
Received January 13, 2022, accepted March 3, 2022, date of publication March 10, 2022, date of current version March 21, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3158365

Determination of Core Losses Using
an Inverse Modeling Technique
OSARUYI OSEMWINYEN 1, AHMED HEMEIDA 1,2, FLORAN MARTIN 1,
ISMET TUNA GÜRBÜZ 1, PAYAM SHAMS GHAHFAROKHI 3,4,
AND ANOUAR BELAHCEN 1,4, (Senior Member, IEEE)
1Department of Electrical Engineering and Automation, Aalto University, FI-00076 Espoo, Finland
2Department of Electrical Engineering, Cairo University, Giza 12211, Egypt
3Department of Electrical Machines and Apparatus, Riga Technical University, LV-1658 Riga, Latvia
4Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia

Corresponding author: Osaruyi Osemwinyen (osaruyi.osemwinyen@aalto.fi)

ABSTRACT This paper presents an inverse thermal modeling technique to determine the core losses from
the temperature rise inside the transformer core. For this purpose, initially, a customized printed circuit
board (PCB) with thermal sensors is used to measure the temperature rise. Afterward, a 3Dmagneto-thermal
forwardmodel is developed to validate the temperature rise. The accuracy of the forwardmodel is checked by
comparing the simulated core losses and temperature rise of the transformerwith experimental measurements
for different supply conditions. The results show that the forward model can accurately estimate the core
losses with a maximum relative error of less than 2.7% and predict the temperature rise in the core with a
maximum relative error of less than 6.2%. Lastly, after ensuring the accuracy of the forwardmodel, an inverse
modeling technique is applied to the 3D thermal model to predict the core losses of the transformer directly
from the measured temperature rise. The accuracy of the inverse model in estimating the core losses is
checked by comparing the results with experimental measurements. The novel approach for the PCB design
besides the inverse model shows that the technique can be applied to estimate the core losses directly from
the measured temperature rise inside the core with a relative error of 2.7% compared to experiments.

INDEX TERMS Core losses, inverse modeling, loss model, temperature measurement, thermal model,
thermal sensors.

I. INTRODUCTION
The increasing use of electrical machines in transportation
and rapid industrialization has created the need for design-
ing more efficient electrical machines. The strategy used by
designers in developing more efficient machines is to reduce
the generated losses, which can be classified into core losses,
resistive losses, and mechanical losses. Hence, accurate pre-
diction and measurements of these losses are essential for the
evaluation of efficiency, temperature distribution, and cool-
ing requirements of the electrical machine. Core losses are
one of the most important parameters considered during the
designing stage of electrical machines. Therefore, accurate
estimation and reduction of core losses are vital to designing
efficient electrical machines [1].

Several analytical and numerical models were widely used
by machine designers to estimate the core losses in magnetic
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materials [2]–[6]. Separation models were used in [2]–[4]
to estimate the core losses. With this method, the total core
losses were obtained as the summation of the hysteresis loss,
eddy-current loss, and excess loss. An empirical model based
on Steinmetz equationwas presented in [6] and [5] to estimate
the core losses. Although these models present a fast way to
estimate the core losses; however, they are based on constant
coefficients that require several measurements and fitting
to identify. Moreover, the coefficients change with the flux
density, frequency, and type of material [7].

Another approach used for estimating power losses is
based on inverse thermal models. The main theory is that
power losses generated in the different parts of an electrical
machine contribute directly to heat. Therefore, by measuring
the temperature rise at any point in a machine, the losses
can be inversely determined. This principle was applied
in [8]–[12] to estimate the power losses and thermal param-
eters of electrical machine. Calorimetric method described
in [9] and [11] was used to determine the losses directly from
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the heat dissipation of the machine. Although a significant
accuracy is reached with this method, the design and con-
struction processes of the setup take a long time and can be
unsuitable for industrial applications.

Using the lumped parameter thermal network (LPTN) in
combination with the experimental measured temperature
rise, the net power losses in an induction machine were
segregated in [12] by inverse thermal method. This approach
was used in [10], [13], and [14] to identify the thermal
parameters used in the real-time prediction of stator and rotor
temperature variations for condition motoring of electrical
machines. Nevertheless, LPTN involves approximation of
geometry and thermal material properties of the machine
in nodes. Hence, the reliability and the accuracy of such
thermal network is strongly affected by the model designer.
Alternatively, in [8], highly accurate results were obtained
by using a finite-element model (FEM) to validate the tem-
perature rise that was measured with built-in resistance tem-
perature detectors inside the machine. However, the built-in
sensors in the machine parts are prone to failures, and also
placing the sensors in the interior parts of the machine is
difficult.

