIN GRADIENT PENALTY LOSS (AC-GAN)
AC-GAN uses a noise z and a sample with class label
c ∼ p. This model is a modification of the standard GAN .
In the standard GAN, Xfake = G(Z ), whereas in AC −
GAN , Xfake = G(c, z). IIn addition, the output of standard
GAN is a probability distribution P(s, x) = D(x), whereas
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FIGURE 3. The illustration of Generative Adversarial Networks (GAN).

in AC − GAN , the output is two probability distributions.
P(s, x),P(c, x) = D(x).

Mondal et al. [35] proposed a model that uses a GAN for
brain segmentation. The authors used a dataset of 43 subjects,
where they generate fake images using a generator, followed
by labeled, unlabeled, and fake data to train the discriminator
to distinguish between generated data and true data. Besides,
an encoder was used to compute the predicted noise mean
and log-variance. However, their approach only supports one-
stage, whereas our model supports multi-stage modeling.

Unlike previous work, we aim in this paper to solve the
problem of information loss suffered by one-stage modeling.
To do this, our first generator generates a coarse outline
to be used by a third generator. Then, the encoder and
decoder generate a fine outline. Moreover, we use a dense
skip connection to combine the features from different scales.
To validate ourmulti-stagemodel, we use the Dice coefficient
metric.

III. METHODOLOGY
In this section, we present the design of our proposed multi-
stageGAN model.We first give amore detailed description of
the GAN model that we used. Then, we give a more detailed
description of the loss functions (discriminator and generator)
we used. Table 2 shows a list of the symbols defined in this
paper.

A. GENERATIVE ADVERSARIAL NETWORK (GAN)
Generative adversarial network (GAN ) refers to a network
composed of two networks: a generator G, which is used
to generate a fake images from a noise vector, and a
discriminator D, which is used to distinguish between
generated data and true data. In particular,G is trained to map
a noise vector z ∈ R to a fake image, whereas D is trained to
differentiate between true data x and generated dataG(z). The
core idea behindGAN s is to play a two playermin/max game:
minGmaxDEx∼pdata[logD(x)]+ Ez∼noise[1− D(G(z))]
Figure 4 shows an overview of our proposedGAN network,

which mainly consists of the 3-stage generator network
and the discriminator network. The discriminator is used
to distinguish between true and generated data. The first
generator is mainly used to generate an outline for the
background and brain tissues from the input images. The

TABLE 2. List of symbols defined in this paper.

second generator takes two inputs: an image x and a random
vector z. This encourages the generator to generate as many
different values for each x as those of z. Specifically,
training a network with a random vector z and an image
x encourages the network to give better output. The third
generator is used to generate an outline for (i) white matter
(WM ), (ii) gray matter (GM ), and (iii) cerebrospinal fluid
(CSF). The main role of the first G is to generate a
coarse segmentation that can be used to guide the third
G. The main role of the third G is to generate more
detailed results using the coarse segmentation from the first
G. The third G consists of an encoder and a decoder.
The encoder and decoder use a dense skip connection to
combine the features from different scales. Figure 5 shows the
network architecture of the encoder, decoder, and dense skip
connection.

We used the generator proposed by Dai et al. [41] and
change it as follows:

1- K classes are changed to (K + 1) classes.
2- The segmentation network is changed to be fully-

convolutional.
We used the discriminator network proposed by

Çiçek et al. [45] and change it as follows:
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FIGURE 4. Our proposed multi-stage GAN model.

FIGURE 5. The illustration of our encoder/decoder network.

1- ReLUs are changed to leaky ReLUs.
2- Max pooling was changed to average pooling.
To implement our encoder and decoder. For the encoder,

we use four blocks, as follows:
The 1st block: consists of conv, LeReLU and
concatenation.

The 2nd block: consists of conv, LeReLU and
concatenation.
The 3rd block: consists of conv, LeReLU and
concatenation.
The 4th block: consists of conv, LeReLU and
concatenation.
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For the decoder, we use four blocks, as follows:
The 1st block: consists of deconv, conv, LeReLU and
concatenation.
The 2nd block: consists of deconv, conv, LeReLU and
concatenation.
The 3rd block: consists of deconv, conv, LeReLU and
concatenation.
The 4th block: consists of deconv, conv, LeReLU and
concatenation.

