
Received February 15, 2022, accepted March 5, 2022, date of publication March 10, 2022, date of current version March 21, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3158493

Proactively Invalidating Dead Blocks to Enable
Fast Writes in STT-MRAM Caches
YONGJUN KIM 1, YUZE CHEN2, YONGHO LEE1, LIMEI PENG 2, AND SEOKIN HONG 1
1Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
2School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

Corresponding author: Seokin Hong (seokin@skku.edu)

This work was supported in part by the Institute of Information Communications Technology Planning Evaluation (IITP) grant funded by
the Korea Government (MSIT), Intelligent in-memory error-correction device for high-reliability memory, 50%, under Grant
2021-0-00863; and in part by the BK21 FOUR Project (50%).

ABSTRACT Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM) is a promising
emerging memory technology for on-chip caches. It has a low read access time and low leakage power.
Unfortunately, however, STT-MRAM suffers from its long write latency and high write energy consumption.
This paper proposes a cache management technique called Proactive Invalidation (PROI) that proactively
invalidates dead blocks in advance to enable fast writes in the STT-MRAM caches. Experimental evaluation
shows that the proposed technique improves performance by 14% on average compared to the baseline STT-
MRAM cache. This paper also proposes two optimization techniques called Proactive Invalidation-aware
Data Encoding (PIDE) and Narrowness-aware Partial Write (NPW) to minimize the energy overheads of
Proactive Invalidation. Experimental results demonstrate that the total energy consumption of the STT-
MRAM cache with PROI is only 1.8% higher than the baseline when PROI is applied with PIDE and NPW.

INDEX TERMS On-chip cache, non-volatile memory, STT-MRAM, dead block, narrow-width value.

I. INTRODUCTION
Modern processors integrate multiple cores to meet the high-
performance and low-power computing requirements. As the
number of cores in a processor increases and the working set
size of the applications increases, larger on-chip caches are
required for the multi-core processor. However, the current
on-chip caches have a limit on scalability because of the
high leakage power consumption and large cell size of
the SRAM, which is a conventional memory technology.
Recently, non-volatile memories have been considered as
an alternative to traditional memory technologies such as
SRAM and DRAM. The Spin-transfer torque random access
memory (STT-MRAM) is one of the emerging non-volatile
memory technologies that can be used for on-chip caches
since its access time is comparable to SRAM, and it has
low leakage power [1], [2]. Furthermore, STT-MRAM is
considerably smaller than SRAM, enabling it to contain
more data within the same chip area. Therefore, STT-MRAM
could be a promising memory technology for large last-level
caches (LLC) with these attractive characteristics.

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

Unfortunately, however, write latency and write power
consumption of the STT-MRAM are much higher than those
of the SRAM [3]. To tackle these limitations of the STT-
MRAM, many prior works have proposed circuit-level or
architecture-level techniques to reduce the write operations
on the STT-MRAM caches or reduce the write energy
of the STT-MRAM cell [4]–[14]. In many architecture-
level techniques, the LLC comprises SRAM banks and
STT-MRAM banks and allocates the write-intensive cache
blocks (i.e., frequently updated cache blocks) to the SRAM
banks [6]–[11]. This approach’s effectiveness can vary
depending on the fraction of the write-intensive cache blocks
and the size of the SRAM banks. The circuit-level techniques
reduce the write energy of the STT-MRAM by terminating
the write operations as soon as data is written to the STT-
MRAM [4], [5]. Even if this approach reduces the write
energy consumption of the STT-MRAM caches, it can not
reduce the write latency.

In this paper, we propose a novel last-level cache (LLC)
management technique called Proactive Invalidation (PROI)
that exploits an asymmetric characteristic in the write
operation of the STT-MRAM to address its longwrite latency.
The write latency of the STT-MRAM is different depending

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 29419

https://orcid.org/0000-0003-4000-8800
https://orcid.org/0000-0001-9984-9861
https://orcid.org/0000-0001-7842-125X
https://orcid.org/0000-0003-1072-0792


Y. Kim et al.: Proactively Invalidating Dead Blocks to Enable Fast Writes in STT-MRAM Caches

FIGURE 1. STT-MRAM structure: (1a) MTJ switches to parallel state when applying a write current
from bit line to source line. (1b) MTJ switches to anti-parallel state when applying a write current
from source line to bit line.

on the type of resistance state transition. The write latency
is high when an STT-MRAM’s resistance state is changed
to the anti-parallel state from the parallel state. On the
other hand, when the resistance state is changed to the
parallel state from the anti-parallel state, the write latency is
low [4], [15]. To exploit this characteristic, PROI proactively
invalidates cache blocks if predicted as dead blocks. When
invalidating the dead block, PROI switches all STT-MRAM
cells of the corresponding cache entry to the anti-parallel
state. If a cache entry is proactively invalidated, there will be
no slow transitions (i.e., parallel states to anti-parallel states),
resulting in fast writes on the cache entry.

Even if PROI can enhance the performance, it can increase
write energy consumption due to the additional writes
involved in the invalidation operations. To reduce the impact
of PROI on the write energy consumption, we propose
two optimization techniques: Proactive Invalidation-aware
Data Encoding (PIDE) and Narrowness-aware Partial Write
(NPW). In many prior works, the parallel state represents
binary ’0,’ and the anti-parallel state represents binary ’1’.
However, we found that this data encoding scheme is
inefficient in terms of energy consumption when applying
the PROI. PIDE encodes data in such a way that minimizes
the frequency of the state transitions to the anti-parallel state
by considering the distribution of binary ’0’ and ’1’ in data
stored in the LLC. The second optimization technique, called
NPW, avoids the redundant write operations to reduce energy
consumption further. It is well known that a wide range
of applications frequently uses narrow-width values whose
upper bits are all zeros [16]–[19]. By exploiting narrow-width
values, NPW avoids unnecessary write operations on some
STT-MRAM cells if the data stored in the cache entry is
narrow-width.

Experimental evaluation using a system-level and proces-
sor simulator with SPEC CPU2006 [20] and PARSEC [21]
benchmark suites show that PROI achieves a performance
improvement of 14% on average with a small energy
overhead (1.8%) compared to a baseline STT-MRAM cache.

In this paper, we make three main contributions
1) We propose a new cache management technique for the

STT-MRAMcaches by exploiting the inherent physical

properties of the STT-MRAM cell and characteristics
of the LLC data access pattern.

2) We propose two optimizations to reduce the impact
of the proposed technique on energy consumption.
In the first optimization, data is encoded before
written to the cache in such a way that minimizes the
frequency of the transitions to an anti-parallel state. The
second optimization partially updates cache contents
by exploiting the narrowness of the data written to the
caches.

3) We evaluate the performance and energy efficiency
of the proposed technique with a system-level and
processor simulator with the multi-programmed and
multi-threaded workloads.

II. BACKGROUND AND MOTIVATION
A. STT-MRAM
Spin transfer torque magnetic random access memory (STT-
MRAM) is a promising emerging non-volatile memory
technology where data is stored in a ferromagnetic layer
of MTJ (Magnetic Tunnel Junction). STT-MRAM has
advantages such as higher density, non-volatility, high soft
error endurance, and low power consumption [22]. However,
although STT-MRAM has many attractive features, it suffers
from high write energy consumption and high write latency.

