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ABSTRACT In this work an optimal slidingmode controller for second order, nonlinear systems is proposed.
First, the sliding surface is selected to obtain finite time convergence to the desired state. Moreover, to ensure
robustness with respect to unknown external disturbances and model uncertainties, the surface is time-
varying and at the start of the control process it intersects the point, whose coordinates are defined by the
initial state. Thus, the existence of the slidingmode is ensured for the whole control process. Next, admissible
values of the hyperplane parameters, that ensure satisfaction of velocity and/or control signal constraints
are determined. Lastly, optimal values of these parameters, in terms of integral absolute error (IAE) are
calculated. The main motivation of this paper was to obtain the good dynamical performance of the system
and robustness by eliminating the reaching phase, overcoming the external, unknown disturbances and
obtaining a finite-time convergence of the representative point to the desired state. The other main issue
was to include some key limitations such as control signal and velocity constraints in order to facilitate the
practical application of this strategy.

INDEX TERMS Sliding mode control, state constraints, state space methods.

I. INTRODUCTION
Sliding mode control is one of the well-known variable
structure control methods. Its main favorable properties are
robustness with respect to external disturbances [10] and
minimal requirements of computational power. Due to these
advantages sliding mode control is frequently used in electric
drives, mechanical systems, and many diverse practical sys-
tems [1]–[8], [11], [12]. The basis of this methodology has
been developed in the previous century [13], [14], however it
still is an active research field both from the theoretical [15]
and practical [16] perspective.

The discontinuous nature of the slidingmode control signal
makes it particularly suited for controlling power electronic
and electric drive systems. In [2] the control of a linear
permanent magnet synchronous machine is analyzed. A slid-
ing mode controller is enhanced by a neural network, that
compensates for the impact of disturbances. In this way, the
chattering can be minimized. To further reduce this unfa-
vorable phenomenon, the sign function in the control law is
replaced by a dynamical saturation function, that ‘‘tunes’’ the
boundary layer to ensure small error and minimal chattering.
The proposed approach is tested on an experimental stand
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and compared to a sliding mode controller without the neural
network. The comparison clearly shows improved control
precision and reduced oscillations. A similar task of control-
ling rotational speed of a Permanent Magnet Synchronous
Motor (PMSM) was tackled in [3]. For this task, the authors
have chosen a super-twisting sliding mode controller. The
parameters of the controller are then adjusted on-line by
a neural network, in order to accommodate the unknown,
changing levels of disturbances. The proposed approach is
tested in simulations as well as on a laboratory stand. The
results show significant advantages over typical sliding mode
control and linear Proportional Integral Derivative (PID)
control.

Sliding mode control is also often used in the recently
very active area of Unmanned Aerial Vehicle (UAV) control.
In [4] the control of a quadrotor is considered. The authors
propose a reaching law that consists of two hyperbolic func-
tions. It allows to achieve fast convergence far away from
the switching hyperplane, while reducing the convergence
in its vicinity (to limit the risk of inducing oscillations in
the system). The sliding mode controller is combined with
a ‘‘system dynamics estimator’’ used to estimate the wind
speed. As is well known, using observers to calculate the
values of disturbances can reduce chattering, as it allows
to decrease the discontinuous term in the control signal.
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The estimator is based on an assumption of limited rate of
change of wind speed. As the real wind speed can come
in gusts, this assumption seems not realistic. Unfortunately,
even though the authors test their approach on a real quadro-
tor, they do so inside a laboratory, with constant wind speed
simulated by a fan. This makes it hard to evaluate, how the
solution would perform in the real world. In [5] an adaptive
non-singular terminal supertwisting sliding mode controller
was used for the related problem of UAV formation con-
trol. Formations of UAVs can be useful for e.g. inspection
works, such as monitoring photovoltaic panels or electric
cables. First a sliding mode trajectory tracking controller for
the leader is derived, then, based on the leader trajectory,
a formation controller generates trajectories for all of the
followers. Finally, the controller designed for the leader is
applied in each follower. Computer simulations verify, that
the proposed approach ensures formation control robust to
the wind disturbances acting on the UAVs. The problem of
formation control was solved using a nonsingular terminal
sliding mode controller in [6]. The main difference is that
in [6] it is assumed that not all UAVs have direct commu-
nication with the leader, and the formation must be held
using only local distance information. Moreover, [6] utilizes
a collision avoidance mechanism based on artificial potential
field, which was not considered in [5]. The performance of
the proposed approach is validated both in theory and in
computer simulations.

