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ABSTRACT We propose the Philippine Eagle Optimization Algorithm (PEOA), which is a meta-heuristic
and population-based search algorithm inspired by the territorial hunting behavior of the Philippine Eagle.
From an initial random population of eagles in a given search space, the best eagle is selected and undergoes a
local food search using the interior point method as its means of exploitation. The population is then divided
into three subpopulations, and each subpopulation is assigned an operator which aids in the exploration.
Once the respective operators are applied, the new eagles with improved function values replace the older
ones. The best eagle of the population is then updated and conducts a local food search again. These steps
are done iteratively, and the food searched by the final best eagle is the optimal solution of the search
space. PEOA is tested on 20 optimization test functions with different modality, separability, and dimension
properties. The performance of PEOA is compared to 13 other optimization algorithms. To further validate
the effectiveness of PEOA, it is also applied to image reconstruction in electrical impedance tomography and
parameter identification in a neutral delay differential equation model. Numerical results show that PEOA
can obtain accurate solutions to various functions and problems. PEOAproves to be themost computationally
inexpensive algorithm relative to the others examined, while also helping promote the critically endangered
Philippine Eagle.

INDEX TERMS Electrical impedance tomography, metaheuristic search, nature-inspired algorithm, neutral
delay differential equation, numerical optimization, Philippine Eagle.

I. INTRODUCTION
A. METAHEURISTIC ALGORITHMS
Numerical optimization is the study of finding solutions using
mathematical tools to achieve objectives in the most effi-
cient way [1]. Finding solutions to optimization problems is
usually very challenging, so various algorithms have been
created to tackle different kinds of problems.

In particular, metaheuristic search algorithms have been
used because of their trial-and-error approach in finding
solutions, which have many advantages over traditional and
purely deterministic methods [1], [2]. These advantages can
be seen when dealing with functions that have some discon-
tinuity, design optimization problems that have highly non-
linear functions or constraints, or stochastic problems where
uncertainty and noise exist [1]–[3]. In these cases, techniques
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using a trade-off between randomization and local search,
such as metaheuristic algorithms, are preferred [4].

A state-of-the-art metaheuristic algorithm is the Genetic
Algorithm (GA) [5], which is based on Darwinian evo-
lution and natural selection of biological systems. The
problem-solving strategy of GA is to use genetic opera-
tors, namely crossover and recombination, mutation, and
selection.

One further development to GA is the Differential Evo-
lution (DE) [6], which is a vector-based, derivative-free
evolutionary algorithm. Unlike GA, DE treats solutions as
real-number strings, and operations are carried out over each
component of the solution vectors.

More improved variants of these algorithms have also been
developed recently, such as those that use adaptive parameter
control, an external archive, and combinations of multiple
operators and methods.

For example, the Improved Multi-Operator Differential
Evolution (IMODE) [17] has been proposed, which uses
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TABLE 1. Summary of some nature-inspired optimization algorithms, including their inspiration source from nature, algorithmic key features, and the
year when they were proposed.

multiple DE operators, with more emphasis placed on
the best-performing operator. IMODE also uses adapta-
tion mechanisms to determine parameter values and ran-
domly chooses between binomial and exponential crossover.
IMODE has proven successful as an optimization algorithm,
especially since it ranked first in the CEC 2020 Compe-
tition on Single Objective Bound Constrained Numerical
Optimization.

Many other metaheuristic algorithms have been developed,
not only because of their capability of solving optimization
problems, but also due to their wide range of recent real-world
applications [18]–[40].

Two essential components of metaheuristic algorithms are
exploitation and exploration. Exploitation focuses the search
in a local region, whereas exploration expands the search on
a global scale [1], [2]. A proper balance between these two
components is crucial for the overall efficiency ofmetaheuris-
tic algorithms.

B. NATURE-INSPIRED ALGORITHMS
Metaheuristic algorithms are mostly nature-inspired, deriv-
ing from the beauty and order that natural elements pos-
sess [4]. For instance, animals and plants naturally develop

strategies to ensure their survival through time. The abun-
dance and success of these strategies have led to the creation
of many nature-inspired metaheuristics [41]. Specifically,
flyingmovements, foraging behavior, and hunting techniques
of animals are some of the inspirations of nature-inspired
metaheuristics [42].

Another aspect of nature that has also been a basis for
many algorithms is swarm intelligence, which concerns the
behavior of self-organizing systems, the members of which
evolve and interact to achieve optimality [43]. Thus, many
algorithms are also swam-intelligence-based, such as the Par-
ticle Swarm Optimization (PSO) [44].

The main inspiration of PSO is the flocking behavior of
birds. In PSO, each particle in a given swarm represents a
candidate solution to the optimization problem. Each particle
is then updated based on its own local best position and the
position of the global best particle.

More recent SI-based algorithms have further been devel-
oped, including the Firefly Algorithm, which is based on
the flashing patterns and behavior of tropic fireflies [7],
and the Cuckoo Search Algorithm, which is inspired by
the brood parasitism of cuckoo species [8], [45]. Addition-
ally, we have the Bat Algorithm, which is derived from the
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echolocation behavior of microbats [9], and the Flower Pol-
lination Algorithm, which is based on the flower pollination
process of flowering plants [10].

Even more nature-inspired algorithms have been cre-
ated over recent years, such as Moth Flame Optimization
Algorithm [11], Whale Optimization Algorithm [12], Butter-
fly Optimization Algorithm [13], Chimp Optimization Algo-
rithm [16], Wingsuit Flying Search [14], and Tunicate Swarm
Algorithm [15].

Table 1 presents a summary of the nature-inspired algo-
rithms mentioned above, along with their inspiration sources,
key features, and year.

With the increasing number of nature-inspired algorithms,
various benchmarking tests have been developed to examine
their performance [46]. These include testing the algorithms
on different types of functions [47], [48], and checking the
number of objective function evaluations they use [49].

The No-Free-Lunch Theorem for Optimization states that
if algorithm A performs better than algorithm B for some
optimization functions, then B will outperform A for other
functions [1], [41]. In other words, there is no metaheuristic
best suited for all existing optimization problems. Given this,
the research area on metaheuristic algorithms is active and
steadily progressing. New metaheuristics and nature-inspired
algorithms are constantly being studied to determine what
specific types of optimization problems these algorithms
could solve the best [41], [42].

C. PHILIPPINE EAGLE (PITHECOPHAGA JEFFERYI)
In this study, we develop an optimization algorithm based on
the hunting behavior of the Philippine Eagle (Pithecophaga
jefferyi), the national bird of the Philippines, shown in
Figure 1.