In STT-MRAM, data stored in a cell is represented as two
different resistance states of the MTJ. As shown in Figure 1,
the MTJ consists of a thin interlayer oxide insulator (MgO)
and two ferromagnetic layers: free and reference layers. The
magnetization direction of the free ferromagnetic layer can be
changed. On the contrary, the magnetization direction of the
reference layer is not changed. By applying a write current
between the source line (SL) and the bit line (BL), we can
change the magnetization direction of the free layer.

The resistance of an MTJ is determined by the relative
magnetization directions of the two ferromagnetic layers.
If the magnetic directions of the two layers are different
(i.e., anti-parallel state), the resistance of the MTJ is high.
In contrast, if the magnetic directions of the two layers are
the same (i.e., parallel state), the resistance of the MTJ is low.

29420 VOLUME 10, 2022



Y. Kim et al.: Proactively Invalidating Dead Blocks to Enable Fast Writes in STT-MRAM Caches

FIGURE 2. Performance impact of the LLC’s write latency.

Thus, we can use one of two states of the MTJ to represent
binary ’0’ or ’1’.

B. A CHALLENGE: WRITES ON STT-MRAM ARE EXPENSIVE
As explained in section II-A, the STT-MRAM suffers from
long write latency and high write energy consumption even
if its read latency and read energy consumption are similar
to those of the SRAM [23]. The long write latency has a
significant negative impact on cache performance because
the long write operations prevent subsequent cache accesses,
reducing the cache bandwidth and potentially offsetting the
capacity benefit of the STT-MRAM. Furthermore, the long
write latency also leads to significant energy consumption as
a high switching current flows through the STT-MRAM cell
until it is switched to the target resistance state [15].

Figure 2 shows the impact of the LLC’s write latency
on the system performance. As shown in the figure, the
execution time significantly increases for most memory-
intensive workloads as the LLC’s write latency increases.
On average, when the LLC’s write latency increases from
20 cycles to 60 cycles, the execution time increases by 59%.
This result demonstrates that the impact of LLC’s write
latency on performance is undoubtedly significant and critical
for system performance.

C. OPPORTUNITIES FOR REDUCING STT-MRAM COSTS
To mitigate the long write latency and high energy consump-
tion of the STT-MRAM when designing STT-MRAM-based
LLCs, we exploit circuit-, architecture-, and software-level
characteristics.

1) CIRCUIT-LEVEL CHARACTERISTIC: ASYMMETRICAL WRITE
LATENCY
STT-MRAM has an asymmetry in the write latency when
switching it to either the parallel or anti-parallel state [4],
[15], [24]. Switching the STT-MRAM to the parallel state
is faster than switching it to the anti-parallel state. This
asymmetry in the STT-MRAM’s write latency is mainly due
to asymmetric characteristics of the MTJ and the access
transistor. The MTJ has an inherent torque asymmetry since
it has two different mechanisms to switch the magnetic
orientation of the free ferromagnetic layer. When switching
theMTJ to the parallel state, the same spin direction electrons
as the magnetic orientation of the reference layer are applied.

TABLE 1. MTJ switching latency [4].

FIGURE 3. Life cycle of cache block.

In contrast, switching the MTJ to the anti-parallel state is
performed by applying the opposite spin direction electrons.
When the spin direction of the electrons is opposite to the
magnetic orientation of the reference layer, they are reflected
at the boundary of the interlayer oxide insulator and the
reference ferromagnetic layer [25]. Thus, switching the MTJ
to the anti-parallel state takes more time and consumes more
energy than switching it to the parallel state. The voltage
degradation in the access transistor also contributes to the
asymmetric characteristic of the STT-MRAM in the write
latency. With the voltage degradation in the access transistor,
write current is reduced while switching the MTJ to anti-
parallel state [4].

In general, as shown in Table 1, without the access
transistor, the write latency for switching the MTJ to the anti-
parallel state is 1.46 times greater than the writing latency
for switching the MTJ to the parallel state. With the access
transistor, the write latency for switching the MTJ to the
anti-parallel state is 2.48 times greater than the latency for
switching the MTJ to the parallel state.

The asymmetry in the write latency gives us an opportunity
to reduce the write latency of the STT-MRAM caches.
As shown in Table 1, switching to the anti-parallel state are
much slower than switching to the parallel state. Therefore,
if we eliminate the state transition to the anti-parallel state
(i.e., slow writes) as much as possible from the critical path
of the write operations in the STT-MRAM caches, we can
reduce their overall write latency.

2) ARCHITECTURE-LEVEL CHARACTERISTIC: DEAD BLOCK
Dead block has been studied well and exploited in many
prior works to improve the efficiency of the on-chip caches
[26]–[29]. The dead block is a cache block that is not going
to be referenced shortly before being evicted from the on-
chip caches. After the cache blocks are stored in the caches,
they are generally accessed at a regular interval, and then they
will remain in the cache without any re-references as shown
in Figure 3. In the LLCs, only a small fraction of the cache
blocks hold data that will be referenced before eviction [28]
and most of them stay in the cache without any re-references.
The dead blocks lead to poor cache efficiency because they
waste the capacity and energy of the LLCs. They occupy
many cache entries of the LLC and move from the MRU

VOLUME 10, 2022 29421



Y. Kim et al.: Proactively Invalidating Dead Blocks to Enable Fast Writes in STT-MRAM Caches

FIGURE 4. Percentage of dead LRU blocks.

FIGURE 5. Cache block with narrow-width value.

(most recently used) to the LRU (least recently used) position
before it is evicted from the cache [26].

In general, the dead blocks are predicted by learning the
past access pattern of the cache blocks. Various dead block
prediction algorithms have been proposed [27], [29], [30].
Trace-Based Predictor [27] collects traces of the instruction
addresses that access a particular block. If the trace results
in the last access to one block, the same trace will result
in the last access to other blocks. Some cache blocks are
predicted as dead by indexing the sum of these instruction
addresses. Time-based dead block predictor [30] predicts a
block as dead if it is not accessedmore than twice the live time
by collecting each block’s number of live cycles. Counting-
based predictor [29] predicts the dead block if a block has
been accessed more times than the previous generation or
has been accessed the same number of times in the last
two generations. To this end, it employs a predictor table
composed of a matrix of the access counters.

Figure 4 shows the percentage of the LRU blocks that
are already dead when another block in the same cache set
is referenced (i.e., read or write). As shown in the figure,
on average, 93.9% of the LRU blocks in each cache set are
dead blocks, meaning they are not re-referenced until evicted
from the LLC. For the gcc benchmark, 99.3% of the LRU
blocks are dead.

In this paper, we exploit this observation to enhance the
write performance of the STT-MRAM caches. To enable fast
writes, a cache block is invalidated in advance if the block is
predicted as a dead block. Since the dead blocks are not re-
referenced in the future, invalidating them from the cache in
advance will not impact the system performance.

FIGURE 6. Proportion of narrow-width value and non-narrow-width
value.

3) SOFTWARE-LEVEL CHARACTERISTIC:
NARROW-WIDTH VALUE
In many applications, operands of the arithmetic operations
and the data stored in memory are usually much smaller than
the full data width (i.e., 32 bits or 64 bits) of the processors.
These small values are called narrow-width values. This well-
known characteristic of the applications has been utilized
frequently in many prior works for power, performance, and
fault-tolerance optimizations [16], [18], [19], [31], [32]. In a
narrow-width value, high-order bits (i.e., most significant
bits) are all zeros. In this paper, we consider 64-bit word as
the narrow-width value if its high-order 32 bits are all zeros.