In [7] the problem of controlling a bridge crane is analyzed.
A time varying sliding mode controller is designed, in which,
similarly to the approach in this paper, the sliding hyperplane
is chosen to pass through the initial state, which allows to
ensure robustness from the start of the control process. The
chosen crane model takes into account all of the moving
masses separately: the trolley, the hook and the suspended
load, and the main task of the controller is to move the load
quickly, but without inducing excessive oscillations in the
system. The method is compared in computer simulations
with two methods with constant sliding hyperplanes and the
advantages such as significantly less oscillation and better
robustness are clearly visible. In [9] a problem in which
minimization of oscillations of moving masses is also impor-
tant, namely a benchmark problem of position control of a
ball located on a beam, was considered. An integral sliding
mode controller is used to remove the reaching phase and a
smooth version of the sign function is introduced to remove
chattering. The remarkable control precision is illustrated
in tests on a laboratory stand. In the work [12] a second
order sliding mode controller is designed for load frequency
control in a multi area power system. First a linear observer
is designed to estimate the unknown system states. A sliding
mode controller then uses this information to minimize fre-
quency deviations.

More and more commonly, the control is performed
through a network system, instead of a direct connection
between each actuator or sensor and the controller. This
allows to reduce the costs and improve the extensibility.

However, it also introduces some problems, such as varying
transmission delays and packet losses. In paper [8] the authors
present an extensive review of up-to-date sliding mode con-
trol algorithms using networked control.

The sliding mode control paradigm is often used not only
for control, but also for observer design. One of the advan-
tages of sliding mode observers is that the estimation error
gets driven to zero in finite time [17]–[19], not asymptotically
as in ‘‘traditional’’ observers. In [1] the problem of state of
charge estimation in a vanadium redox battery is analyzed.
First, a concentration model is derived and tuned using par-
ticle swarm optimization. Then, the system is transformed to
the control canonical form and a sliding mode observer is
designed. As the state of charge is hard to measure directly,
the battery voltage difference between the real system and the
observer is used to determine the observation precision in real
tests on an experimental battery. Moreover, the color of elec-
trolytes in full charge and discharge state confirms the proper
operation of the observer. In [11] a sliding mode observer for
stator current and rotor flux linkage is developed for a bear-
ingless induction machine. This type of motors has some sig-
nificant advantages due to replacing the mechanical bearings
by additional windings in the stator. By controlling the cur-
rent in these windings radial forces can be generated, which
keeps the rotor ‘‘levitating’’ inside the stator. This allows
to greatly increase the attainable rotor speeds and reduces
the friction force. The authors propose to use a saturation
function to limit the chattering phenomenon in the observer.
Simulation results demonstrate, that the proposed observer
offers shorter convergence time and smaller steady state error
than the Model Reference Adaptive System (MRAS) speed
identification usually used for this purpose.

From the practical point of view it is important to take
into account some natural limitations. One of the examples
may be constraining the velocity of the object to prevent
mechanical damage. During our research we found only a few
methods in which these bounds are connected with the sliding
mode control. This motivated us to analyze such a sliding
mode controller, that achieves a good dynamical performance
in the presence of some limitations. This work extends the
approach presented previously [20], by taking into account
the minimization of IAE, instead of the regulation time. This
approach is more advantageous, as it ensures minimizing the
transient error value, and not only the convergence time to the
desired state. Moreover, the approach enables the designer to
enforce a priori known bounds on the system velocity and/or
the control signal value.

II. SLIDING MODE CONTROLLER DESIGN
In this section the sliding mode controller for the second
order continuous-time system will be derived and presented.
In order to eliminate the reaching phase and in consequence
obtain robustness for the whole regulation process, a time-
varying sliding line will be introduced. The next goal of the
paper is to achieve a finite-time convergence of the represen-
tative point (state vector) to the demand state. An important
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issue during the design of the sliding mode controller is to
take into account natural external disturbances and limitations
resulting from the environmental conditions or design restric-
tions. In this paper, bounded, unknown external disturbances
will be considered as well as constraints imposed on:
• control signal,
• system’s velocity,
• both control signal and system’s velocity.

Furthermore, in order to evaluate the dynamical performance
of the system and drive the representative point to the demand
state in the shortest possible time, without violating con-
straints mentioned above, IAE quality index will be calcu-
lated and minimized. In the paper, the following second order
dynamical system will be considered

d
dτ
χ1 (τ ) = χ2 (τ )

d
dτ
χ2 (τ ) = γ (χ1 (τ ) , χ2 (τ ) , τ )+ δ (τ )+ βµ (t)

(1)

System’s position χ1 (τ ) and system’s velocity χ2 (τ ) form
the state vector. Function γ as well as external disturbances
δ are both unknown. However, the absolute value of the sum
of these two functions is bounded from above by a positive,
known parameter 3 i.e. |γ (χ1 (τ ) , χ2 (τ ) , τ )+ δ (τ )| ≤ 3.
Control signal is denoted by µ and β is a positive parameter.
The initial point is given as χ1 (0) 6= 0, χ2 (0) = 0 and
the desired state is (0, 0). The main goal of this paper is
to eliminate the reaching phase and drive the representative
point to the demand state in finite-time, minimizing the IAE,
while respecting imposed constraints. In order to achieve that
goal a time-varying, non-linear sliding line s (τ ) = 0, where

s (τ ) = χ2 (τ )+ η (τ) sgn (χ1 (τ ))
√
|χ1 (τ )|, (2)

is presented. Function η is described as follows

η (τ) =

{
ρτ for τ ≤ τ0

ρτ0 for τ > τ0
(3)