Moreover, we use the dense skip connection to combine
the features from different layers.

B. LOSS FUNCTION
1) DISCRIMINATOR LOSS FUNCTION
The discriminator in our model has an unlabeled data loss,
labeled data loss, and refined prediction loss. The overall loss
function is computed as follows:

ldiscriminator=λlabeledllabeled + λunlabeledlunlabeled + λfakelfake
(9)

where λlabeled, λunlabeled, and λfake are hyper-parameters.
We set the hyper-parameters in Equation 9 to
λlabeled = 1.0, λunlabeled = 1.0andλfake = 2.0.
For labeled data, we use the same loss function in the

standard segmentation network. Mondal et al. [35] showed
that using li,k+1 as a subtracted function, the softmax function
is changed as follows:

llabeled = −Ex,y∼pdata(x,y)
H×W×D∑

i=1

log(Pmodel(yi|X )(10)

lunlabeled = −Ex∼pdata(x)
H×W×D∑

i=1

log((Zi(x)/Zi(x))+ 1)

(11)

lfake = −Ez∼noise
H×W×D∑

i=1

log[((1/Zi(G2G(z)+ 1)]

(12)

Zi =
K∑
k=1

exp[li,k(x)], (13)

The idea is to introduce unlabeled loss and fake loss, which
are analogous to the two components of the discriminator
loss in the standardGAN , whereas labeled loss represents the
cross-entropy. More details can be found in [35].

2) GENERATOR LOSS FUNCTION
We proposed a novel generated loss to encourage G to
generate real data. Let x and z denote to the real data and
noise, respectively.

C = Ex∼pdata(x)f (x)− log(1− D(G(z))) (14)

In our paper, f (x) contains the activation of the last layer.

L(G) = ||C − x||22 (15)

By minimizing this loss, we force the generator to generate
real data to match our data and the corresponding K classes
of real data, which is defined as Classes = 1, . . . ,K .

IV. EXPERIMENTS
This section presents our experimental design and evaluation.
First, we give a more detailed description of the datasets used
in our experiments. Then, we show our experimental setup.
Finally, we explain the Dice coefficient of the segmentation
evaluation.

A. DATASETS
1) DATASETS
In our experiments, we use two different datasets of
brain images: the MICCAI iSEG dataset and MRBrainS
dataset. The MICCAI iSEG-2017 dataset contains data
of 6-month infants, whereas the MRBrainS-2013 dataset
contains adult data. We should note that there are significant
differences between the two datasets in term of image
data characteristics, such as voxel spacing and the number
of available modalities. However, these two datasets were
both used to evaluate the state-of-the-art models in this
context [46], [47]. We describe each of these datasets in the
following.

2) MICCAI iSEG-2017 DATASET
The aim of the evaluation framework introduced by the
MICCAI iSEG organizers is to compare segmentation models
of WM , GM and CSF on T1 and T2. The MICCAI
iSEG dataset contains 10 images, named subject-1 through
subject-10, subject T1 : T1-weighted image, subject
T2 : T2-weighted, and a manual segmentation label used
as a training set. The dataset also contains 13 images,
named subject-11 through subject-23, used as a testing set.
An example of the MICCAI iSEG dataset (T1, T2, and
manual reference contour) is shown in Figure 6. On the
other hand, Table 3 shows the parameters used to generate
T1 and T2. The dataset has two different times: longitudinal
relaxation time and transverse relaxation time, which are used
to generate T1 and T2. The dataset has been interpolated, reg-
istered, and skull-removed by the MICCAI iSEG organizers.
We present the evaluation equations in subsection IV-B.