Figure 5 shows a cache block (64 bytes) composed of eight
words (8 bytes). Each word of a cache block can be either the
narrow-width value or non-narrow-width value. For example,
in the figure 5, the sixth word (denoted byW5) is the narrow-
width value since its high-order 32 bits are all zeros while the
third word (denoted by W2) is the non-narrow-width value.

Figure 6 shows the percentage of the narrow-width
values among the data written to the LLC. On average,
47% of the data is the narrow-width value for SPEC
CPU2006 benchmarks, as shown in the figure. Especially
for some benchmarks such as GemsFDTD, gcc, and canneal
benchmarks, the narrow-width values account for more than
80% of the data. Many prior works have shown similar
observations. In [32], it is pointed out that more than 40% of
the data is the narrow-width value. In [19], it is also pointed
out that around 50% of the instructions use the narrow-width
values as their operands.

The observation on the narrowness of data gives us an
opportunity to reduce the write energy consumption of the
STT-MRAM-based caches by skipping the state switching for
the high-order 32 bits of the 64-bit word.

III. PROPOSED CACHE MANAGEMENT TECHNIQUE
A. OVERVIEW
The observations on the asymmetric write latencies of the
STT-MRAM and the prevalence of the dead blocks motivate
a novel cache management technique called Proactive
Invalidation (PROI). While a new block is installed in a
cache set, PROI proactively invalidates a dead block from
a cache entry of the same cache set and makes the entry as

29422 VOLUME 10, 2022



Y. Kim et al.: Proactively Invalidating Dead Blocks to Enable Fast Writes in STT-MRAM Caches

the invalid state. At this time, all STT-MRAM cells of the
cache entry are switched to the anti-parallel state as shown
in Figure 7. Since all STT-MRAM cells of the proactively
invalidated cache entries are in the anti-parallel state, the
future writes on the cache entries will involve only the anti-
parallel to parallel state transition, enabling fast writes in the
STT-MRAM caches. In addition, even if PROI invalidates
some blocks early from the cache, its performance impact can
be trivial because it invalidates only the dead blocks that will
not be re-referenced before being evicted from the cache.

FIGURE 7. STT-MRAM write operations.

FIGURE 8. Memory hierarchy with PROI (Proactive Invalidation).

Figure 8 shows a memory hierarchy with PROI that
employs additional three components: dead block predictor,
proactive invalidation unit, and narrow-with value handler.
Dead block predictor keeps track of the access status of
the individual cache block to determine when each block
becomes dead. When installing a new block in a cache
set, the dead block predictor detects a dead block in the
same set. The proactive invalidation unit sends an invalid
signal to the cache to proactively invalidate the dead block.

Finally, the narrow-with value handler prevents unnecessary
bit flipping on high-order 32 bits by detecting the narrow-
width values when performing the proactive invalidations or
regular writes. In the following subsections, we will describe
each component in more detail.

B. DEAD BLOCK PREDICTION
PROI relies on the dead block prediction technique to select
cache blocks that will be invalidated early from the LLC.
If a dead block prediction is wrong, a live block can be
evicted, increasing the miss rate of the LLC. Therefore,
to avoid subsequent cache misses caused by the incorrect
invalidations, PROI should employ an accurate dead block
prediction technique. At the same time, we also consider
the area and energy overheads involved with the dead block
prediction. To meet this conflicting requirement, we propose
a simple yet effective dead block prediction technique.

Our dead block predictor uses a saturating counter, called
locality counter, per each cache set to monitor the hit
rate of the individual cache set. The counter is initialized
to its maximum value, incremented for a cache hit and
decremented for a cache miss. While installing a new cache
block in a cache set, if the counter value of the set is smaller
than a threshold, the dead block predictor chooses one of the
cache blocks in the set as the dead block. To choose the dead
block, our simple predictor uses the replacement information.
In the LRU (least-recently-used) replacement policy, the LRU
block is evicted from the cache to make room for a new cache
block. When the LRU block is evicted from the cache, the
dead block predictor selects the second LRUblock as the dead
block.

In some cases, using the locality counter may fail to predict
the presence of the dead blocks. For example, when only
one cache block within a cache set is frequently accessed,
the locality counter value will be greater than a threshold.
In this case, a dead block that may exist in the set will not
be invalidated. Even in this case, however, our dead block
predictor will not reduce the potential performance gain of
PROI. This is because it is not necessary to proactively
invalidate a block for the cache set since new cache blocks
will be rarely installed.

Figure 9 shows an example of the proposed dead block
prediction and proactive invalidation. In this example,
we assume that the STT-MRAM cache is a 4-way set-
associative cache with four sets. We represent the recency of
each block with the color brightness in the figure; the block
with lighter red is more recently used than the block with a
darker red. At time 0, only set 1 has four valid blocks: block
A, B, C, and D. Initially, block A is the most-recently-used
(MRU) block while block D is the least-recently-used (LRU)
block in set 1. A read request for block E, which is also
mapped to set 1, misses on the cache because the block does
not exist in the cache at time 0. To accommodate block E,
block D, which is the LRU block of set 1, is evicted from the
cache at time 1. Once block D is evicted, block E is installed
in the cache entry associated with the evicted block D (i.e.,

VOLUME 10, 2022 29423



Y. Kim et al.: Proactively Invalidating Dead Blocks to Enable Fast Writes in STT-MRAM Caches

FIGURE 9. An example of dead block prediction and proactive
invalidation. The operations at time 2-1, 2-2, and 2-3 are performed at
the same time.

Way3 of the Set1). At the same time, the dead block predictor
selects block C, which is the next LRU block, as a dead
block and invalidates it in advance from the cache. While
invalidating block C, all STT-MRAMs of the cache entry that
holds the block is switched to the anti-parallel state. At time
3, another miss occurs while accessing block D, which is not
in the cache and is also mapped to set 1. At this time, block D
is installed with a shorter write latency than normal since the
block is written to the entry that was proactively invalidated.

C. PROACTIVE INVALIDATION (PROI)
In this subsection, we describe the proactive invalidation
technique (PROI) in more detail. The primary goal of PROI is
to shift the STT-MRAMs of cache entries to the anti-parallel
state in advance so that the upcoming write operations on the
invalidated cache entries involve only anti-parallel to parallel
state transition. Since there will be no transitions from the
parallel state to the anti-parallel state, which is much slower
than the opposite direction transition, the write operations
on the proactively invalidated cache entry can be performed
in a much shorter latency than normal. As we discussed in
the previous section, the write latency of the transition to the
parallel state is 3.9 ns, while that of the transition to the anti-
parallel state is 9.7 ns. So, the latency of a write operation
performed on the invalid cache entry can be reduced to around
40% compared to the write operation on the valid entry.

PROI enables a fast write operation for the next cache
fill operation by installing a new cache block into one of
the proactively invalidated cache entries. Since the write
operations installing new cache blocks account for more than
64% of the total writes in the LLC on average (Figure 10),
reducing the write latency for the cache fill operations will
have a high impact on the performance. Figure 11 shows
a flow chart of the write operation with PROI. If the write
operation is due to the cache fill that installs a new block in the
cache, the cache controller searches for an invalid cache entry
in the corresponding cache set. If there is an invalid entry, the
new block is written to it, which can be performedwith a short
write latency (fast write, ¶). If there is no invalid entry in the

FIGURE 10. Breakdown of write operations in LLC.