FIGURE 1. A photo of the Philippine Eagle (Pithecophaga jefferyi). This is
owned by Sinisa Djordje Majetic and was obtained from [50]. This was
confirmed to be licensed under the terms of the cc-by-sa-2.0.

Tagged as the ‘‘Haribon’’ or bird king, the Philippine
Eagle is among the rarest and most powerful birds in the
world whose species is endemic only to four islands of the
Philippine archipelago, namely Luzon, Samar, Leyte, and

Mindanao [51]. It is commonly known as the Monkey-Eating
Eagle, but it can also prey on other vertebrates apart from
monkeys, including mammals, reptiles, and other birds [52].

Unfortunately, it is now classified as critically endangered
as it is continually being threatened by hunting and loss of
habitat [53].

According to [54], the hunting behavior of the Philippine
Eagle follows a three-part sequence, where it first perches and
calls as a preparatory stage, then does the capture of prey by
dropping from its perch, and finally circles back up to return
to its starting point. Figure 2 shows a representation of this
three-part hunting sequence.

FIGURE 2. Representation of the three-part hunting sequence of the
Philippine Eagle [54]. Part 1 is the preparatory period where it perches
and calls, Part 2 is the act of hunting by dropping from its perch, and
Part 3 is its return to its starting point in a circular upwards motion. This
is designed using Canva (https://www.canva.com).

It can thus be observed that Philippine Eagles are highly
territorial during hunting, besides also being known to be
loyal to their nest sites [51].

Furthermore, the Philippine Eagle can hunt both singly and
in pairs [54], but they generally make a more successful hunt
when done in pairs. A particular strategy is for one eagle
to distract the prey while the other captures this prey from
behind. It is additionally noted that a bulk of the Philippine
Eagles’ time is spent at perch because it is from perch that
they watch their surroundings and look out for prey.

Meanwhile, the Philippine Eagle’s flight behavior gener-
ally follows differing patterns, where they either glide in a
straight line from a higher to a lower elevation or make a
sequence of short glides and large sweeping circles [54], [55].

D. INSPIRATION SOURCES AND LIMITATIONS
The national bird of the Philippines, the Philippine Eagle,
has particular hunting, flying, and foraging behaviors, which
had thus inspired the proposed Philippine Eagle Optimization
Algorithm (PEOA). The main characteristics of the Philip-
pine Eagle that we incorporate into PEOA are the following:

• It is a highly territorial bird when hunting and is loyal to
its nest site.
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• Its pair hunt strategy is more successful than hunting
alone.

• It has differing flight patterns, varying between straight
glides and large circles.

• It watches its surroundings and looks out for prey at
perch.

The pair-hunt strategy, differing flight patterns, and perching
behavior of the Philippine Eagle are the sources of inspiration
for the three global operators of PEOA.

On the other hand, its territorial hunting behavior is mod-
eled using the intensive local search of the algorithm, such
that the best eagle searches for food only within its local
territory.

The adaptive reduction of the population size within PEOA
is likewise due to the territorial behavior of the Philippine
Eagle, in the sense that eagles fight for their survival in the
given region for every passing generation. Thus, the defeated
eagles would just fly out of the domain and live elsewhere,
reducing the population of eagles that stay in the region.

We clarify that PEOA was conceptualized out of inspi-
ration from the Philippine Eagle, but we do not intend to
attribute the whole process of the algorithm solely to this
inspiration. Several nature-inspired algorithms in the litera-
ture only derive from selected characteristics of their source
of inspiration [41], [42].

Furthermore, besides finding direct relationships between
the Philippine Eagle and our proposed algorithm, we also
seek to strengthen the algorithmic design of PEOA so it
could perform efficiently on different kinds of optimization
problems. This way, PEOA could be comparable with recent
algorithms and can be tested on specific applications.

E. MOTIVATION OF PEOA
The motivation of the paper is to create a multi-operator
algorithm with a fast and intensive local search, ultimately
inspired by the Philippine Eagle.

In the algorithmic sense, the goal is to propose an algorithm
with stronger exploration and exploitation techniques. The
use of three different global operators, each one assigned to
adaptive subpopulations based on the progress of the algo-
rithm, is an effective global search strategy. Combining this
with the consistent local search of the best solutions via the
interior point method results in fast yet accurate convergence.
We thus intend to create a more effective algorithm that can
compete with those that are currently existing.

We also aim to associate specific characteristics of the
Philippine Eagle to important aspects of an optimization
algorithm (e.g. exploration and exploitation). We hope that
highlighting the special traits of the Philippine Eagle can
help promote the conservation of this critically-endangered
national bird.

F. CONTRIBUTION HIGHLIGHTS
We propose the Philippine Eagle Optimization Algo-
rithm (PEOA), a novel, metaheuristic, nature-inspired, and

SI-based optimization algorithm inspired by the distinctive
characteristics of the Philippine Eagle.

PEOA has three different global operators: the Movement
Operator, the Mutation I Operator, and the Mutation II Oper-
ator. The features of each operator are the following:

• The Movement Operator considers eagle proximity,
wherein eagles close to each other swarm around the
same local solutions. One of these local solutions is
possibly the global solution.

• The Mutation I Operator uses the concept of Lévy
flights, which helps in the search within unknown, large-
scale spaces.

• The Mutation II Operator determines the overall picture
of the search performance by considering the current
mean location of all the eagles.

These three operators are added to contribute to the explo-
ration mechanism of PEOA. They make PEOAmore compet-
itive not only against classical algorithms but also with other
modern algorithms.

PEOA conducts an intensive local search in each iteration.
In particular, food search is done regularly in a specific
territory of the best eagle, that is, the eagle with the least
function value in a minimization problem. The interior-point
method, a deterministic algorithm, is used here. This helps
the exploitation capacity of PEOA.

PEOA uses an adaptive reduction of population size, that
is, the population size of eagles linearly reduces depending
on the current number of function evaluations. This com-
plements both the exploration and exploitation techniques of
PEOA. With more eagles at the beginning of the process,
the three operators guide the eagles in exploring the better
locations of the space. Then, the worst eagles are regularly
removed as a survival-of-the-fittest kind of mechanism. Thus,
in the latter stages of the process, the best eagles can use more
function evaluations in their local food searches.