Positive scalar ρ is related to the speed of the sliding line
and τ0 is the time in which the sliding line stops and remains
stationary to the end of the control process. These two param-
eters will be optimized in order to minimize IAE with respect
to imposed limitations. Let us observe, that

s (0) = χ2 (0)+ η (0) sgn (χ1 (0))
√
|χ1 (0)| = 0, (4)

which means, that the representative point belongs to the
sliding line at the beginning of the control process. In con-
sequence the reaching phase is eliminated and the system
becomes insensitive to the external disturbances for the whole
regulation process. The sliding line at the initial moment
coincides with the horizontal coordinates axis. After that it
starts moving and takes a parabolic shape. Another main issue
is the fact that the stable sliding motion has to be ensured.
Therefore, the following input

µ (τ) = −
1
β
sgn (χ1 (τ ))

√
|χ1 (τ )|

d
dτ
η (τ)

−
χ2 (τ ) η (τ )

2β
√
|χ1 (τ )|

−
3

β
sgn (s (τ )) (5)

is proposed. In order to show that control signal (5) ensures
the stable sliding motion, the inequality

s (τ )
d
dτ

s (τ ) ≤ 0 (6)

must be true for any τ > 0. This inequality does not have to
be strict due to the fact that the sliding variable at τ = 0 is
equal to 0. One can obtain

d
dτ

s (τ ) =
d
dτ
χ2 (τ )+ sgn (χ1 (τ ))

√
|χ1 (τ )|

d
dt
η (τ)

+
χ2 (τ ) η (τ )

2
√
|χ1 (τ )|

. (7)

Substituting the derivative of the system’s velocity from equa-
tion (1) we get

d
dt
s (τ ) = γ (χ1 (τ ) , χ2 (τ ) , τ )+ δ (τ )−3sgn (s (τ )) . (8)

When the sign function is smaller than 0, then (8) is of the
form

d
dτ

s (τ ) = γ (χ1 (τ ) , χ2 (τ ) , τ )+ δ (τ )+3. (9)

and is always non-negative due to the fact that the absolute
value of the sum of functions γ and δ is always smaller or
equal to 3. When the sign function is equal to 0, then the
derivative is also equal to 0. In the last case, when the sign
function is positive, the derivative is of the form

d
dτ

s (τ ) = γ (χ1 (τ ) , χ2 (τ ) , τ )+ δ (τ )−3. (10)

and is always non-positive. Therefore, inequality (6) is true.
Remark: The proposed approach ensures the existence

of the sliding motion for the whole control process, while
allowing to limit the control signal and/or the system veloc-
ity. Therefore, the reaching phase is completely eliminated
and an invariance with respect to external disturbances and
parameter uncertainties is ensured. Moreover, due to the non-
linearity of the sliding curve, the approach ensures a finite,
known a priori time of convergence to the desired state.

III. ADMISSIBLE SETS
This section comprises the calculation and introduction of
admissible sets composed of the sliding line parameters ρ
and τ0. These sets will be derived in presence of constraints
mentioned in the previous section. Let us observe, that there
are two possible movements of the switching curve. It can
stop during the control process and remain fixed to the end
of it or it can be non-stationary for the whole regulation time.
In the paper both scenarios will be taken into account. In order
to consider limitations imposed on the system, first we have to
calculate the state vector. Using equation (2) and the existence
of the stable sliding motion, one can express the second state
variable as

χ2 (τ ) = −η (τ) sgn (χ1 (τ ))
√
|χ1 (τ )|. (11)
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We will start by calculating the square root of the absolute
value of the first state variable. Substituting the above equa-
tion into the first one in (1) we get

d
dτ
χ1 (τ )+ η (τ) sgn (χ1 (τ ))

√
|χ1 (τ )| = 0. (12)

Solving the formula (12) using the Bernoulli differential
equation one can obtain that

√
|χ1 (τ )| =


ζ1 −

ρτ 2

4
for τ ∈ [0, τ0]

ζ2 −
ρτ0τ

2
for τ ∈

(
τ0, τf

]
0 for τ ∈

(
τf ,∞

) (13)

Using the continuity property of (13) and comparing corre-
sponding equations for τ = 0, τ = τ0 and τ = τf we get that
ζ1 =

√
|χ1 (0)|, ζ2 =

√
|χ1 (0)| + 1

4ρτ
2
0 and the regulation

time is

τf =
1
2
τ0 +

2
√
|χ1 (0)|
ρτ0

. (14)

To sum up, the square root of the absolute value of the
system’s position is

√
|χ1 (τ )|=


√
|χ1 (0)| −

ρt2

4
for τ ∈ [0, τ0]√

|χ1 (0)| +
ρτ 20

4
−
ρτ0τ

2
for τ ∈

(
τ0, τf

]
0 for τ ∈

(
τf ,∞

)
(15)