FIGURE 11. Flow chart of the write operation with Proactive Invalidation.

set, a victim block is evicted from the set, and the new block
is written to the set. If it is the case, the write operation is
performed with a normal write latency (slow write,·). In the
case of a write hit, the write operation is always performed
with a normal latency (slowwrite,¹). During the slowwrites,
a dead block is detected by the dead block predictor, and
an invalid signal is sent to the cache I/O unit to invalid the
dead block so that the corresponding cache entry becomes
invalid (¸).

Even if PROI can reduce the average write latency, it can
incur negative side effects if it is naively applied to the STT-
MRAM caches. The first negative side effect is the additional
write operations involved in the invalidation operations. The
conventional cache uses a valid bit per each cache entry
to indicate whether the content stored in the entry is valid
or not. While a data block is written to a cache entry, the
corresponding valid bit is set to 1. On the contrary, when
invalidating the block from the cache, the valid bit is set
to 0. Conventionally, the invalidation operation only updates
the valid bit placed in the tag array. However, the proactive
invalidation updates the contents stored in the cache entry
as well as the valid bit to switch all STT-MRAM cells to
the anti-parallel state. This will involve the additional write
operations.

1) INVALIDATE DURING WRITE
To hide the performance penalty due to the additional writes,
the proactive invalidation is performed while a cache block
is written with a normal write operation. In the conventional
caches, write operations are involved when installing new

29424 VOLUME 10, 2022



Y. Kim et al.: Proactively Invalidating Dead Blocks to Enable Fast Writes in STT-MRAM Caches

blocks to the cache (i.e., cache fill) or when writing back the
dirty victim block from the upper-level cache to the current
level (i.e., writeback). For both cases, PROI invalidates one of
the dead blocks in the set where the normal write operation
is performed. By performing the normal write operation and
the invalidation simultaneously, we can hide the performance
impact of the proactive invalidation.

FIGURE 12. Cache Architecture with PROI. The tag array is extended to
have locality counters used along with the LRU counter for dead block
prediction. The NVV is used to indicate whether the corresponding words
of a cache block are the narrow-width value or not.

Figure 12 shows a cache architecture with PROI. The tag
array is extended to have a locality counter per each set.
On cache access, all tag entries of a cache set are read to
check whether the requested block resides in the set or not.
At this time, the dead block detector selects a dead block by
referring to the LRU counter fields of the cache entry and the
locality counter of the set. When the locality counter value
is lower than a threshold value, the LRU block of the set is
selected as a dead block. Suppose it is the case and the current
access involves a write operation (i.e., write hit or cache fill,
¶). In that case, the proactive invalidation unit generates an
I/O control signal to invalidate the dead block from the set
(·). The proactive invalidation does not require any content
written to the STT-MRAM cells. Thus, it can be implemented
with a minor modification to the I/O circuits for injecting a
write current with the same direction to all STT-MRAMcells.

2) READ DURING INVALIDATION
The second negative effect is the additional read operations
due to the invalidation of dirty blocks. For example,
in Figure 9, block C is predicted as dead, and it is evicted from
the cache. At this time, if block C is dirty, a read operation
is involved in writing back the updated block C to the main
memory. Due to this read operation, the proactive invalidation
can increase the write latency of the STT-MRAM cache.

To hide the performance penalty due to the additional read
operations, we exploit an attractive characteristic of the STT-
MRAM cell. When performing a write operation on the STT-
MRAM cell, the current state of the cell can be read in the
early stage of the write operation [5]. This is because the
read operation is the same as the write operation; both read
and write operations are performed by injecting a current to
the STT-MRAM. Furthermore, in a write operation, the free
layer’s direction is changed near the end of the operation [33],

meaning that an STT-MRAM cell holds its previous value
in the early stages of the writing operation. For example,
the previous work demonstrates that a read operation can
complete less than 1ns while a write operation consumes
10ns [5]. By exploiting this characteristic, a dirty dead block
is read in the early stage of the invalidation. Then it is latched
in the I/O circuit (i.e., the sense amplifier), hiding the latency
for reading the dirty dead block from the critical path of the
invalidation operation.

D. PROACTIVE INVALIDATION-AWARE DATA
ENCODING (PIDE)
Aforementioned above, PROI can efficiently reduce the write
latency of the STT-MRAM caches. Unfortunately, however,
the additional state transitions involved in the invalida-
tion operation can increase the energy consumption. This
subsection describes the first optimization called Proactive
Invalidation-aware Data Encoding (PIDE) that reduces the
additional state transitions caused by PROI.

Considering almost all modern high-performance proces-
sors are 64-bit architecture, the size of the word (i.e., the
basic unit of data) is 64 bits. Meanwhile, many data processed
by arithmetic units and stored in caches are small in many
applications. Therefore, a large portion of data stored in a
cache is a narrow-width value, as discussed in section II-C3.
To further study and confirm this characteristic, we observe

the size of data stored in the LLC for SPEC CPU2006 and
PARSEC benchmarks. As shown in Figure 6, almost all data
in GemsFDTD, gcc, and canneal benchmarks are narrow-
width values. On average, the parentage of the narrow-width
values is around 47% across all benchmarkswe observed. The
prevalence of the narrow-width value intuitively indicates that
the percentage of ’0’ bits in a cache is higher than ’1’ bits.
Figure 13 shows the percentage of ’0’ and ’1’ bits in the LLC
for SPEC CPU 2006 and PARSEC benchmarks. As shown,
around 73% of bits stored in the LLC are ’0’ bit.

FIGURE 13. Percentage of ‘‘0’’ bits and ‘‘1’’ bits in the LLC.

This characteristic suggests an encoding scheme that uses
the anti-parallel state to represent binary ’0’. In many prior
works [1], [34], [35], the parallel state is generally used
to represent binary ’0’. However, if we use this encoding
scheme, there will be many bit flips from binary ’0’ to binary
’1’ in the invalidation operation because it switches all STT-
MRAM cells to the anti-parallel state representing binary ’1’.

VOLUME 10, 2022 29425



Y. Kim et al.: Proactively Invalidating Dead Blocks to Enable Fast Writes in STT-MRAM Caches

Thus, to reduce the additional state transitions caused by the
invalidation, it is more efficient to use the anti-parallel state to
represent binary ’0’ and the parallel state to represent binary
’1’. With this encoding scheme, we can reduce unnecessary
state transitions (i.e., P → AP) in the invalidation operations
since most STT-MRAM cells (i.e., around 73%) are already
in the AP state representing binary ’0’.

E. NARROWNESS-AWARE PARTIAL WRITE (NPW)
This subsection describes the second optimization called
Narrowness-aware Partial Write (NPW) that reduces the
energy overhead of PROI by exploiting narrow-width values.

As described before, in the narrow-width values, the high-
order 32 bits of the 64-bit word are zero. Therefore, if a
significant amount of data stored in a cache are narrow-width
values, the high-order 32 bits are rewritten to zero repeatedly.
For example, in a typical program, an array with 64- or
32-bit data elements are initialized to zero, and the value in
each element is accumulated within a for-loop. During the
early iterations of the for-loop, the values are very small,
meaning their high-order 32 or 16 bits are rewritten to zero
repeatedly.