PEOA is evaluated on a varied set of 20 benchmark func-
tions with different modality, separability, and dimension
properties. The results are compared to a set of 13metaheuris-
tics, nature-inspired, or swarm-intelligence-based algo-
rithms, which contain both classical and modern algorithms.

Given the No-Free-Lunch Theorem, we also explore the
specific real-world optimization problems where PEOA can
be best and suitably applied. For this paper, the algorithm
is used in two applications: solving the inverse conductivity
problem of electrical impedance tomography and estimating
the parameters of a pendulum-mass-spring-damper system
that involves neutral delay differential equations.

Finally, in creating PEOA and proving that it has excellent
results, we aspire to give the critically endangered Philippine
Eagle much more exposure and possibly help initiate further
conservation efforts for the national bird.

G. PAPER ORGANIZATION
The remainder of this paper is organized as follows. Section II
provides a detailed description of the proposed PEOA and
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its components, including the pseudocode and a flowchart.
Section III discusses the experimental results and perfor-
mance comparison of PEOA with other algorithms in solving
optimization test functions. Section IV presents the results of
PEOAupon application to a real-world optimization problem.
Finally, Section V gives the conclusion and recommendations
for future research.

II. PHILIPPINE EAGLE OPTIMIZATION ALGORITHM
In this section, we provide a detailed discussion of PEOA.
First, we thoroughly explain its three main phases: 1) the
Initialization Phase, which is conducted once for the initial
generation of eagles, 2) the Local Phase, and 3) the Global
Phase, which are the phases performed in every eagle gen-
eration. Then, we explain the adaptive mechanisms used by
PEOA for its parameters.

A. INITIALIZATION PHASE
Given a bound-constrained minimization problem, i.e.,
an objective function f to be minimized, a search space hav-
ingXmin andXmax as its lower and upper bounds, respectively,
and a corresponding dimensionD, PEOA starts with an initial
population of eaglesX . Each row ofX , given byXi, represents
the ith eagle and is generated as follows:

Xi = Xmin + [Xmax − Xmin] · lhs, (1)

for i = 1, 2, . . . , S0, where S0 is the initial population size of
eagles. Here, Xmin and Xmax are 1×D vectors and ‘‘·’’ is used
as a symbol for scalar multiplication. Throughout the paper,
we will use this notation for scalar products.

Moreover, lhs is a number obtained from a matrix con-
taining a Latin hypercube sample of S0 rows and D columns.
We use this sampling technique so that the initial eagles
are randomly generated while being more or less uniformly
distributed over each dimension [56].

The function values of the eagles are then obtained and
sorted. Because we are considering a minimization problem,
the eagle with the least function value is selected as the best
eagle of the initial population. We denote this best eagle
as X?.

B. LOCAL PHASE
The best eagle obtained in the previous phase then conducts a
local food search within its territory. We denote the best food
that it will search as Y ?. The territory has lower bound Ymin
and upper bound Ymax, which are dependent on a scalar radius
Ysize. The radius and bounds of the territory are obtained as

Ysize = max[ρ ·min(Xmax − Xmin), 1], (2)

Ymin = X? − Ysize · E1, Ymax = X? + Ysize · E1, (3)

where E1 is a vector of all ones having D entries.
The max operator is used in Equation (2) to ensure a

reasonably large territory where the best eagle can search
food, even in cases when a small search space is given.
In Equation (2), we set the value of ρ to 0.04. The discussion

on how the value of this parameter is chosen can be found in
Section III.
We note that if the bounds of the territory are beyond the

search space bounds, then the bounds are truncated within the
limits of the search space.

The method that the best eagle uses to search for food is the
interior point method, whereX? is taken to be the initial point,
Ymin and Ymax are the range bounds, and an initially defined
parameter called Sloc is assigned as the maximum function
evaluations in this phase.

The basis for using this method is the technique proposed
in the United Multi-Operator Evolutionary Algorithms-II
(UMOEAs-II), which has claimed that the interior point
method can increase exploitation ability [57].

Once the best eagle obtains its best food, the Global Phase
is conducted, generating a new population of eagles. This new
population will again be sorted using their function values,
and its new best eagle will likewise be selected to conduct
another local food search.

In other words, each generation of eagles has a best eagle
that searches locally for food. Therefore, PEOA heavily cap-
italizes on exploitation to intensify the speed of the optimiza-
tion process.

On the other hand, for the inspiration source, the territorial
behavior of the Philippine Eagle can also be pictured through
this local exploitation technique. Figure 3 shows a represen-
tation of the territorial local search of the Philippine Eagle.

FIGURE 3. Representation of the territorial local search of the Philippine
Eagle, which is the exploitation technique of the proposed PEOA. After a
single view of all the valleys between mountains, the Philippine Eagle
flies to the lowest valley, or the one that contains the best food. It will
then stay and circle about this valley, trying to be as close as possible
until it can finally consume the food. This is designed using Canva
(https://www.canva.com).

We further note that whenever two consecutive generations
select the same X?, the initial point taken for the interior
point method of the latter generation is the Y ? of the former
generation.

C. GLOBAL PHASE
After the Local Phase, the eagle population is divided into
three subpopulations, themembers of which are dependent on
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a probability vector, denoted byP. The specific details on how
the vector P is obtained can be found in Subsection II-E. Each
subpopulation is then assigned an operator, which makes the
eagles either move from their original positions or be replaced
by new eagles using mutation. After the application of the
respective operators, the newly created eagles are referred to
as the eagle offspring, denoted by Xnew. Similar to X , Xnew
has S0 rows and D columns.
Note that a selection process is carried out here, such that

the eagle offspringwith improved function values are the only
ones that will proceed to the next generation of eagles.

Furthermore, a parameter, called the scaling factor and
denoted byF , is used in each operator. This parameter follows
a success-history-based parameter adaptation and will be
explained in detail in Subsection II-E.
We now thoroughly discuss the three operators, namely

1) the Movement Operator, 2) the Mutation I Operator, and
3) the Mutation II Operator.

Let S denote the size of the whole eagle population of
the current generation, and S1, S2, S3 denote the sizes of the
subpopulations assigned to the three operators, respectively.
Therefore, we have S = S1+S2+S3.Note that all considered
eagles in each operator are of size D.

1) MOVEMENT OPERATOR
For i = 1, 2, . . . , S1, the Movement Operator is given by

(Xnew)i = Xi + Fi · (X? − Xi + Xr1 − Xarc

+e−d
2
· (Xnear − Xi)), (4)

where Xr1 is a randomly selected eagle from the current
population that is different from X?. A representation of this
operator is shown in Figure 4.