In order to get the system’s velocity, we substitute (15) into
equation (11) obtaining

|χ2 (τ )| =



ρτ
√
|χ1 (0)| −

ρ2τ 3

4
for τ ∈ [0, τ0]

ρτ0
√
|χ1 (0)|+

ρ2τ 30

4

−
ρ2τ 20 τ

2
for τ ∈

(
τ0, τf

]
0 for τ ∈

(
τf ,∞

)
(16)

In the case, when the sliding line moves for the whole control
process, above results are of the form

√
|χ1 (τ )| =


√
|χ1 (0)| −

ρτ 2

4
for τ ∈

[
0, τf

]
0 for τ ∈

(
τf ,∞

) (17)

|χ2 (τ )| =

 ρτ
√
|χ1 (0)| −

ρ2τ 3

4
for τ ∈

[
0, τf

]
0 for τ ∈

(
τf ,∞

) (18)

and the settling time is

τf =
2 4
√
|χ1 (0)|
√
ρ

. (19)

At this point it is unclear which of the above two strategies
is superior, therefore we will analyze both of them. In the

following sections we will derive optimal values of ρ, τ0 for
control and velocity constraints taken separately, as well as
both at the same time.

A. CONTROL SIGNAL LIMITATION
Our goal is to derive such ρ and τ0, that

|µ (τ)| ≤ µmax (20)

for any τ ≥ 0, where the positive parameter µmax denotes
upper and lower control signal limitation. Substituting control
signal (5) to the above inequality one gets∣∣∣∣sgn (χ1 (τ ))√|χ1 (τ )| ddt η (τ)+ χ2 (τ ) η (τ )2

√
|χ1 (τ )|

+3sgn (s (τ ))

∣∣∣∣ ≤ |β|µmax. (21)

From the fact that the absolute value is additive and multi-
plicative we conclude that∣∣∣∣√|χ1 (τ )| ddτ η (τ)− η2 (τ )2

∣∣∣∣ ≤ |β|µmax −3. (22)

is true. Moreover, in order to confirm the above transforma-
tions, we have to stress the fact that the system’s position is
non-zero until the end of the control process. Now, two phases
will be considered. In the first one, the time will belong to
the interval from the moment when the sliding line stops and
remains fixed to the end of the control process. The second
time interval is from the initial time until the line stops.

1) τ > τ0.

From (3) one can observe that in this case η is a constant
function of the form η(t) = ρτ0, i.e. it’s derivative
with respect to time is always equal to zero. Hence,
inequality (22) is of the form

ρ2τ 20

2
≤ |β|µmax −3 (23)

and

τ0 ≤

√
2 (|β|µmax −3)

ρ
. (24)

However, the above equation depends on parameter ρ.
Therefore, we have to analyze the second case, inwhich
the representative point slides along themoving switch-
ing curve.

2) τ ≤ τ0.
In this case function η is of the form η (τ) = ρτ.

Therefore, d
dτ η (τ) = ρ. Hence, inequality (22) can

be rewritten as follows∣∣∣∣ρ√|χ1 (τ )| − ρ2τ 22

∣∣∣∣ ≤ |β|µmax −3. (25)

From the inequality (23) one can obtain that
∣∣∣ρ2τ 22

∣∣∣ ≤
|β|µmax−3 holds for any τ ≤ τ0. Therefore, we have
to demand that∣∣∣ρ√|χ1 (τ )|∣∣∣ ≤ |β|µmax −3. (26)
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is true. The representative point moves on the sliding
line for the whole regulation process, therefore one
can observe that the maximum of the absolute value
of the system’s position is |χ1 (0)| . Hence, in order to
satisfy (26) it is sufficient, that∣∣∣ρ√|χ1 (0)|∣∣∣ ≤ |β|µmax −3. (27)

and in consequence

ρ ≤
|β|µmax −3
√
|χ1 (0)|

. (28)

In the second case - when the sliding line moves for the whole
control process - inequality (25) has to hold on the boundary
of the domain. For τ = 0 the ρ limitation is of the form (28).
On the other hand, if τ = τf , then we have to demand that

ρ ≤
|β|µmax −3

2
√
|χ1 (0)|

. (29)

Let us observe, that (29) is harder to fulfill than (28).