It is evident that repeatedly rewriting zero to the high-
order bits is not necessary. The narrowness-aware Partial
Write (NPW) technique employs a narrow-width value
handler to avoid the unnecessary writes on the high-order bits
in the invalidation and regular write operations. If a 64-bit
word of a cache block is a narrow-width value, the high-
order 32 STT-MRAM cells that hold the high-order 32 bits
of the word are already in the anti-parallel state when PIDE
is applied. Thus, if the 64-bit data stored in the cache is the
narrow-width value, the narrow-width value handler does not
inject the write current for the high-order 32 STT-MRAM
cells when performing the proactive invalidations and regular
writes. To this end, the access transistors of the high-order
32 cells and those of the low-order 32 cells are controlled
independently with two individual local wordlines.

FIGURE 14. Implementation example of narrow-width value handler.

Figure 14 shows an implementation example of the narrow-
width value hander that supports the narrowness-aware

TABLE 2. System configuration.

partial write. A 512-bit cache block is divided into eight
64-bit words. When the block is written to a cache entry,
a narrow-width value detector checks whether each word
of the block is narrow or not, and an 8-bit narrow-width
value vector (NVV) is generated. In the example shown in
Figure 14, the NVV of the new block is 10101101, meaning
the first (W0), third (W2), fourth (W3), sixth (W5), and eighth
(W7) words are the narrow-width value. The NVV of the new
block that will be stored in a cache entry is compared with
the NVV of the block currently stored in the cache entry.
By comparing these two NVVs, an 8-bit write control signal
is generated and latched in a write control register. Each bit of
the control signal is used to control the access transistors of
the high-order 32 STT-MRAM cells. If a bit of the control
signal is 0, the corresponding access transistors are turned
off. Each tag entry is extended to accommodate the NVV as
shown in Figure 14.

IV. EVALUATION METHODOLOGY
To evaluate the performance and the energy efficiency of
the proposed technique, we use gem5 simulator [36] in
SE mode extended to model the STT-MRAM-based last-
level cache (LLC) in the memory hierarchy. Table 2 lists
the simulated system configuration. The level 1 (L1) and
level 2 (L2) caches are assumed to be conventional SRAM-
based caches, while the LLC is the STT-MRAM cache.
The baseline LLC is configured to have 20 cycles of read
latency and 49 cycles of write latency. In the LLC with PROI,
the write latency is assumed to be 20 and 49 cycles for
the fast and slow writes, respectively. Handling the narrow-
width value is on the critical path of the read operation, and
thus we conservatively assume that the read latency of the
STT-MRAM cache with PROI is 1-cycle longer than the
baseline.

PROI introduces some hardware overheads due to the
additional components such as the Narrow-width value
vector (NVV) and Locality counter. We use NVsim [37] to
estimate the impact of the PROI on the design parameters
of STT-MRAM caches such as area, per-access dynamic

29426 VOLUME 10, 2022



Y. Kim et al.: Proactively Invalidating Dead Blocks to Enable Fast Writes in STT-MRAM Caches

TABLE 3. Design parameters of STT-MRAM caches.

TABLE 4. Workload mixes.

energy (for read andwrite), and leakage power. Table 3 shows
the STT-MRAM cache’s design parameters obtained with
NVsim modified to model the PROI. As shown in the Table,
PROI increases the chip area, dynamic write energy, dynamic
read energy, and leakage power of LLC by 3%, 2%, 10%,
and 5%, respectively. These estimated parameters are used
to evaluate the total energy consumption of the STT-MRAM
caches in the system-level simulation with gem5. As will
be described in Section V-D, even if PROI’s overheads on
the per-access read energy and leakage power are relatively
high, their impact on the LLC’s total energy consumption
is insignificant. This is because the contribution of dynamic
read energy to total energy consumption is small, and PROI
reduces the execution time, resulting in less leakage energy
consumption.

For evaluations, we use 16 memory-intensive workloads
from the SPEC CPU2006 [20] and PARSEC [21]. We warm
up the LLC for 10 billion instructions and perform the
detailed simulation for 200 Million instructions. We execute
the SPEC CPU2006 benchmarks in rate mode, where all
cores run the same benchmark, and mix mode, where each
core runs different benchmarks. As shown in Table 4, the
SPEC CPU2006 benchmarks are randomly selected in the
mix mode.

V. SIMULATION RESULTS
A. PERFORMANCE
Figure 15 shows the speedup of PROI when compared to
a baseline configuration where the proactive invalidation is
not applied. PROI achieves a speedup of 14% on average.
For 17 of 26 workloads (65%), the speedup with PROI
is more than 10%. The performance results show that the
GemsFDTD, libquantum, and mix1 benchmarks benefit the
most from PROI due to the dramatic reductions in the slow
writes on the STT-MRAM-based LLC. These benchmarks
suffer from frequent LLC misses as shown in Figure 16,

FIGURE 15. Performance.

FIGURE 16. LLC MPKI (misses per kilo-instruction).

FIGURE 17. LLC Miss rate.

meaning there are many dead blocks in the cache, and
new cache blocks are frequently installed into the cache.
With PROI, the subsequent write operations involved in the
block installation can be performed with a shorter write
latency than normal (i.e., fast write). Thus, PROI reduces
the average write latency significantly for the benchmarks
with high MPKI (Misses per Kilo-Instructions), resulting in
a significant speedup.

B. MISS RATE
PROI evicts some blocks from the LLC in advance, and thus
it can increase the miss rate. Figure 17 shows the impact of
PROI on the miss rate of the LLC. As shown in the figure,
even if PROI proactively invalidates some blocks from the
cache, its impact on themiss rate is negligible. This is because
the majority of LRU blocks are dead as shown in Figure 4
and accurately predicted as the dead block with our simple
predictor. Since the dead blocks are not re-referenced in the
future as described in section II-C2, proactively invalidating
them from the cache does not increase the miss rate of
the LLC.

VOLUME 10, 2022 29427



Y. Kim et al.: Proactively Invalidating Dead Blocks to Enable Fast Writes in STT-MRAM Caches

FIGURE 18. Breakdown of state transitions. The number of state transitions in PROI, PROI+PIDE and PROI+PIDE+NPW are
normalized to the baseline.

FIGURE 19. Breakdown of LLC energy consumption. LLC energy consumption with the proposed techniques is normalized to
the baseline.

C. STATE TRANSITION ANALYSIS
Figure 18 shows the breakdown of state transitions in
the STT-MRAM caches with and without the proposed
techniques. In the baseline, the parallel (P) to parallel (P) state
transitions are dominant (62% on average). This is because
a large portion of bits stored in the LLC is ’0’ bits, and the
’0’ bits are repeatedly written several time as we discussed
in section III-D. When the PROI is applied, the total number
of state transitions is increased compared to the baseline due
to the additional write operations involved in the proactive
invalidations. PROI switches the STT-MRAM cells to the
AP state when it proactively invalidates the cache entries
holding the dead block. Thus, the number of state transitions
to the anti-parallel (AP) state (i.e., P → AP and AP →

AP) are increased, especially for the benchmarks such as
GemsFDTD, libquantum, mcf, and milc that have a high LLC
miss rate. PROI also increases the numbers of state transitions
to the P state from AP state. This is because the STT-MRAM
cells in AP state (i.e., binary ’1’) of the invalidated cache
entries are frequently switched to P state (i.e., binary ’0’).