FIGURE 4. Representation of the movement operator of the proposed
PEOA in Equation (4). Five eagles are involved to transform Xi to Xnew,
which are Xi ,Xnear,X∗,Xr1 , and Xarc. Note that the gray circles are
contour plots and the smallest circle in the middle represents the
neighborhood containing the global optimum point. Observe that X∗ is
the best eagle and Xnear is the closest eagle to Xi . Using the combined
position vectors of the five eagles, Xi moves to a better position and
becomes Xnew. This is designed using Canva (https://www.canva.com).

Also, Xarc is another randomly chosen eagle, different
from both X? and Xr1 , taken from the union of the current
population and an external archive of eagles.

Finally, Xnear is the eagle from the current population hav-
ing the least Euclidean distance d to Xi.

The first part of the Movement Operator is based on an
operator used in the Adaptive Differential Evolution Algo-
rithm (JADE), referred to as ‘‘DE/current-to-pbest/1 with
archive.’’ This operator has a good searching ability and can
also prevent the algorithm from getting trapped in a local
minimum due to a bias towards promising directions [58].

The external archive contains the eagles that were not
successfully chosen to proceed to the next generations. This
archive, also based on JADE, can add more diversity to the
eagle population. We note that the archive has a finite size,
obtained by multiplying a predefined archive rate A with the
initial eagle population size S0. Randomly selected archive
elements are removed if the archive exceeds its predefined
size.

A novel feature of the Movement Operator is the addition
of a term that considers neighboring eagle proximity. This
was included to model the pair hunt strategy of the Philippine
Eagle, as the movement of an eagle is dependent on the
position of the eagle closest to it.

On the other hand, this term also enhances the efficiency
of PEOA because it can make the subpopulation further
divide into subgroups, each swarming around different local
solutions. One of these local solutions could be the global best
solution, so this feature is useful particularly when solving
multimodal problems.

2) MUTATION I OPERATOR
For i = 1, 2, . . . , S2, the Mutation I Operator is given by

(Xnew)i = Fi · (Xr1 + X
?
− Xr2 )+ S · L(D), (5)

where Xr1 and Xr2 are distinct eagles that are randomly
selected from the current population and must be both dif-
ferent from X?.
Meanwhile, S is a random vector of size 1 × D having

values inside (0, 1). The Lévy flight function, denoted by L,
is defined as

L(D) =
0.01 uσ
|v|1/β

, σ =

0(1+ β) sin(πβ2 )

β0( 1+β2 )2
β−1
2

 1
β

, (6)

where u and v are values drawn from normal distributions.
Also, the parameter β is a default constant set to 1.5, and0(x)
is the Gamma function.

The first part of the Mutation I Operator is based on an
operator used in UMOEAs-II [57], called the ‘‘DE weighted-
rand-to-φbest.’’ However, a modification was made, which
is the addition of a Lévy flight term. This was done to
model the differing flight patterns of the Philippine Eagle
mathematically.

Lévy flights are random walks whose step sizes are drawn
from a Lévy distribution [4]. They are commonly used to
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demonstrate the irregular flight behavior of many animals and
insects, which exhibit a Lévy-flight-style, intermittent flight
pattern [59]. For a more detailed discussion on Lévy flights,
we refer the reader to [4] and [60].

3) MUTATION II OPERATOR
For i = 1, 2, . . . , S3, the Mutation II Operator is given by

(Xnew)i = Fi · (X̂ + X? − Xmean), (7)

where Xmean is the average of all eagles in the current pop-
ulation and X̂ is a newly generated random eagle inside the
search space.

The Mutation II Operator is similar to one of the oper-
ators used in the Harris Hawks Optimization Algorithm
(HHO) [61]. This operator not only strengthens the explo-
ration capacity of the algorithm but also models the perching
characteristic of the Philippine Eagle. In particular, the addi-
tion of Xmean depicts how an eagle gets a general picture of
the search space, then consequently flies in consideration of
the positions of other eagles.

D. ITERATIVE PROCESS OF LOCAL PHASE
AND GLOBAL PHASE
Once the operators have been applied to their corresponding
subpopulations, the eagle offsprings with improved function
values replace their corresponding parent eagles, thus gener-
ating a new eagle population.

In the case when some eagles have moved or mutated
to locations outside the search space, a resetting scheme
is applied based on JADE [58]. The scheme truncates the
component of the eagle outside the space bounds within the
limits of the space. The function values of these new eagles
are sorted once again, and the best eagle of the new population
goes back to the Local Phase.

Hence, the Local and Global Phases are carried out itera-
tively for multiple generations until the given stopping crite-
rion is satisfied. The best food searched by the best eagle at
the final generation is the optimal solution of PEOA.

The basic steps of the Philippine Eagle Optimization
Algorithm are summarized in the pseudocode shown in
Algorithm 1. In addition, a flowchart for PEOA is also pro-
vided in Figure 5.

E. ADAPTATION SCHEMES OF PARAMETERS
To further improve the performance of PEOA, the algorithm
uses adaptation schemes to control certain parameters. These
parameters are the eagle population size S, the probability
vector P, and the scaling factor F .
We note that these adaptation schemes were derived from

selected papers on evolutionary algorithms and differen-
tial evolution: IMODE [17], UMOEAs-II [57], JADE [58],
and the Success-History Based Adaptive Differential Evo-
lution with Linear Population Size Reduction Algorithm
(L-SHADE) [62]. These papers were chosen because of their
proven success as optimization algorithms.

Algorithm 1 Philippine Eagle Optimization Algorithm
Input: f , Xmin, Xmax, D
Output: x∗, f ∗

1: Define Nmax, S0, and Sloc.
2: Set K ← 0, N ← 0, and for each i = 1, 2, 3, Pi← 1

3 .
{Initialization Phase}

3: Generate initial population of eagles X of size S0 using
eqnarray (1).

4: Sort X based on function value to determine X? and
update N .
{Local Phase}

5: Search Y ? via interior point method using Equations (2)
and (3) with maximum evaluations Sloc and update N .

6: while |f (Y ?)− ftrue| ≥ 10−8 or N ≤ Nmax do
7: Set K = K + 1.
8: Update S via linear population size reduction using

eqnarray (8).
9: Divide eagle population into subpopulations using P.

{Global Phase}
10: Generate new population of eagles Xnew using Equa-

tions (4), (5), and (7) via the corresponding operators
assigned to the subpopulations.