B. SYSTEM’S VELOCITY LIMITATION
In this subsection, the main goal is to derive sliding line
parameters for which

|χ2 (τ )| ≤ χ2max (30)

for any τ ≥ 0. It means that the absolute value of the system’s
velocity is limited by χ2max for the whole regulation process.
In order to determine the admissible set, we will first consider
the case in which the sliding line is non-stationary for the
whole control process, therefore the absolute value of the
system’s velocity is given by (18). We will start by finding a
moment when the velocity reaches its extreme value. Calcu-
lating the derivative of the first formula in (18) and equating
it to zero in order to find the extreme value we get

ρ
√
|χ1 (0)| −

3
4
ρ2τ 2 = 0. (31)

Hence, we obtain that the extreme value of the system’s
velocity is obtained at the moment

τm =
2
√
3 4
√
|χ1 (0)|

3
√
ρ

(32)

and is equal to

max
τ>0
|χ2 (τ )| =

4
√
3ρ 4
√
|χ1 (0)|3

9
. (33)

In consequence the admissible set is

ρ ≤
27χ2

2max

16
√
|χ1 (0)|3

. (34)

When the sliding line stops at some moment during the regu-
lation process, wewill consider two time intervals: τ ∈ [0, τ0]
and τ ∈

[
τ0, τf

]
. When the switching curve is fixed, then

from the shape of it we conclude that the maximum value of
the system’s velocity is obtained at τ = τ0. Now we have to

analyze the initial time interval.When τm < τ0, themaximum
is obtained before the sliding line stops and all of calculations
are identical as in the case when the switching curve moves
for the whole regulation process. The only other case is when
τm = τ0. However, in this case

τ0 =
2
√
3 4
√
|χ1 (0)|

3
√
ρ

(35)

and again the admissible set is given by (34).

C. BOTH CONTROL SIGNAL AND SYSTEM’s VELOCITY
LIMITATIONS
In this subsection our goal is to combine admissible sets
from the two previous subsections in order to satisfy limita-
tions (20) and (30) simultaneously. Therefore, when the slid-
ing line stops during the control process then the ρ constraint
is given as

ρ ≤ min
{
|β|µmax −3
√
|χ1 (0)|

;
27χ2

2max

16
√
|χ1 (0)|3

}
, (36)

and τ0 limitation is of the form (24). In the second scenario,
when the switching curve moves for the whole regulation
process, then

ρ ≤ min
{
|β|µmax −3

2
√
|χ1 (0)|

;
27χ2

2max

16
√
|χ1 (0)|3

}
. (37)

IV. IAE MINIMIZATION
In this section first, the formula for the value of IAE will be
derived. After that we will minimize that value in three cases:
• when the control signal is limited,
• when the system’s velocity is limited,
• when both control signal and velocity are limited.

IAE is a popular quality index which can be written as

ψ =

∫
∞

0
|χ1 (τ )| dτ, (38)

where IAE is denoted by ψ. However, our controller ensures
a finite-time convergence to the desired state. Hence, (38) can
be rewritten as follows

ψ =

∫ τf

0
|χ1 (τ )| dτ. (39)

Again, we would like to consider two scenarios: when the
sliding line stops during the control process and when it
moves for the whole time. Let us start by taking into account
the strategy, when the desired state is reached along the fixed
switching curve. In this case the absolute value of the system’s
position can be shown as

|χ1(τ)|=



(√
|χ1(0)| −

ρτ 2

4

)2

for τ ∈ [0, τ0](√
|χ1 (0)| +

ρτ 20

4
−
ρτ0τ

2

)2

for τ ∈
(
τ0, τf

]
0 for τ ∈

[
τf ,∞

)
(40)
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Hence, IAE can be rewritten as follows

ψ =

∫ τ0

0

(√
|χ1 (0)| −

ρτ 2

4

)2

dτ

+

∫ τf

τ0

(√
|χ1 (0)| +

ρτ 20

4
−
ρτ0τ

2

)2

dτ. (41)

Calculating the above integral, one can obtain that it takes the
form

ψ =
τ0

2
|χ1 (0)| −

ρτ 30

24

√
|χ1 (0)| +

ρ2τ 50

480
+

2
√
|χ1 (0)|3

3ρτ0
.

(42)

In order to minimize this quality index we have to find the
stationary points (if they exist). Calculating partial derivatives
of the above function with respect to ρ and τ0 we obtain

∂ψ

∂ρ
= −

τ 30

24

√
|χ1 (0)| +

ρτ 50

240
−

2
√
|χ1 (0)|3

3ρ2τ0
, (43)

∂ψ

∂τ0
=

1
2
|χ1 (0)| −

ρτ 20

8

√
|χ1 (0)| +

ρ2τ 40

96
−

2
√
|χ1 (0)|3

3ρτ 20
.

(44)

Therefore, we have to demand that equations

−
τ 30

24

√
|χ1 (0)| +

ρτ 50

240
−

2
√
|χ1 (0)|3

3ρ2τ0
= 0,

(45)

1
2
|χ1 (0)| −

ρτ 20

8

√
|χ1 (0)| +

ρ2τ 40

96
−

2
√
|χ1 (0)|3

3ρτ 20
= 0.