The additional state transitions due to proactive invali-
dations can increase the energy consumption, offsetting the
performance benefits of the PROI. To address this limitation,
we can use the PIDE and NPW techniques. When the PROI
is applied with PIDE, the AP to AP state transitions become
dominant because the PIDE uses the AP state to represent

binary ‘‘0’’. Since many bits stored in a cache are ‘‘0’’ bit,
the proactive invalidation increases the AP to AP transitions
which can be reduced by using the NPW.

When applying NPW and PIDE, the AP to AP state
transitions are significantly reduced for all benchmarks. As
shown in the figure, when NPW is enabled, the total number
of state transitions decreases by 21% on average compared
to the PROI+PIDE configuration. NPW reduces the AP
to AP state transitions for the write operations involved
in both regular writes (i.e., writeback and cache fill) and
invalidations. Since many values stored in the cache are
narrow-width, there are many AP to AP state transitions.
Thus, NPW efficiently eliminates these unnecessary state
transitions.

D. ENERGY CONSUMPTION
Figure 19 shows the breakdown of LLC energy consumption.
In the baseline, on average, the leakage energy accounts for
61%, the dynamic read energy accounts for 5%, and the
dynamic write energy account for 34% of the total LLC
energy consumption. The P to P state transition is dominant
among the state transitions because ’0’ bits are frequently
written to the cache as described in Section V-C. Thus its
contribution to the total energy consumption is much higher
than others (21% on average).

29428 VOLUME 10, 2022



Y. Kim et al.: Proactively Invalidating Dead Blocks to Enable Fast Writes in STT-MRAM Caches

FIGURE 20. Sensitivity to various parameters of LLC with PROI.

As discussed, the proactive invalidation increases the
state transitions, increasing the LLC energy consumption
significantly. With the PROI, LLC energy consumption is
12.3% higher than the baseline on average. As discussed in
Section V-A, the PROI reduces the execution time, resulting
in less leakage energy. However, it significantly increases
dynamicwrite energy consumption due to the state transitions
to AP state and the state transitions from AP to P states.

NPW with PIDE efficiently addresses the PROI’s energy
overhead. PIDE uses the AP state to represent binary ‘‘0’’.
Since many bits stored in the cache are zero, PIDE converts
the additional state transitions due to PROI into the AP to
AP transition. As discussed, without any control mechanism,
the AP to AP transition unnecessary consumes energy. NPW
reduces these unnecessary energy consumptions by removing
the state transitions for the narrow-width values in the write
operations involved in invalidations and regular writes. As a
result, when PROI is applied along with PIDE and NPW to
the LLC, the LLC energy consumption is only 1.8% higher
than the baseline.

E. SENSITIVITY ANALYSIS
1) IMPACT OF WRITE BUFFER
Many high-performance processors employ a write buffer to
hold write requests, allowing the subsequent read requests
to be serviced ahead of the preceding write requests.
In such architecture, the impact of the long write latency on
performance can depend on the depth of the write buffer.

Figure 20a shows the speedup of PROI over the baseline
for different numbers of write buffer entries. As shown in
the figure, PROI provides almost constant performance gain
for the configurations with different write buffer entries.
In the case of SPEC benchmarks running on rate mode (i.e.,
SPEC_RATE), PROI provides slightly higher performance
for the write buffer with fewer entries. This is because the
write latency can be more sensitive to the performance when
there are small entries in the write buffer.

2) IMPACT OF PREFETCHER
Figure 20b shows the speedup of PROI for the LLC with
different prefetchers. PROI shows better performance than
the baseline for all prefetchers. Prefetcher can increase the

number of write operations in the LLC to install more blocks
to it, making the LLC more sensitive to the write latency.

PROI’s performance gain is higher when a more accurate
prefetcher is employed for the LLC. This is because an
accurate prefetcher reduces the miss rate of the LLC, and
thus the write latency of the LLC becomes more critical to the
performance. On average, PROI achieves a speedup of 16%,
16.5%, and 20% for the LLC configuration with Stride [38],
Indirect [39], and Tagged [40] prefetchers, respectively.

3) IMPACT OF LOCALITY COUNTER THRESHOLD
Our proposed dead block predictor determines whether a
cache set contains a dead block by comparing a per-set
locality counter to a threshold value. Thus, the effectiveness
of PROI can be affected by the threshold value. As the
threshold value increases, more sets are considered to have
a dead block, invalidating the dead blocks more frequently.
Figure 20c shows the effect of the locality counter’s threshold
value. As shown in the figure, PROI delivers better perfor-
mance for the configurations with higher threshold values.
This is because the majority of LRU blocks in a set are
dead, as we described in Section II-C2. As a result, aggressive
invalidations have a minor impact on the LLC miss rates
while increasing the chances of having an invalidated entry
in a cache set.

VI. RELATED WORK
A. DEAD BLOCK DETECTION
Several dead block predictors have been introduced in
previous works and applied to address the cache efficiency
issues. Tian et al. proposed a dead block predictor that
samples the program counter to determine when a cache
block is likely to be dead [26]. The access pattern is learned
by a predictor and used for dead block replacement and
bypass optimization. Chen et al. proposed an adaptive block
placement and migration technique for an STT-MRAM-
Based hybrid cache [41]. By identifying write patterns in the
LLC, the proposed technique bypasses dead-on-arrival blocks
to the main memory to reduce redundant write operations
to the LLC. Similarly, Ahn et al. proposed a dead block-
aware redundant write elimination technique for the STT-
MRAM-based LLC. In [27], dead-block-aware prefetchers

VOLUME 10, 2022 29429



Y. Kim et al.: Proactively Invalidating Dead Blocks to Enable Fast Writes in STT-MRAM Caches

were proposed by Lai et al. The proposed technique gathers
traces of instruction addresses that access a specific block. If a
trace returns the last access to one block, it will also return the
last access to other blocks. Thus, the dead blocks are detected
by indexing the sum of these instruction addresses.

B. NARROW-WIDTH VALUE
Several researchers have attempted to take advantage of the
properties of narrow-width values. For instance, a technique
to enhance processor power and performance dynamically
by using narrow-width operations and sub-word parallelism
inside the core is proposed in [19]. Chen et al. [42] exploited
the narrow-width values to optimize the main memory. Their
proposedwrite technique detects whether a block is a ‘‘Sparse
Block’’ (i.e., a block whose upper halves are all zeros). If so,
the non-zero part of the block is used as a block’s base to
encode the block to reduce the write energy consumption and
improve the performance. Hu et al. [43] proposed a technique
to mitigate the soft error in register files, issue queues, and
caches. When the data is narrow-width, its lower half is
duplicated to the upper half. By comparing upper and lower
parts when reading data from the storage elements, soft errors
can be detected.

C. ASYMMETRIC WRITE PROPERTY OF STT-MRAM
Bishnoi et al. proposed static and dynamic circuit-level
approaches to decrease overall write latency in [4]. By boost-
ing the write current exclusively for slow writes, the static
approach reduces the write latency for the slowest transition
(i.e., transition from P to AP). The dynamic approach
gradually boots the write current to decrease the negative
impact of the random write margin. Kim et al. [44] proposed
two novel techniques to decrease the average written current
of STT-MRAM: bit-line voltage clamping and 2T-1R dual-
source line bit cell. The Bit-line voltage clamping technique
can limit the current flow from the bit line to the source line
by replacing the analog multiplexer with a pass transistor.
This allows a bit cell to be clamped to a lower voltage when
transitioning from the P to AP. Lee et al. [45] proposed
a bit-line and word-line biasing technique to eliminate the
asymmetric write property of the STT-MRAM.