In this paper, we present a method to estimate the core
losses in a transformer from the measured temperature rise
inside the core by inverse modeling technique. We introduce
a customized sensor board consisting of thermal sensors to
access the interior part of the transformer and minimize the
measurement noise. Initially, a 3D magneto-thermal model
for the transformer is developed in COMSOL-Multiphysics
to validate the measured temperature rise. After modeling the
temperature rise properly with the forward model, the core
losses are then predicted from the presented inverse thermal
model with high accuracy.

The remainder of this paper is organized as follows.
In Section 2, the measurement system is described in detail.
The models developed based on the experimental measure-
ments are presented in Section 3. Afterward, the applications
of the models and obtained results are presented in Section 4.
Then, in Section 5, the most important findings of this study
are summarized.

II. EXPERIMENTAL MEASUREMENTS
Experimental measurements of core losses and temperature
rise are performed at different cases of supply voltages under
the sinusoidal excitation with the fundamental frequencies
between 50-150 Hz on a single-phase shell-type transformer
under no-load conditions. The transformer core is cut from
electrical steel sheets with a lamination thickness of 0.5 mm,
and the material grade is M400-50A. Figure 1(a) shows
the transformer under test with the power supply feeding
it. NI USB-6251 data acquisition device (DAQ1) is used to
retrieve the primary current i1 and the induced voltage in
the secondary side u2 with respect to time. The core losses
are computed from these measurements during the post-
processing stage. The temperature rise of the transformer

is measured with two thermal PCBs placed inside the
transformer core, PT100 thermal sensors are embedded in the
board as shown in Fig.1(b).

FIGURE 1. (a) Experimental measurement setup. (b) Electronic board with
PT100 temperature sensors.

A. LOSS MEASUREMENT
The total loss consist of core and copper losses. Sinusoidal
voltage u1 is supplied to the primary winding of the trans-
former at no-load. The primary current i1 is obtained through
the shunt resistor connected in series to the input terminal
and the induced voltage in the secondary side u2 is measured
directly from the secondary winding of the transformer. The
magnetic flux density B(t) in the middle limb section of the
transformer is computed using (1).

B(t) =
1

N2Alm

∫
u2(t)dt, (1)

where N2 is the number of turns in the secondary winding,
and Alm is the cross-sectional area of the middle limb. The
magnetic field intensity H (t) at the lamination surface is
calculated from the measured no-load current using (2).

H (t) =
N1i1(t)
lav

(2)
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where N1 is the number of turns in the primary winding and
lav is the mean length of flux path. The core loss density ptot
is obtained from the integral of (1) and (2) over one supply
period T as given in (3).

ptot =
1
Tρ

∫ T

0
B(t)H (t)dt (3)

where, ρ is the mass density of the core material. Using (4),
the winding resistive losses PR is computed taking into
account the effect of temperature rise on the winding resis-
tance. Here, only the DC component of the resistive losses
PR is considered.

PR = I2pri,rmsRdc,pri(1+ α1T ) (4)

where, Rdc,pri is the measured DC winding resistance, α is
the thermal resistivity of copper, and 1T is the change in
temperature over the measurement duration.

B. THERMAL MEASUREMENT
The objective of the thermal measurement setup is to obtain
temperature rise inside the transformer core and winding. For
this purpose, two PCB boards with a thickness of 0.5 mm
embedded with PT100 temperature sensors are used. The
PCB is designed to perfectly match the geometry of the
transformer core as shown in Fig. 1(b). Each board consists
of 14 PT100 temperature sensors that are evenly placed over
the geometry to accurately measure the temperature distribu-
tion of the transformer core during power switch ON. The
sensors have a measurement range of −50� to 250� and
can measure the temperature rise of the transformer with an
accuracy of ±0.06�. An Agilent 34970A data acquisition
unit (DAQ2) is connected to the sensor board serial output
port. The transformer temperature rise is recorded for 4 hours
under no-load conditions. The measured temperature is used
to estimate the core losses by applying the inverse modeling
technique. The results obtained are compared with the mea-
sured core density in Section IV-D to test the accuracy of the
loss identification approach.