(46)

are true. Multiplying equation (45) by ρ and equation (46) by
τ0 and comparing them to each other one gets

−
ρτ 20

2
|χ1 (0)| +

ρ2τ 40

12

√
|χ1 (0)| −

ρ3τ 60

160
= 0. (47)

Using the substitution ξ = ρτ 20 we can rewrite the above
formula as follows

ξ

(
−
ξ2

160
+
ξ

12

√
|χ1 (0)| −

1
2
|χ1 (0)|

)
= 0. (48)

Calculating the discriminant of the above quadratic equation
we obtain

1 = −
1
180
|χ1 (0)| < 0 (49)

which means, that zero is the only real solution of the equa-
tion (48). However, ρ and τ0 are positive, therefore there are
no stationary points and the extreme value of IAE is obtained
on the boundary of the admissible set. Now let us focus on the
case when the switching curvemoves for the whole regulation

process. In this case using the equation (17) we have that the
absolute value of the system’s position is given as

|χ1 (τ )| =


(√
|χ1 (0)| −

ρτ 2

4

)2

for τ ∈
[
0, τf

]
0 for τ ∈

(
τf ,∞

) (50)

In this case IAE is given as the first component in the
sum (41). Switching the integrating boundaries to

[
0, τf

]
we

get

ψ =

∫ τf

0

(√
|χ1 (0)| −

ρτ 2

4

)2

dτ

=

(
|χ1 (0)| τ −

ρτ 3

6

√
|χ1 (0)| +

ρ2τ 5

80

) ∣∣∣τf
0

= |χ1 (0)| τf −
1
6

√
|χ1 (0)|ρτ 3f +

1
80
ρ2τ 5f . (51)

Substituting τf given by (19) to the above equation one
obtains

ψ =
16 |χ1 (0)|

5
4

15
√
ρ

. (52)

Calculating the derivative of the above equation with respect
to ρ we have

∂ψ

∂ρ
= −

16 |χ1 (0)|
5
4

30ρ
3
2

. (53)

The value of the right hand side of the above formula is always
negative. Hence, again, the extreme value of IAE is obtained
on the boundary of the admissible set. The next step will be
calculating the minimum value of IAE with respect to three
limitations described in the previous section.

A. IAE MINIMIZATION WITH CONTROL SIGNAL
LIMITATION
In this subsection the IAE will be minimized in the presence
of the input constraint. We demand that inequality (20) is true
for any τ ≥ 0. Our goal is to calculate the optimal values of
ρ and τ0.
Theorem 1: If the absolute value of the control signal is

bounded from above by µmax for any τ ≥ 0, then the
minimized IAE is

ψ =
91
120

√
2 |χ1 (0)|3

|β|µmax −3
(54)

and it is obtained for
ρ =
|β|µmax −3
√
|χ1 (0)|

τ0 =

√
2 |χ1 (0)|
|β|µmax −3

(55)

The most beneficial strategy is the one in which the sliding
line stops during the control process.

In order to prove the above theorem we will first consider
the strategy in which the switching curve stops during the

28636 VOLUME 10, 2022



M. Pietrala et al.: IAE Minimization in Sliding Mode Control With Input and Velocity Constraints

control process. We have already shown that the minimum
of the IAE is obtained on the boundary of the admissible set.
Therefore, it is essential to calculate theminimum on the lines

τ0 =
√
2(|β|µmax−3)

ρ
and ρ = |β|µmax−3√

|χ1(0)|
. Substituting these

two values into equation (42) one can get that the minimum
value of IAE is obtained for the maximum admissible values
of parameters ρ and τ0 (on the intersection of two mentioned
lines), therefore

ρ =
|β|µmax −3
√
|χ1 (0)|

τ0 =

√
2 |χ1 (0)|
|β|µmax −3

(56)

and the minimum IAE is given by (54). In the second case,
when the sliding line moves for the whole regulation process,
substituting maximum admissible

ρ =
|β|µmax −3

2
√
|χ1 (0)|

(57)

into equation (52) we get

ψ =
16
15

√
2 |χ1 (0)|3

|β|µmax −3
. (58)

Comparing (54) and (58) it is easy to see that the first one is
smaller than the latter one. Hence, the minimum value of IAE
is given by (54) and is obtained for (55). Therefore, the most
beneficial strategy is the one in which the switching curve
stops during the regulation process.

B. IAE MINIMIZATION WITH SYSTEM’s VELOCITY
LIMITATION
In this subsection IAE will be minimized in the presence
of the system’s velocity limitation. Our goal is to take into
account the fact that the absolute value of the system’s veloc-
ity must be bounded from above by a positive parameter
χ2max for the whole regulation process.
Theorem 2: If the absolute value of the system’s velocity

is bounded from above by χ2max for any τ ≥ 0, then the
minimized IAE is

ψ =
64
√
3 |χ1 (0)|2

135χ2max
(59)

and it is obtained for

ρ =
27χ2

2max

16
√
|χ1 (0)|3

(60)

The most beneficial strategy is the one in which the sliding
line moves for the whole control process.