VII. CONCLUSION
In this paper, we proposed a new cache management mecha-
nism called Proactive Invalidation (PROI), which improves
the performance of STT-MRAM caches by proactively
invalidating dead blocks to enable fast write operations. After
combining two optimization techniques such as Proactive
Invalidation-Aware Data Encoding (PIDE) and Narrowness-
aware Partial Write (NPW), the Proactive Invalidation
improves the performance by 14% with a small energy
(1.8%) and area (3%) overheads. PROI provides an efficient
framework for STT-MRAM caches by enabling fast writes
and by eliminating unnecessary state transitions.

REFERENCES
[1] Y. Chen, W.-F. Wong, H. Li, and C.-K. Koh, ‘‘Processor caches built

using multi-level spin-transfer torque RAM cells,’’ in Proc. IEEE/ACM Int.
Symp. Low Power Electron. Design, Aug. 2011, pp. 73–78.

[2] S. Mittal and J. Vetter, ‘‘A technique for improving lifetime of non-volatile
caches using write-minimization,’’ J. Low Power Electron. Appl., vol. 6,
no. 1, p. 1, Jan. 2016. [Online]. Available: https://www.mdpi.com/2079-
9268/6/1/1

[3] R. Buhrman, ‘‘Spin torque MRAM—Challenges and prospects,’’ in Proc.
Device Res. Conf., 2009, p. 33.

[4] R. Bishnoi, M. Ebrahimi, F. Oboril, and M. B. Tahoori, ‘‘Improving
write performance for STT-MRAM,’’ IEEE Trans. Magn., vol. 52, no. 8,
pp. 1–11, Aug. 2016.

[5] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, ‘‘Energy reduction for STT-RAM
using early write termination,’’ in IEEE/ACM Int. Conf. Comput.-Aided
Design-Dig. Tech. Papers, Nov. 2009, pp. 264–268.

[6] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, ‘‘A novel architecture of the
3D stacked MRAM L2 cache for CMPs,’’ in Proc. IEEE 15th Int. Symp.
High Perform. Comput. Archit., Feb. 2009, pp. 239–249.

[7] X. Wu, J. Li, L. Zhang, E. Speight, and Y. Xie, ‘‘Power and performance
of read-write aware hybrid caches with non-volatile memories,’’ in Proc.
Design, Automat. Test Eur. Conf. Exhib., Apr. 2009, pp. 737–742.

[8] A. Jadidi, M. Arjomand, and H. Sarbazi-Azad, ‘‘High-endurance and
performance-efficient design of hybrid cache architectures through
adaptive line replacement,’’ in Proc. IEEE/ACM Int. Symp. Low Power
Electron. Design, Aug. 2011, pp. 79–84.

[9] Z. Wang, D. A. Jimenez, C. Xu, G. Sun, and Y. Xie, ‘‘Adaptive placement
and migration policy for an STT-RAM-based hybrid cache,’’ in Proc.
IEEE 20th Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2014,
pp. 13–24.

[10] Y.-T. Chen, J. Cong, H. Huang, B. Liu, C. Liu, M. Potkonjak, and
G. Reinman, ‘‘Dynamically reconfigurable hybrid cache: An energy-
efficient last-level cache design,’’ in Proc. Design, Automat. Test Eur. Conf.
Exhib. (DATE), Mar. 2012, pp. 45–50.

[11] B. Kim, P. J. Nair, and S. Hong, ‘‘ADAM: Adaptive block placement with
metadata embedding for hybrid caches,’’ in Proc. IEEE 38th Int. Conf.
Comput. Design (ICCD), Oct. 2020, pp. 421–424.

[12] K. Kuan and T. Adegbija, ‘‘HALLS: An energy-efficient highly adaptable
last level STT-RAM cache for multicore systems,’’ IEEE Trans. Comput.,
vol. 68, no. 11, pp. 1623–1634, Nov. 2019.

[13] F. Hameed, A. A. Khan, and J. Castrillon, ‘‘Performance and energy-
efficient design of STT-RAM last-level cache,’’ IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 26, no. 6, pp. 1059–1072, Jun. 2018.

[14] S. Hong, J. Lee, and S. Kim, ‘‘Ternary cache: Three-valued MLC STT-
RAM caches,’’ in Proc. IEEE 32nd Int. Conf. Comput. Design (ICCD),
Oct. 2014, pp. 83–89.

[15] A. Ahari, M. Ebrahimi, F. Oboril, and M. Tahoori, ‘‘Improving reliability,
performance, and energy efficiency of STT-MRAM with dynamic write
latency,’’ inProc. 33rd IEEE Int. Conf. Comput. Design (ICCD), Oct. 2015,
pp. 109–116.

[16] S. Hong and S. Kim, ‘‘Lizard: Energy-efficient hard fault detection,
diagnosis and isolation in the ALU,’’ in Proc. IEEE Int. Conf. Comput.
Design, Oct. 2010, pp. 342–349.

[17] S. Hong and S. Kim, ‘‘A low-cost mechanism exploiting narrow-width
values for tolerating hard faults in ALU,’’ IEEE Trans. Comput., vol. 64,
no. 9, pp. 2433–2446, Sep. 2015.

[18] S. Hong and S. Kim, ‘‘TEPS: Transient error protection utilizing sub-word
parallelism,’’ in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, May 2009,
pp. 286–291.

[19] D. Brooks and M. Martonosi, ‘‘Dynamically exploiting narrow width
operands to improve processor power and performance,’’ in Proc. 5th Int.
Symp. High-Perform. Comput. Archit., 1999, pp. 13–22.

[20] J. L. Henning, ‘‘SPEC CPU2006 benchmark descriptions,’’ ACM
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006, doi:
10.1145/1186736.1186737.

[21] C. Bienia, S. Kumar, J. P. Singh, and K. Li, ‘‘The parsec benchmark
suite: Characterization and architectural implications,’’ Princeton Univ.,
Princeton, NJ, USA, Tech. Rep. TR-811-08, Jan. 2008.

[22] L. Liu, P. Chi, S. Li, Y. Cheng, and Y. Xie, ‘‘Building energy-efficient
multi-level cell STT-RAM caches with data compression,’’ in Proc.
22nd Asia South Pacific Design Automat. Conf. (ASP-DAC), Jan. 2017,
pp. 751–756.

29430 VOLUME 10, 2022

http://dx.doi.org/10.1145/1186736.1186737


Y. Kim et al.: Proactively Invalidating Dead Blocks to Enable Fast Writes in STT-MRAM Caches

[23] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo,
K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao,
and H. Kano, ‘‘A novel nonvolatile memory with spin torque transfer
magnetization switching: Spin-RAM,’’ in IEDM Tech. Dig., Dec. 2005,
pp. 459–462.

[24] Y. Zhang, X. Wang, Y. Li, A. K. Jones, and Y. Chen, ‘‘Asymmetry of
MTJ switching and its implication to STT-RAM designs,’’ in Proc. Design,
Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2012, pp. 1313–1318.