III. FORWARD MODELING
This section describes the electromagnetic loss model and
thermal model used for simulating the temperature rise of the
transformer that occurs in the real situation. The models are
developed with COMSOL-Multiphysics. The major dimen-
sions and the parameters used in the model design are shown
in Table 1. The flow chart of the modeling technique is shown
in Fig. 2. In the following parts of this section, each step will
be explained in detail.

A. ELECTROMAGNETIC LOSS MODEL
A 2D electromagnetic model of the transformer is imple-
mented to achieve an accurate quantification of the distri-
bution of the core losses, taking into account the realistic
flux density distribution. The model assumes that the flux
distribution is constant in the core thickness direction. The 2D

TABLE 1. Transformer dimensions and parameters.

FIGURE 2. Forward modeling flow chart.

model description of the transformer used in the simulation
with the mesh is shown in Fig. 3(a). To predict the flux
density and loss distribution in the transformer core, time-
stepping magnetic field simulation is carried out by applying
sinusoidal voltage u1 to the input terminal of the primary
winding at no-load as shown in Fig. 3(b).

FIGURE 3. (a) 2D electromagnetic model with mesh. (b) Model supply
circuit. Secondary side is open-circuited.

The core loss density pfe,(sim) is computed from the
fundamental and harmonic component of the flux density
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distribution by using (5) during FEM post-processing.

pfe,(sim) = Khys

N∑
i=1

fi · Bni + Keddy

N∑
i=1

f 2i · B
2
i

+Kexc

N∑
i=1

f 1.5i · B
1.5
i (5)

where, N and fi are the total number of harmonics and
the frequency at each harmonic, Khys,Keddy, and Kexc are
the hysteresis, eddy-current, and excess loss coefficients,
respectively. These coefficients are obtained experimentally
by fitting the coefficients of (5) to the measured core losses at
different frequencies. Finally, the accuracy of the electromag-
netic loss model is compared with the measured core losses.
The comparisons are shown in the results section.

FIGURE 4. (a) 3D thermal model description. (b) Sensor location
description in the core. Red marker indicates the sensors used in the
measurements.

B. THERMAL MODEL
The 3D thermal model described in Fig. 4(a) is used to
analyze the temperature rise distribution of the transformer.
The locations of the sensors used for the measurements of
temperature rise are given in Fig. 4(b). The physics used in
the modeling is based on the first law of thermodynamics
and Fourier’s law. Mathematically, it can be expressed by the
heat diffusion equation (6), which is the law governing heat
transfer in electrical machines.

ρCp
∂T
∂t
−∇(k · ∇T ) = pgen (6)

where Cp, k , T , and pgen = pfe,(sim), are specific heat
capacity, thermal conductivity, temperature, and heat source,
respectively. The distribution of the core losses obtained in
Section III-A and uniform loss density are coupled to the ther-
mal model as the core heat source. The resistive loss obtained
from (4) is used as the heat source in the primary winding
region. To simplify the simulated geometry, homogenization
approach used in [15] defined by (7) and (8) are applied to
the specific heat capacity and mass density to account for
the composite material properties. Due to the symmetricity
of the transformer, only half of the geometry is used in the
simulation.

Cp = λ1Cp,1 + (1− λ1)Cp,2 (7)

ρ = λ1ρ1 + (1− λ1)ρ2 (8)

where, λ1 is the filling factor of core/winding, Cp,1 is the
constituent specific heat capacity of core/winding, Cp,2 is the
constituent specific heat capacity of the insulation layer, ρ1 is
the mass density of core/winding, ρ2 is the mass density of
insulating material. The anisotropic property of the thermal
conductivity of the core and winding are modeled in two
directions by using (9) for the lapping direction and (10) for
the transverse direction as in [15], which are expressed below:

klp = λ1k1 + (1− λ1)k2 (9)

kts = k2
(1+ λ1) k1 + (1− λ1) k2
(1− λ1) k1 + (1+ λ1) k2

(10)

Here, k1 is the thermal conductivity of core/winding, and k2
is the thermal conductivity of insulating material. Newton’s
law of cooling defined by (11) is assigned to the boundary
surface as defined by (12)

h =
q

A · (T − Text)
(11)

h =


h1, on the winding surface
h2, on the core surface
h3, on the surface between the core and winding