3) MRBrainS-2013 DATASET
The MRBrainS dataset contains 20 subjects for adults for
segmentation of (a) cortical gray matter, (b) basal ganglia,
(c) white matter, (d) white matter lesions, (e) peripheral
cerebrospinal fluid, (f) lateral ventricles, (g) cerebellum,
and (h) brain stem on T1, T2, and FLAIR. Five subjects,
2 male and 3 female, are provided to the training set and
15 subjects are provided for the testing set. To evaluate the
segmentation, these structures were merged into gray matter
(a − b), white matter (c − d), and cerebrospinal fluid (e −
f ). The cerebellum and brainstem were excluded from the
evaluation.
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FIGURE 6. An example of the MICCAI iSEG dataset (T 1,T 2, manual
reference contour).

TABLE 3. Parameters used to generate T 1 and T 2.

4) EXPERIMENTAL SETUP
We implement our proposed model using Python on a
computer with a NVIDIAGPU and Ubuntu 16.04. Training
our model took 30 hours in total, whereas testing took
5 minutes for.

B. SEGMENTATION EVALUATION
1) DICE COEFFICIENT (DC)
To better demonstrate the significance of our model, we use
the Dice Coefficient (DC) metric for evaluation. Dice Coef-
ficient (DC) has been considered as a baseline (benchmark)
in the literature to compare brain segmentation models.
We use Vref for the reference segmentation and Vauto for the
automated segmentation. The DC is given by the following
equation [41]:

DC(Vref,Vauto) =
2Vref

⋂
Vauto|

|Vref| + |Vauto|
(16)

where DC values are given in the range of [0, 1]. 1 cor-
responding to the perfect overlap and 0 indicating the total
mismatch.

C. EVALUATING THE HYPER-PARAMETERS MULTI-STAGE
To evaluate the effectiveness of our model, we evaluate
different hyper parameters: epochs, learning rate, and batch
size. Table 4, Table 5, and Table 6 show training epochs,
learning rate, and batch size, respectively. We observe that
a batch size of 30 is 95%, 94%, and 92% for CSF , GM
and WM , respectively. Large training epochs can cause
overfitting, whereas and small training epochs can cause
underfitting. Tomitigate these issues, we validate whether the
training epochs will be significantly impacted the network
performance. To do this, we use training epochs of 20, 40,
60, 80 epoch. In the 80 epochs, we observe that the network
performance was the best. We followed a similar approach to
select the best learning rate values. A large learning rate can
make the parameters of network updated quickly, whereas a
small learning rate can make the parameters updated slowly.
To address this, we first randomly start with a learning rate
of 1× 10−1. Then, we use multiple runs while changing the

TABLE 4. Experiments on Training epoch obtained on the MRBrainS
dataset. The best performance for each tissue class is highlighted in bold.

TABLE 5. Experiments on Learning Rate obtained on the MRBrainS
dataset. The best performance for each tissue class is highlighted in bold.

TABLE 6. Experiments on batch size obtained on the MRBrainS dataset.
The best performance for each tissue class is highlighted in bold.

learning rate. Experimental results showed that our multi-
stage model achieves a higher result for the learning rate of
1× 10−4.

V. RESULTS AND DISCUSSION
To better demonstrate the significance of our model, we train
and test our multi-stage GAN model on two datasets of
different ages: infants and adults, as follows:
• MICCAI iSEG-2017 dataset

– For the 13 unlabeled images, that are actually part of
the testing set, we use them to train ourGAN model

– For the 10 labeled images, we use two for training,
one for validation, and seven for testing

• MRBrainS-2013 dataset
– For the 15 unlabeled images, that are actually part of

the testing set, we use them to train our multi-stage
GAN model

– For the five labeled images, we use one for training,
one for validation, and three for testing

The main goal of our multi-stageGAN model is to improve
the performance with a few-shot learning case. Table 7
presents the results of our model to segment CSF ,GM , and
WM using the MICCAI iSEG dataset, in comparison with
the state-of-the-art models. Our model achieves DC values
of 95% in CSF segmentation. The DC values obtained
from segmenting CSF by the state-of-the-art models ranged
between 86% and 91%. In addition, our model achieves a
DC values of 94% and 92% in segmenting GM and WM ,
respectively. The state-of-the-art models, on the other hand,
obtain DC values in the ranges of 80%- 93% for GM
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FIGURE 7. Visualization results on MRBrainS dataset.