[25] T. Kawahara, K. Ito, R. Takemura, and H. Ohno, ‘‘Spin-transfer
torque RAM technology: Review and prospect,’’ Microelectron.
Rel., vol. 52, no. 4, pp. 613–627, Apr. 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S002627141100446X

[26] S. M. Khan, Y. Tian, and D. A. Jimenez, ‘‘Sampling dead block
prediction for last-level caches,’’ inProc. 43rd Annu. IEEE/ACM Int. Symp.
Microarchitecture, Dec. 2010, pp. 175–186.

[27] A.-C. Lai, C. Fide, and B. Falsafi, ‘‘Dead-block prediction & dead-block
correlating prefetchers,’’ in Proc. 28th Annu. Int. Symp. Comput. Archit.
(ISCA). New York, NY, USA: Association for Computing Machinery,
2001, pp. 144–154, doi: 10.1145/379240.379259.

[28] H. Liu, M. Ferdman, J. Huh, and D. Burger, ‘‘Cache bursts: A new
approach for eliminating dead blocks and increasing cache efficiency,’’
in Proc. 41st IEEE/ACM Int. Symp. Microarchitecture, Nov. 2008,
pp. 222–233.

[29] M. Kharbutli and Y. Solihin, ‘‘Counter-based cache replacement and
bypassing algorithms,’’ IEEE Trans. Comput., vol. 57, no. 4, pp. 433–447,
Feb. 2008.

[30] Z. Hu, S. Kaxiras, andM.Martonosi, ‘‘Timekeeping in thememory system:
Predicting and optimizing memory behavior,’’ in Proc. 29th Annu. Int.
Symp. Comput. Archit. (ISCA), 2002, pp. 209–220.

[31] J. Hu, S. Wang, and S. G. Ziavras, ‘‘In-register duplication: Exploiting
narrow-width value for improving register file reliability,’’ in Proc. Int.
Conf. Dependable Syst. Netw. (DSN), 2006, pp. 281–290.

[32] G. Duan and S. Wang, ‘‘Exploiting narrow-width values for improving
non-volatile cache lifetime,’’ in Proc. Design, Automat. Test Eur. Conf.
Exhib. (DATE), 2014, pp. 1–4.

[33] Y. Chen, X. Wang, H. Li, H. Liu, and D. V. Dimitrov, ‘‘Design margin
exploration of spin-torque transfer RAM (SPRAM),’’ in Proc. 9th Int.
Symp. Quality Electron. Design (ISQED), Mar. 2008, pp. 684–690.

[34] X. Bi, M. Mao, D. Wang, and H. Li, ‘‘Unleashing the potential of MLC
STT-RAM caches,’’ in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2013, pp. 429–436.

[35] X. Wu, J. Li, L. Zhang, E. Speight, and Y. Xie, ‘‘Power and performance
of read-write aware hybrid caches with non-volatile memories,’’ in Proc.
Design, Automat. Test Eur. Conf. Exhib., Apr. 2009, pp. 737–742.

[36] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, and R. Sen, ‘‘The gem5
simulator,’’ ACM SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7,
2011.

[37] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, ‘‘NVSim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 7,
pp. 994–1007, Jul. 2012.

[38] T.-F. Chen and J.-L. Baer, ‘‘Effective hardware-based data prefetching
for high-performance processors,’’ IEEE Trans. Comput., vol. 44, no. 5,
pp. 609–623, May 1995.

[39] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, ‘‘IMP: Indirect memory
prefetcher,’’ in Proc. 48th Int. Symp. Microarchitecture, Dec. 2015,
pp. 178–190.

[40] A. J. Smith, ‘‘Cache memories,’’ ACM Comput. Surv., vol. 14, no. 3,
pp. 473–530, 1982.

[41] Z. Wang, D. A. Jimenez, C. Xu, G. Sun, and Y. Xie, ‘‘Adaptive placement
and migration policy for an STT-RAM-based hybrid cache,’’ in Proc.
IEEE 20th Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2014,
pp. 13–24.

[42] X. Chen, J. Wang, and J. Zhou, ‘‘Promoting MLC STT-RAM for the future
persistent memory system,’’ in Proc. IEEE 15th Int. Conf. Dependable,
Auton. Secure Comput., 15th Int. Conf. Pervasive Intell. Comput.,
3rd Int. Conf. Big Data Intell. Comput. Cyber Sci. Technol. Congr.
(DASC/PiCom/DataCom/CyberSciTech), Nov. 2017, pp. 1180–1185.

[43] O. Ergin, O. Unsal, X. Vera, and A. González, ‘‘Reducing soft errors
through operand width aware policies,’’ IEEE Trans. Dependable Secure
Comput., vol. 6, no. 3, pp. 217–230, Jul. 2009.

[44] Y. Kim, S. K. Gupta, S. P. Park, G. Panagopoulos, and K. Roy,
‘‘Write-optimized reliable design of STT MRAM,’’ in Proc. ACM/IEEE
Int. Symp. Low Power Electron. Design (ISLPED). New York, NY,
USA: Association for Computing Machinery, Jul. 2012, pp. 3–8, doi:
10.1145/2333660.2333664.

[45] D. Lee, S. K. Gupta, and K. Roy, ‘‘High-performance low-energy STT
MRAM based on balanced write scheme,’’ in Proc. ACM/IEEE Int. Symp.
Low Power Electron. Design (ISLPED), 2012, pp. 9–14.

YONGJUN KIM is currently pursuing the master’s
degree with the Department of Electrical and
Computer Engineering, Sungkyunkwan Univer-
sity, South Korea. His current research interests
include memory systems, non-volatile memory,
and AI accelerator architecture.

YUZE CHEN is currently pursuing the master’s
degree with the School of Computer Science and
Engineering at the Kyungpook National Univer-
sity, Daegu, South Korea. His current research
interests include on-chip cache, non-volatile mem-
ory, and computer architecture.

YONGHO LEE is currently pursuing the master’s
degree with the Department of Electrical and
Computer Engineering, Sungkyunkwan Univer-
sity, South Korea. His current research interests
include heterogeneous memory systems, non-
volatile memory, and computer architecture.

LIMEI PENG was an Assistant Professor
at the Department of Industrial Engineering,
Ajou University, Suwon, Republic of Korea,
from 2014 to 2018. Shewas anAssociate Professor
at Soochow University, China, from 2011 to 2013.
She is currently an Associate Professor at the
School of Computer Science and Engineer-
ing, Kyungpook National University (KNU),
Daegu, Republic of Korea. Her research interests
include cloud computing, fog computing, data

center networks, the IoT/IoV, 5G communications networks, and UAV
communications.

SEOKIN HONG received the Ph.D. degree in
computer science from the Korea Advanced Insti-
tute of Science and Technology (KAIST), South
Korea, in 2015. From 2015 to 2017, he was a
Senior Engineer at Samsung Electronics. During
his two years there, he was involved in a project
that developed the 3D-stacked memory. In 2017,
he moved to the IBM Thomas J. Watson Research
Center, where he worked on secure processor
architectures and emerging memory/storage sys-

tems. He is currently an Assistant Professor at Sungkyunkwan University,
South Korea. His current research interests include the design of low power,
reliable, and high-performance processor architectures andmemory systems.
He received the Best Paper Awards from the International Conference on
Computer Design (ICCD), in 2010 and the Design Automation and Test in
Europe (DATE), in 2013.

VOLUME 10, 2022 29431

http://dx.doi.org/10.1145/379240.379259
http://dx.doi.org/10.1145/2333660.2333664