(12)

where, q, T , Text, A, and h, are the surface heat flux, temper-
ature, surrounding temperature, surface area, and heat trans-
fer coefficient, respectively. However, determining the heat
transfer coefficient h can be quite challenging, as it depends
on various factors such as surface temperature, ambient prop-
erties, and the nature of surfaces. Furthermore, it is deter-
mined in [16] that during natural cooling, about 25-30% of
the heat flux is evacuated from the surface through radiation.
Hence it is important to consider the effect of radiation on the
total heat transfer coefficient. In this paper, the heat transfer
coefficients are determined analytically by using (13)

h = hconv + hrad. (13)

Here hconv and hrad are natural convection and radiation
coeffiients. The natural convection coefficient hconv is cal-
culated from the Nusselt number Nu similar to [17], which
is given by (14) and the radiation coefficient is estimated by
using (15) [18],

hconv =
Nu · kfld
Lc

, (14)

hrad = ε · σ ·
(
T 2
− T 2

ext

)
· (T − Text) , (15)

where kfld is the fluid thermal conductivity, σ is the
Stefan-Boltzmann constant, Lc is the characteristic length
and ε emissivity of the cooling surfaces. The convective
heat coefficient is calculated for each of the surfaces. The
equivalent heat transfer coefficient h of the composite surface
is estimated by using the area-based composite correlation
given in (16),

h =
h1A1 + h2A2 + . . .

AT
, (16)

VOLUME 10, 2022 29227



O. Osemwinyen et al.: Determination of Core Losses Using Inverse Modeling Technique

where AT, h1, h2 . . . and A1,A2 . . . are the total surface area,
heat transfer coefficients, and surface area of each surface
considered, respectively. Figure 5 shows the plot of the con-
vective coefficient of the transformer for different temper-
ature gradients by considering the radiation effect on the
boundary surfaces.

FIGURE 5. Transformer heat coefficient vs. different temperature gradient
considering the radiation effect on natural convection.

IV. APPLICATIONS AND RESULTS
A. IDENTIFICATION OF LOSS COEFFICIENTS
Experimental measurements are carried out at sinusoidal
excitation of different frequencies to estimate the loss coeffi-
cients. The flux density and core loss density are calculated
from themeasured no-load current i1 and open-circuit voltage
u2 (see Fig. 1(a)) by using (1)-(3). The core loss coefficients
are obtained by fitting Bertotti’s formula (5) against the
measured core loss density by using the flux density data
at different excitation levels and frequencies in the range
of 10 Hz - 150 Hz. Figure 6 shows the measured core losses
and estimated core losses by using the fitted coefficients. The
maximum relative fitting error of the coefficients is 5%.

FIGURE 6. Comparison between measured core losses and estimated
core losses with the following coefficients (5), Khys = 0.02, n = 1.82,
Keddy = 2.71× 10−4, Kexc = 2.89× 10−7.

B. ELECTROMAGNETIC MODEL LOSS CALCULATION
Consequently, a time-varying magnetic field simulation is
performed by applying a sinusoidal voltage to the primary

winding of the magnetic model. Figure 7(a) shows the simu-
lated flux density distribution of the 2D model. Fast Fourier
Transform (FFT) is performed on the flux density distribution
of each element to obtain the harmonic components of the
flux density due to the non-linearity of the core material. The
related core loss density distribution of the machine shown
in Fig. 7(b) is calculated by using (5) from the identified
loss coefficients. The simulated losses are compared with
the measurements in Table 2 to validate the accuracy of the
magnetic loss model.

FIGURE 7. 2D electromagnetic loss model simulation (u1 = 24V,
f = 50 Hz). (a) Flux density distribution and (b) core loss density
distribution.

TABLE 2. Comparison of the core losses at different frequencies.

The comparison shows that the magnetic model can accu-
rately predict the losses at different frequencies. Hence, the
results obtained can be used in the forward model to predict
the temperature rise of the transformer.

C. THERMAL MODEL SIMULATIONS
Firstly, the core loss density distribution obtained from the 2D
magnetic loss model and the winding loss obtained from (4)
is inputted to the core and primary winding as a heat source
of the thermal model as shown in Fig. 8(a). Next, the heat
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source of the core region is replacedwith uniform loss density
obtained from the average core loss density of the magnetic
loss model and the winding heat source remains constant as
shown in Fig. 8(b). The model is simulated for 4 hours in both
cases to obtain the temperature distribution shown in Fig. 9.

FIGURE 8. 3D electromagnetic heat source for u1 = 24V, f = 50 Hz, for
(a) distributed core loss density and for (b) uniform core loss density.