Similarly as in the previous subsection we get that in the
casewhen the sliding line stops during the control process, the
optimal parameters ρ and τ0 lie on the intersection of lines,
which are the boundaries of the admissible set. In this case,

the optimal switching line parameters are


ρ =

27χ2
2max

16
√
|χ1 (0)|3

τ0 =
8 |χ1 (0)|
9χ2max

(61)

Substituting above formulas into equation (42) one can get
the minimum value of IAE

ψ =
1024 |χ1 (0)|2

1215χ2max
. (62)

When the sliding line moves for the whole regulation process,
then the maximum value of ρ is the same as in (61) and
minimized IAE is given by (59). One can observe that (59)
is smaller than (62). It means that the minimum value of IAE
is given by (59) and is obtained for (60). The most beneficial
strategy is the one in which the switching curve moves for the
whole regulation process.

C. IAE MINIMIZATION WITH BOTH CONTROL SIGNAL
AND SYSTEM’s VELOCITY LIMITATIONS
In this subsection we combine the two previous subsections
and take into account both control signal and system’s veloc-
ity limitations. It means, that our goal is to minimize IAE,
when the absolute value of the control signal is bounded from
above byµmax and the absolute value of the system’s velocity
by χ2max for any τ ≥ 0.
Theorem 3: If the absolute value of the control signal is

bounded from above by µmax and the absolute value of the
system’s velocity is bounded from above by χ2max for any
τ ≥ 0, then the minimized IAE is equal to one of three values

ψ =
91
120

√
2 |χ1 (0)|3

|β|µmax −3
, (63)

ψ =
64
√
3 |χ1 (0)|2

135χ2max
, (64)

ψ =
8
√
2 (|β|µmax −3) |χ1 (0)|5

27χ2
2max

−

64
√
2 (|β|µmax −3)

3
|χ1 (0)|7

2187χ4
2max

+

512
√
2 (|β|µmax −3)

5
|χ1 (0)|9

295245χ6
2max

+
1
3

√
2 |χ1 (0)|3

|β|µmax −3
. (65)
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The minimum value depends on the initial condition and
constraints values. Each of the above values is obtained for

ρ = min
{
|β|µmax −3
√
|χ1 (0)|

;
27χ2

2max

16
√
|χ1 (0)|3

}

τ0 = max
{√

2 |χ1 (0)|
|β|µmax −3

;

min
{
8
√
3 |χ1 (0)|
9χ2max

;

16
√
2 (|β|µmax −3) |χ1 (0)|3

27χ2
2max

}}
(66)

or

ρ = min
{
|β|µmax −3

2
√
|χ1 (0)|

;
27χ2

2max

16
√
|χ1 (0)|3

}
. (67)

In the case, when the sliding curve stops during the regulation
process, the optimal (ρ, τ0), for which IAE is minimal is of
the form (66). We will consider three possible combinations:

1) ρ = |β|µmax−3√
|χ1(0)|

and τ0 =
√

2|χ1(0)|
|β|µmax−3

. In this case, the

minimum IAE value is (63).

2) ρ =
27χ2

2max

16
√
|χ1(0)|3

and τ0 =
8
√
3|χ1(0)|

9χ2max
.

Now, the minimum value of IAE is equal to the right-
hand side of (64).

3) ρ =
27χ2

2max

16
√
|χ1(0)|3

and τ0 =
16
√

2(|β|µmax−3)|χ1(0)|3

27χ2
2max

.

In this case the minimum value of IAE is given by (65)
When the switching curve moves for the whole regulation
process, the optimal ρ is given by (67). Substituting this value
into (52) we conclude that the minimum value of IAE is

ψ = max
{
16
15

√
2 |χ1 (0)|3

|β|µmax −3
;
64
√
3 |χ1 (0)|2

135χ2max

}
. (68)

Let us observe that we are not able to compare formulas (65)
and (68) without knowing the initial conditions. However,
we can state that the minimum value of IAE will be one of
the three values (63), (64) or (65), which ends the proof.
Remark: The main problem that had to be solved in the
above controller design was connected with finding the set
of admissible parameter values and selecting the optimal
parameters from that set, which proved somewhat difficult
analytically. However, once this problem has been solved, the
above procedure allows one to easily select the best type of
motion and optimal parameter values for any system that can
be described by equation (1).

V. SIMULATION EXAMPLE
Let us consider the following plant

d
dτ
χ1 (τ ) = χ2 (τ )

d
dτ
χ2 (τ ) = χ

2
1 (τ ) sin (χ2 (τ ))+ δ (τ )+ βµ (τ)

(69)

FIGURE 1. Control signal.

FIGURE 2. System’s position.

FIGURE 3. System’s velocity.

The initial value of the system’s position is 2rad . Therefore,
the maximum absolute value of function γ is 4 rad

s2
due to the

fact that χ1 is strictly decreasing and sine function takes value
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FIGURE 4. Control signal.

FIGURE 5. System’s position.

from the interval [−1; 1] . The absolute value of external
disturbance is bounded by 2 rad

s2
. Hence, parameter 3 has to

be equal to 6 rad
s2
. Moreover, β = 1 1

kg·m2 . In this simulation

example the control signal is limited by µmax = 25Nm and
the system’s velocity by χ2max = 4 rads . Once the control
problem is defined as above, all that remains is to select
the optimal values of the sliding line parameters ρ, τ0. This
choice is explained in detail in the previous subsections,
below we only present the results of this procedure.