11: Sort Xnew based on function value to obtain the new X?

and update N .
{Local Phase}

12: Repeat the Local Phase (Step 5) with the updated X?.
13: Update P based on the improvement rate of each oper-

ator using Equations (9) and (10).
14: end while
15: return x∗ = Y ? and f ∗ = f (Y ?)

We discuss how S, P, and F are determined based on
the papers mentioned. For a more in-depth analysis of the
behavior of these parameters, we refer the reader to [17], [57],
[58], and [62].

1) LINEAR POPULATION SIZE REDUCTION
After every generation, a linear reduction of the entire eagle
population size S is carried out as

S =
r
S0 + (Smin− S0) ·

N
Nmax

z
, (8)

where S0 is the initial population size of eagles, N is the
current number of function evaluations, and Nmax is the max-
imum number of function evaluations.

Moreover, Smin is the minimum possible population size.
For PEOA, we set Smin = 5, since the Movement
Operator requires at least five eagles. The worst eagles
of the population, i.e. the eagles with the highest func-
tion values, are removed to meet the required population
size.

Derived from L-SHADE [62], this mechanism can main-
tain diversity during the earlier generations, then enhance the
exploitation ability in the later ones.
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FIGURE 5. Flowchart summarizing the steps of the Philippine Eagle optimization algorithm.
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2) IMPROVEMENT RATES FOR THE SUBPOPULATION SIZES
The probability vector, denoted by P, has three entries. These
entries contain probability values that guide the assignment
of eagles into the subpopulations.

Initially, the values are all set to 1
3 . For each eagle in the

initial population, a random number j between 0 and 1 is
obtained, and if j ≤ 1

3 , then it will be evolved using the
Movement Operator. Otherwise, if 1

3 < j ≤ 2
3 , then this eagle

will be evolved using the Mutation I Operator. Else, it will be
evolved using the Mutation II Operator.

Afterward, the probabilities are modified depending on the
improvement rates of the operators. If Si is the subpopulation
size corresponding to operator i, for i = 1, 2, 3, then the
improvement rate Ri is calculated as

Ri =

∑Si
z=1max(0, fold,z − fnew,z)∑Si

z=1 fold,z
, (9)

where fold,z and fnew,z are the function values of the current
eagle and its corresponding eagle offspring, respectively.

Then, the probability value Pi corresponding to operator i
is updated as

Pi = max
[
0.1,min

(
0.9,

Ri
R1 + R2 + R3

)]
. (10)

Derived fromUMOEAs-II [57], this mechanism highlights
the best-performing operator per generation, giving it more
control of the optimization process. Meanwhile, the under-
performing operators are given a chance to improve in the
next generations.

3) ADAPTIVE CONTROL OF THE SCALING FACTOR
During the Global Phase, every eagle is associated with a
scaling factor Fi. This scaling factor is generated according
to a Cauchy distribution with mean µFi and variance 0.1.

If Fi ≥ 1, then it is truncated to be 1, and if Fi ≤ 0, then it
is regenerated. The mean values µFi come from a particular
memory, which has a predefined memory size H . The values
in the memory are all initially set to 0.2.

We note that the constant values used in this scheme,
namely the variance of 0.1 and the initial values of the mem-
ory given by 0.2, are the values chosen by IMODE [17].
Therefore, for consistency, we retain these values for PEOA.

Then, a memory element is updated whenever a generation
has at least one eagle offspring with an improved function
value. In this case, the scaling factors corresponding to the
improved eagle offspring are recorded in a vector G.
The update is done using the weighted Lehmer mean as

meanWL(G) =

∑|G|
k=1 wkF

2
k∑|G|

k=1 wkFk
, wk =

1fk∑|G|
`=11f`

, (11)

where Fk is the kth scaling factor contained in G, and 1fk is
the change in function value of the kth eagle offspring.
Based on JADE [58], the Cauchy distribution is more capa-

ble of diversifying the scaling factors compared to a normal

distribution. Also, the weighted Lehmer mean is more effec-
tive than the usual arithmetic mean because the former can
generate larger scaling factors. This improves the progress
rate of PEOA.

III. EXPERIMENTAL RESULTS AND DISCUSSION
We subject PEOA to benchmark tests to assess its perfor-
mance in this section. In particular, we apply PEOA to opti-
mization test functions and compare PEOA with other recent
optimization algorithms. We also describe the parameter set-
tings of PEOA and the experimental setup of our comparative
analysis.

A. BENCHMARK OPTIMIZATION TEST FUNCTIONS
We apply PEOA on 20 optimization test functions having var-
ied combinations of properties among modality, separability,
and dimension. We first explain what these properties mean
and how they contribute to the difficulty of an optimization
problem.

A function with only one local optimum is called uni-
modal, whereas it is called multimodal if it has two or more
local optima [48]. One aspect of a well-designed exploration
process in an algorithm is the capacity to escape from any
local yet nonglobal optimum. Unimodality, on the contrary,
examines the exploitation capability of an algorithm [63].

Separable and nonseparable functions formulate another
classification of functions. A function of n variables is called
separable if it can be written as a sum of n functions of just
one variable, that is, its variables are independent of each
other [64]. On the other hand, a function is called nonsep-
arable if its variables show interrelation among themselves
and are thus not independent. It is relatively easier to solve
separable functions because they can be decomposed into
independent subfunctions, each one of which can be opti-
mized independently [48].

Finally, the dimension, that is, the number of variables
a function has, also dictates the difficulty of an optimiza-
tion problem. As the dimension increases, the search space
enlarges exponentially, thus making it more challenging for
an algorithm to find the optimal solution [65].

Therefore, we divide our experimentation into four differ-
ent types of functions, namely five unimodal and separable
functions, five multimodal and separable functions, five uni-
modal and nonseparable functions, and five multimodal and
nonseparable functions, obtained from [48] and [66].

For each of these 20 functions, we use dimensions of 2,
5, 10, and 20, thus giving 80 experiments in total. Therefore,
we have chosen an extensive test suite that accommodates a
wide variety of function properties.

Table 2 presents the functions used in our experiments,
along with their corresponding search range, true optimal
function value, and true optimal solution.

B. PARAMETER SETTINGS OF PEOA
The adopted parameter values of PEOA in our experiments
are shown in Table 4.
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TABLE 2. Optimization test functions having varied combinations of types and dimensions which were applied to the Philippine Eagle optimization
algorithm and 13 other examined algorithms.