FIGURE 9. Temperature distribution for (u1 = 24V, f = 50 Hz) after 4 hours
with (a) distributed heat source and with (b) uniform heat source.

From Fig. 9, it can be observed that the temperature dis-
tribution is uniform in the transformer core region for the
simulated cases. However, temperature variation is observed
in the winding geometry. This is because the variation of
losses inside the core and edges are insignificant with respect
to the overall volume of the transformer core. Furthermore,
the accuracy of the forward thermal model to simulate the
transformer temperature rise distribution under different sup-
ply conditions is tested by comparing (Fig. 10) the simu-
lated temperature rise with the measured temperature rise
for each of the sensor locations inside the core and winding.
To better represent the results obtained, three measurement
sensor locations represented by points P1, P4, P5, and the
winding temperature variation is compared in Fig. 10 for
the distributed heat source simulation case. The steady-state
temperature rise for all the measured sensor locations are
compared with the simulated steady-state temperature rise
of the transformer for the distributed loss source (DL) and
uniform loss source (UL) in Table 3.
From the analysis of Fig. 10 and Table 3, it is observed that

the thermal model can accurately simulate the temperature

TABLE 3. Forward model relative error comparison for different sensors
located inside the core at steady-state condition. Core heat source:
distributed loss (DL) and uniform loss (UL).

rise distribution with a relative error of less than 6.2% for all
sensor locations in the core for the simulated cases.

D. PREDICTION OF CORE LOSSES USING INVERSE MODEL
TECHNIQUE
The main target of the inverse model is to estimate the
core losses of the transformer at no-load from the measured
temperature rise. The core heat source defined in (7) is
assumed to be uniform and unknown. Since the tempera-
ture rise measured from different locations inside the core
is a direct consequence of the core losses, the unknown
core losses of the thermal model are predicted using
the inverse method. The methodology used is presented
in Fig. 11.

The flowchart shows that the inverse model takes as an
input the measured and simulated core temperature rise for
the different sensor locations at steady-state. The least-square
non-linear approximation method is applied to minimize
the error between the measured and simulated tempera-
ture rise iteratively over time until the best fit for the pre-
dicted core loss density ptot,(prd) is obtained. The routine is
repeated for the different measurement cases and the results
obtained are compared with the measured core loss density
in Table 4.

TABLE 4. Core loss density comparison at different frequencies.

The results show that the inverse model accurately predicts
the core loss density from the measured temperature inside
the transformer core with a maximum difference of less than
2.7%. The results returned from the inverse model are unique
for each measured case. In other words, each time the inverse
model is run for the same case, a unique solution is obtained in
terms of the core loss density. The predicted temperature rise
for the obtained core loss density ptot,(prd) from the inverse
model is compared against the measured temperature rise
for different sensor locations P1, P4, P5, and the winding as
shown in Fig. 12.

Figure 12 shows that the predicted temperature rise
matches reasonably well against the measurement results.
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FIGURE 10. Comparison of the temperature rise from the simulations of forward model against the measurements.

FIGURE 11. Inverse modeling flow chart.

A detailed comparison of the predicted temperature rise for
each sensor located inside the core with the measured tem-
perature rise is given in Table 5.

TABLE 5. The inverse model relative error comparison for different
sensor locations inside the core at steady-state.

The comparison in Table 5 shows that the inverse model
accurately predicts the steady-state temperature rise distri-
bution of the transformer with a relative error of less than
3.6% for all cases. However, when considering complex core
geometry like the stator core of an induction machine, the
basic assumption of a uniform heat source might increase
the error in predicting the core losses because of the clear
distinction of the yoke and teeth loss density. Therefore,
defining a distributed heat source in the core and using the
measured temperature rise for the different locations in the
stator core will improve the accuracy of the inverse model
results.
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FIGURE 12. Comparison of the temperature rise from the predictions of inverse model against the measurements.

V. CONCLUSION
In this paper, we presented an inverse modeling technique
to estimate the core losses of a transformer operating at
no-load based on the measured temperature rise and its
numerical thermal model. With the use of the customized
sensor board, the method ensures the reliability of the tem-
perature rise measurements, which is vital for the inverse
modeling approaches. The proposed method can be applied
on any electrical machine irrespective of the geometry with
the appropriate design of the sensor board, which can be
useful for condition monitoring and fault diagnosis purposes.
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