When the control signal is limited, the minimum IAE is

ψ = 0.6959rad · s (70)

and the optimal sliding line parameters are ρ = 13.435

√
rad
s2

τ0 = 0.45888s.
(71)

One can observe that the control signal shown in
Figure 1 starts from its minimum admissible value. After that
its average value rises monotonically to the moment when

FIGURE 6. System’s velocity.

FIGURE 7. Control signal.

the sliding line stops at the time τ0. After that, during the
movement along the fixed sliding line it switches between
two values and after time τf = 0.6882s it maintains the
representative point in the desired state. System’s position
can be seen from Figure 2. Starting from its initial value the
position decreases monotonically to the moment, when the
representative point reaches the desired state. After that it
remains on it, therefore its value is equal to 0rad . At first,
system’s velocity visible in Figure 3 decreases and after that
it recovers. At the time τ0 one can observe a change of the
derivative, after which the function becomes linear. After time
τf system’s velocity is equal to 0 rads , which means that the
representative point remains in the desired state.

When the absolute value of the system’s velocity is
bounded from above by χ2max, then the best strategy occurs,
when the switching curve moves for the whole regulation
process. In this case, the optimal ρ is

ρ = 9.5459

√
rad
s2

(72)
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FIGURE 8. System’s position.

FIGURE 9. System’s velocity.

and the minimized IAE is given as

ψ = 0.8211rad · s. (73)

In this case the average value of the control signal presented
in Figure 4 increases monotonically to the moment until
the representative point reaches the demand state. Moreover,
its maximum value is higher than in the previous section
due to the fact that we demand only a limitation of the
system’s velocity. Again, the system’s position visible in
Figure 5 decreases monotonically to the time τf = 0.7698s
and after that it remains at the level 0rad . In this case the
system’s velocity presented in Figure 6 reaches its minimum
admissible value in order to satisfy given limitation, after that
it recovers and reaches the desired value 0 rads .

In the last case, when we combine both control signal and
velocity constraints, the optimal parameters are: ρ = 9.5459

√
rad
s2

τ0 = 0.6458s
(74)

FIGURE 10. Control signal.

FIGURE 11. System’s position.

and the minimized IAE is

ψ = 0.8215rad · s. (75)

One can observe that this value is the highest one of mini-
mized Integral Absolute Errors. This result is logical due to
the fact that we demand two constraints instead of one to
be satisfied. At first, the average value of the control signal
shown in Figure 7 rises and after that it reaches its maximum
admissible value. After time τf = 0.7817s its average value is
equal to 0Nm. System’s position seen from Figure 8 follows a
similar waveform as in the previous cases, however it reaches
its desired value at the latest time. System’s velocity visible
from Figure 9 reaches its minimum admissible value and after
that the desired value is obtained. We have also compared
our approach to the PID controller, which still remains one
of the most commonly used controllers in industry practice.
We have tuned the parameters, to obtain the best possible
performance under the same operating conditions as one
of the cases analyzed above. Namely, we assume the same
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FIGURE 12. System’s velocity.

limit on the control signal µmax = 25Nm, and velocity
χ2max = 4 rads . From this, the gains of the controller follow
as kp = 12.5,Ti = 0.91s,Td = 0.4s. The control signal
can be seen from Figure 10. Starting from its minimum
admissible value it rises and after that decreases and stabilizes
at the neighborhood of 0Nm. We can conclude that in this
strategy the representative point is not maintained in the
demand state, but only in its vicinity. From Figure 11 one
can observe that the system’s position stabilizes in a vicinity
of the demand state after 4s. It is about 5 times slower
than in our strategy. Moreover, the system’s position is not
monotonically decreasing. From Figure 12 it can be seen that
velocity reaches its minimum admissible value. However, the
representative point reaches only the vicinity of the demand
state. As one can observe, the PID controller utilizes both the
maximum input signal range, as well as the maximum admis-
sible speed. Unfortunately, it is not robust with respect to
external disturbances and offers significantly lower response
time, than the control method proposed in our paper.

VI. CONCLUSION
This paper presents the design of the IAE optimal sliding
mode controller for second order, nonlinear systems. The
time-varying, parabolic-shaped sliding line was used in order
to eliminate the reaching phase and in consequence obtain the
robustness to the external disturbances for the whole control
process. Moreover, the finite time error convergence to zero
is obtained. In order to evaluate the dynamical performance
of the system the IAE quality index was minimized. The
simulation example confirmed the theoretical considerations.
Our further research in this topic will include ITAE quality
index minimization. Moreover, the analysis can be extended
to many areas, for example, the sliding line equation can be
changed in such a manner to substitute the square root with
a power greater than 1

2 and smaller than 1 in order to keep
the system stable. Tuning this new parameter may lead to the
improvement of our strategy by reducing the values of quality

indexes even more. However, this approach introduces a new
variable to our optimization problem and requires further
research.
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