We recall that the constant value of 0.04 is used in Equa-
tion (2) for the cluster size factor ρ. This parameter controls
the cluster size of each local food search. To provide an
analysis of ρ, experiments were done to determine the best
value of this constant such that PEOA could give the most
optimal results.

Recall from Section II-B that Equation (2) is

Ysize = max[ρ ·min(Xmax − Xmin), 1].

Different values for the parameter ρ were considered. For
each value of ρ, PEOA was tested on the 20 test functions
given in Table 2. For this simulation, we set the dimension to
5 and run the algorithm 20 times.

The results obtained by PEOA for this experiment are
summarized in Table 3. Observe that the value of ρ that gave
the best average result (highlighted in green) is 0.04.

To illustrate how the population size S is updated per
generation, PEOA was implemented once for the Xin-She
Yang 1 function with dimension 2. After 21 generations,
PEOA attained an optimal function value of 6.7459E-09.

The population sizes obtained from this experiment are

S =

80 79 79 78 78 77 77
76 76 76 75 75 74 74
73 73 73 72 72 71 71

 .
We thus see that the population sizes decrease linearly. Recall
from Equation (8) that the slope of this decrease is Smin−S0

Nmax
,

where Smin is the minimum population size, S0 is the initial
population size, and Nmax is the maximum number of func-
tion evaluations.

We take the minimum eagle population size Smin = 5 since
the Movement Operator in Section II − C1 requires at least
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TABLE 3. Parameter tuning of cluster size factor ρ which determines the cluster size per local search. Optimal function values obtained by the Philippine
Eagle optimization algorithm using different values for ρ. Experiments were done on each test function with dimension 5, and results were averaged over
20 independent runs for each function. The value of 0.04 gave the best result (highlighted in green).

TABLE 4. Parameter values adopted for the Philippine Eagle optimization algorithm in the experimentations with 13 other examined optimization
algorithms.

five eagles. The choice for the values of the dimension D
and the maximum function evaluations Nmax was based on
the CEC 2020 Special Session and Competition on Single
Objective Bound Constrained Numerical Optimization (CEC
2020 Comp. on SO-BCO) [67].

For the analysis of the other parameters adopted by
PEOA, such as the scaling factors Fi in Equations (4),
(5), and (7), the archive rate A from Section II-C1, and
the memory size H from Section II-E3, we refer the
reader to IMODE [17], UMOEAs-II [57], JADE [58], and
L-SHADE [62].

Lastly, the value for the initial eagle population size S0 is
20 · D2 while the value of the local food size Sloc is 10 · D2.
These are the general default settings for PEOA.

C. EXPERIMENTAL SETUP OF COMPARATIVE ANALYSIS
In solving the test functions, we compare the performance
of PEOA to a set of metaheuristic algorithms, swarm intelli-
gence algorithms, and nature-inspired heuristics.

Specifically, the 13 selected algorithms for comparison are
Genetic Algorithm [5], Particle Swarm Optimization [44],
Flower Pollination Algorithm [10], [68], Bat Algorithm
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TABLE 5. Parameter settings and initial values of the 13 examined
optimization algorithms for comparison and evaluation of the Philippine
Eagle optimization algorithm.

[9], [69], Cuckoo Search Algorithm [8], [70], Firefly Algo-
rithm [7], [71], Whale Optimization Algorithm [12], [72],
Moth Flame Optimization Algorithm [11], [73], Butterfly
Optimization Algorithm [13], [74], ImprovedMulti-Operator
Differential Evolution [17], Chimp Optimization Algo-
rithm [16], [75], Wingsuit Flying Search [14], [76], and Tuni-
cate Swarm Algorithm [15], [77].

Our experimental setup is based on the experimental set-
tings recommended by the CEC 2020 Special Session and
Competition on Single Objective Bound Constrained Numer-
ical Optimization (CEC 2020 Comp. on SO-BCO) [67].
These settings ensure the efficiency and fairness of the com-
parison of competing algorithms.

The features of our experimental setup are the following:
• Default values of the parameters of each selected algo-
rithm are used, as shown in Table 5.

• The total number of independent runs for each algorithm
(per test function) is 30.

• The maximum number of function evaluations for all
algorithms is 10000 · D, where D = 2, 5, 10, 20 is the
dimension.

• We emphasize that the maximum number of evalua-
tions is the chosen parameter to be kept constant for all
the algorithms in our experiments. On the other hand,
the population size and the maximum number of itera-
tions may vary per algorithm depending on their default
parameters.

• For the termination criteria, an algorithm is terminated
once it reaches the maximum number of function eval-
uations or if its function value error, or the distance
between its obtained optimal value and the true optimal
value, is lesser than 10−8.

• Function value errors less than 10−8 are treated as zero.
• Four performance indicators for function value errors
are used, namely the best, worst, mean, and standard
deviation (Stdev) of the results over 30 runs of each algo-
rithm (per test function). These statistical measurements
reflect the success rates of the algorithms because they
show the algorithm’s capability of accurately finding a
solution while maintaining low variation in the results.

• Wilcoxon’s rank-sum test [78] is used as a non-
parametric statistical tool to further justify any signifi-
cant difference between PEOA and the other examined
algorithms. Examples of the application of this test can
be found in [79]–[81]. We use the MATLAB function
ranksum to find the p-values at a significance level
of 5%. A p-value less than the significance level indi-
cates a rejection of the null hypothesis.

• Average number of function evaluations upon reaching
the termination criteria are also recorded per algorithm.

• Standard benchmark test functions are chosen from [48]
and [66], as shown in Table 2. The test suite is chosen
to be large enough to include a diverse collection of
problems, ranging from unimodal to multimodal, from
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TABLE 6. Average, best, and worst function value errors and standard deviations over 30 independent runs obtained by the Philippine Eagle optimization
algorithm compared to the 13 other examined algorithms for 5 different unimodal and separable functions of dimension 20.

TABLE 7. Average, best, and worst function value errors and standard deviations over 30 independent runs obtained by the Philippine Eagle optimization
algorithm compared to the 13 other examined algorithms for 5 different unimodal and nonseparable functions of dimension 20.

separable to nonseparable, and dimensions of 2, 5, 10,
and 20.

• The optimization algorithms chosen for comparison
include a variety of metaheuristic, SI-based, and nature-
inspired algorithms, both classical (GA, PSO, FA, CSA,
BA) and more recent ones (FPA, MFO, WOA, BOA,
IMODE, CHOA, WFS, TSA). Due to space and time
constraints, we only limit our experiments to these
13 algorithms.