TABLE 7. Segmentation performance in Dice Coefficient (DC) obtained
on the MICCAI iSEG dataset. The best performance for each tissue class is
highlighted in bold.

TABLE 8. Segmentation performance in Dice Coefficient (DC) obtained
on the MRBrainS dataset. The best performance for each tissue class is
highlighted in bold.

segmentation and 81%- 90% for WM segmentation. Such
results highlight the remarkable efficiency gained by using
multi-stage GAN .

Table 8 presents the results achieved by our model using
theMRBrainS dataset, in comparison with the state-of-the-art
models. We observe that our model achieves a DC value of
93% on CSF segmentation, 93% on GM segmentation, and
88% on WM segmentation. Such results surpass the results
achieved by the state-of-the-art models. Therefore, we argue
that our model can perform better in a few-shot learning case.

Table 9 shows the execution time (in minutes) for our
multi-stageGAN model, in comparison with the state-of-the-
art models. We observe that the execution of our proposed
model is faster than the state-of-the-art models. Such results

TABLE 9. Average execution time (in minutes) and standard deviation
(SD) in the MRBrainS dataset.

indicate that our model is more efficient and, hence, more
practical to be used in real-time systems.

Figure 7 visualizes the results of our model on the images
used as a validation set. We observe that the segmentation
results achieved by our multi-stage model are fairly close to
the manual reference contour, i.e., ground truth, provided by
the MICCAI iSEG organizers.

VI. THREATS TO VALIDITY
A. EXTERNAL VALIDITY
Threats to external validity are related to the generalizability
of our results. In this paper, we use two datasets that belong
to two organizers. The total number of the subjects in the two
datasets are 43 subjects. One could argue that the datasets
do not have enough samples. We mitigate such threat by
using two datasets that (a) contain both infant and adult
brain data and (b) were previously used by prior studies.
Our model obtains a higher performance than the state-
of-the-art models. We believe that our model performs as
similar as human learning in clinical practice. Moreover,
while we only targeted three tissues, our proposed model can
be easily extended to segment more tissues as it does not
require more labeled data. The intuition behind our multi-
stage model is that it improves the performance in a few-shot
learning case where only a few labeled data are available for
training.
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B. INTERNAL VALIDITY
Threats to internal validity are related to experimental errors
and bias. Our model is constructed using data extracted from
medical images in which contracts might be low. We use
the small-size kernels, deconvolution layer (to upsample
the input), PReLU, dropout and normalization methods to
reduce the risk of overfitting. Hence, any potential deficiency
in the data should deficient all the implemented models.
Nevertheless, our model obtains higher performance than
previous models.

VII. CONCLUSION
In this paper, we proposed a multi-stage generative adver-
sarial network (GAN ) model for brain segmentation that
generates a coarse outline for both background and brain
tissues. Then, our model generates an outline for white
matter (WM ), gray matter (GM ), and cerebrospinal fluid
(CSF). We evaluated our results using both infant and adult
datasets, in comparison with three baseline state-of-the-art
models. We found that our segmentation results are fairly
close to the manual reference. In addition, we observe that
our model surpasses the state-of-the-art models by achieving
a performance improvement of up to 5%. In particular,
we obtain Dice coefficients (DC) ranging between 88%
and 95%. Such results indicate that the adoption of our
multi-stage GAN model has significantly improved segmen-
tation results. We argue that our model is more efficient
and accurate in practice for both infant and adult brain
segmentation.

Despite the promising results obtained from our proposed
model, we believe that further improvements can be achieved
in the future. We aim in the future to consider more datasets
in our study. Moreover, we intend to expand the evaluation
of our multi-stage model to investigate its performance on
segmenting more brain tissues. Finally, we aim to investigate
whether ourmulti-stagemodel achieves a higher performance
for pathological brain images, such as with tumor or edema.
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