• All algorithms are implemented in MATLAB R2020a
on a computer with Intel(R) Core(TM) i5-1035G1 CPU
@ 1.00 GHz 1.19 GHz, 8.00 GB RAM, and Win-
dows 10 OS.

The source codes of PEOA are available online [82].

D. RESULTS OF PERFORMANCE COMPARISON
AND ANALYSIS
For brevity, we only present here the numerical results for
functions with dimension D = 20. Results for functions with
dimensions D = 2, 5, 10 can be found in the Appendix.

Tables 6, 8, 7, and 9 provide the average (mean), best, and
worst function value errors as well as the standard deviations
obtained for functions with dimension D = 20 using the
different examined algorithms. The cells having a value of
0 are highlighted in green for emphasis.

Figures 6, 7, 8, and 9 present the boxplots for functions
with dimension D = 20. The boxplots show the function
value error |ftrue− f (x∗)|, where ftrue is the true function value
and x∗ is the obtained optimal solution of the corresponding
algorithm labeled on the bottom axis. For better illustration
purposes, all values less than or equal to 10−8 are treated as
10−8 in the boxplots. Also, the logarithmic scale is used to
accommodate a wide range of values.

Tables 13, 12, 11, and 10 illustrate the p-values from
Wilcoxon’s rank-sum test with 5% significance level. The
p-values greater than or equal to 0.05 are shown in boldface.
The ‘‘NaN’’ in these results, also in boldface, indicates that
no significant difference between the algorithms can be con-
cluded using Wilcoxon’s rank-sum test [16].

Figure 10 shows the average number of function evalu-
ations taken by the different examined algorithms for each
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TABLE 8. Average, best, and worst function value errors and standard deviations over 30 independent runs obtained by the Philippine Eagle optimization
algorithm compared to the 13 other examined algorithms for 5 different multimodal and separable functions of dimension 20.

TABLE 9. Average, best, and worst function value errors and standard deviations over 30 independent runs obtained by the Philippine Eagle optimization
algorithm compared to the 13 other examined algorithms for 5 different multimodal and nonseparable functions of dimension 20.

dimension D = 2, 5, 10, and 20 when the stopping criterion
is satisfied. The averages are computed over the 30 indepen-
dent runs of each test function and the 20 test functions per
dimension.

From these results, we see that PEOA obtained the most
number of solutions with errors less than 10−8 among all
the 14 examined algorithms found in Tables 6, 8, 7, and 9.
Also, most of the optimal solutions that PEOA found for
the different functions of dimension 20 are close to the true
optimal solutions. While PEOA did not attain values less than
the tolerance for the Xin-She Yang 1, Salomon, and Schwefel
2.21 functions, its obtained values for these functions are still
relatively small.

Moreover, the boxplots in Figures 6, 7, 8, and 9 fur-
ther validate the superior performance of PEOA among
the examined algorithms. The boxplots corresponding
to PEOA are generally thin and placed at 10−8 for
almost all functions, indicating that the errors obtained by
PEOA are consistently small. In particular, PEOA shows
highly competitive results for the Schwefel 2.21, Peri-
odic, Rosenbrock, Xin-She Yang 3, and Xin-She Yang
4 functions.

The p-values in Tables 13, 12, 11, and 10 show that we can
find statistically significant differences between the results
obtained by PEOA and the other optimization algorithms in
almost all the experiments. Out of 1120 p-values, only 78 of
them are either NaN or ≥ 0.05, so the obtained p-values of
PEOA are good by over 93%. This result confirms that PEOA
has performed remarkably better than the other algorithms.

We also see in Figure 10 that for all the different dimen-
sions of functions tested, PEOA used the least average num-
ber of function evaluations until the error tolerance of 10−8

is reached. PEOA thus fared well in comparison with the
other examined algorithms in terms of the speed and cost
function value. This computationally inexpensive feature of
PEOA can be attributed to its heavy exploitation technique,
depicted through its regular and intensive local food search.

IV. APPLICATION TO REAL-WORLD OPTIMIZATION
PROBLEMS
In the previous section, we have shown how PEOA is an effi-
cient global optimization algorithm through various bench-
mark tests. We now present two applications that PEOA has
effectively solved.
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FIGURE 6. Boxplots over 30 independent runs (in logarithmic scale) of the function value errors obtained by
the Philippine Eagle optimization algorithm and the 13 other examined algorithms for 5 unimodal and
separable functions with 20 dimensions.

A. ELECTRICAL IMPEDANCE TOMOGRAPHY
Electrical Impedance Tomography (EIT) is a non-invasive
imaging technique that reconstructs the conductivity distribu-
tion of an object using electric currents. EIT has gained great
interest for research due to its affordability, portability, and
as a radiation-free imaging technique [83]–[93]. In particular,
the main application of EIT is (continuous) lung monitoring
in medical imaging [83], [85]. In this work, PEOA is applied
to solve the inverse conductivity problem of EIT using the
Complete Electrode Model (CEM), which is the most accu-
rate and commonly used model for EIT.

EIT as a mathematical problem is divided into two parts:
the forward and the inverse problem. The forward problem
is where the data acquisition is made, that is, it computes for
the voltages at the electrodes given a current pattern and the
conductivity distribution inside the object. Let� ⊂ Rd , d =
2, 3 be bounded with a smooth boundary ∂�. Let a set of
patches e` ⊂ ∂�, ` = 1, 2, . . . ,L, where L ∈ N, be the
mathematical model of disjoint contact electrodes. Denote
I` ∈ R the current injected on the `th electrode and suppose
that the current pattern I = (I`)` satisfies the conservation of
charge, i.e.,

∑L
`=1 I` = 0.
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FIGURE 7. Boxplots over 30 independent runs (in logarithmic scale) of the function value errors obtained by
the Philippine Eagle optimization algorithm and the 13 other examined algorithms for 5 multimodal and
separable functions with 20 dimensions.

The effective contact impedance is denoted by Z ∈

RL , where Z = (z`)`, ` = 1, . . . ,L and z` > zmin,
for some positive constant zmin. Moreover, the conductiv-
ity distribution σ ∈ L∞(�) is assumed to satisfy 0 <

σmin ≤ σ (x) ≤ σmax < +∞, for some constants
σmin, σmax. Let u ∈ H1(�) be the potential inside the
domain and the measured voltages at the electrodes be U =
(U`)` which satisfies the arbitrary choice of ground, that is,∑L
`=1 U` = 0.
The CEM forward problem for EIT is: given current pat-

tern I and conductivity distribution σ , find potentials (u,U )

such that

∇ · (σ∇u) = 0, in �, (12)

u+ z`σ∂En = U`, on e`, ` = 1, 2, . . . ,L, (13)

σ
∂u
∂En
= 0, on ∂� \ 0e, (14)∫

e`
σ
∂u
∂En

ds = I`, ` = 1, 2, . . . ,L. (15)

To learn more on the background of the equations, see [94],
[95]. The existence and uniqueness of the solution of the
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FIGURE 8. Boxplots over 30 independent runs (in logarithmic scale) of the function value errors obtained by
the Philippine Eagle optimization algorithm and the 13 other examined algorithms for 5 unimodal and
nonseparable functions with 20 dimensions.

forward problem are proven in [95]. The discussion of the
numerical solution and sensitivity analysis of the forward
problem can be found in [96].

Meanwhile, the inverse problem reconstructs the conduc-
tivity distribution given the voltage measurements on the
electrodes. First, we assume that σ is piecewise constant, i.e.,
σ (x) =

∑N
i=0 σiχi(x), x ∈ �, where σ0 is the background

conductivity, χ0(x) is the characteristic function of the back-
ground domain �0 = � \

⋃N
i=1�i, N corresponds to the

number of (possible) inclusions �i (i = 1, . . . ,N ) in �,
χi(x) = 1 if x ∈ �i and 0 otherwise.

Our goal is to retrieve the N inclusions of different con-
ductivities in �. More precisely, we want to estimate vectors
P ∈ Rm and S ∈ RN iteratively. P contains the geometric
attributes (e.g., center, side length) of the inclusions �i, i =
1, . . . ,N and S has the respective conductivity σi for each
inclusion, i = 1, 2, . . . ,N such that the error between the
observed voltages and that predicted by the CEM forward
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FIGURE 9. Boxplots over 30 independent runs (in logarithmic scale) of the function value errors obtained by
the Philippine Eagle optimization algorithm and the 13 other examined algorithms for 5 multimodal and
nonseparable functions with 20 dimensions.

problem isminimized. Now, the inverse conductivity problem
of EIT can be formulated as an optimization problemwith the
following objective function:

C(P, S) = ‖U (P, S)− Uobs‖
2
2.

The voltages U (P, S) are determined by solving the CEM
forward problem (12) − (13) − (14) − (15) at a fixed con-
ductivity σ andUobs is the observed voltage at the electrodes,
and ‖ · ‖2 is the Euclidean norm.

Because of the importance of EIT in various fields, numer-
ous approaches in solving the inverse problem can be found

in the literature [97]–[102]. Several meta-heuristic algorithms
were applied to the EIT inverse conductivity problem and
produced promising results [94], [103]–[105]. We show how
PEOA can also effectively solve the EIT inverse problem.

In this paper, we consider a disk domain with one elliptical
inclusion. In particular, we aim to find the value of unknowns,
that is, σe the conductivity of the inclusion, (h, k) the center
of the ellipse, and the lengths of the major and minor axes,
a and b, respectively. The conductivity σ0 of the background
medium is known and equal to 1.0. We work with synthetic
data generated by setting the conductivity of the elliptical
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TABLE 10. p-values of Wilcoxon rank-sum statistical test with 5% significance of the Philippine Eagle optimization algorithm compared to the 13 other
examined algorithms for 5 different unimodal and separable functions of dimensions D = 2,5,10,20. The p-values greater than or equal to 0.05 are
shown in boldface. ‘‘NaN’’ in these results, also in boldface, indicates that no significant difference between the algorithms can be concluded using
Wilcoxon’s rank-sum test.

TABLE 11. p-values of Wilcoxon rank-sum statistical test with 5% significance of the Philippine Eagle optimization algorithm compared to the 13 other
examined algorithms for 5 different multimodal and separable functions of dimensions D = 2,5,10,20. The p-values greater than or equal to 0.05 are
shown in boldface. ‘‘NaN’’ in these results, also in boldface, indicates that no significant difference between the algorithms can be concluded using
Wilcoxon’s rank-sum test.

inclusion to be 6.7. The number of electrodes is L = 32 and
the contact impedance is set to be constant across all elec-
trodes with z` = 0.03. The first current applied to the elec-
trodes has the form I1 = {I1` }

L−1
`=0 , with I` = sin( 2π`L ) and

we obtained the fifteen more current patterns by ‘rotating’ the
values of the first current pattern for a total of sixteen current
patterns. A 1% random (additive) noise is added to the voltage
data as Udata = (1 + 0.01 · rand(L)) · U to model the error
obtained from the EIT experiments. In our simulations, one
noise seed comprises sixteen different noise vectors added
to the corresponding sixteen current-voltage measurements.
The algorithm is applied for 20 independent runs with the
same noise seed for all the runs, and a a maximum number
of function evaluations (6 000) as the stopping criterion.

The results obtained by PEOA in solving the inverse con-
ductivity problem of EIT are shown in Table 14 and Figure 11.

We observed that the algorithm approximated the conductiv-
ity value, the center, and the shape of elliptical inclusion quite
well, but was less accurate in approximating one of the axis
lengths and angle of rotation.

B. ESTIMATING PARAMETERS OF A
PENDULUM-MASS-SPRING-DAMPER SYSTEM
Given a mathematical model of a system, some of its param-
eter values might be unknown. While one can search for
some of the parameters from the literature, the others need
to be estimated. Parameter identification is a minimization
problem that solves for the parameters of the model that will
best fit the available data. Depending on the problem, various
techniques on estimating parameters of models can be found
in the literature [106]–[112].
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TABLE 12. p-values of Wilcoxon rank-sum statistical test with 5% significance of the Philippine Eagle optimization algorithm compared to the 13 other
examined algorithms for 5 different unimodal and nonseparable functions of dimensions D = 2,5,10,20. The p-values greater than or equal to 0.05 are
shown in boldface. ‘‘NaN’’ in these results, also in boldface, indicates that no significant difference between the algorithms can be concluded using
Wilcoxon’s rank-sum test.

TABLE 13. p-values of Wilcoxon rank-sum statistical test with 5% significance of the Philippine Eagle optimization algorithm compared to the 13 other
examined algorithms for 5 different multimodal and nonseparable functions of dimensions D = 2,5,10,20. The p-values greater than or equal to
0.05 are shown in boldface. ‘‘NaN’’ in these results, also in boldface, indicates that no significant difference between the algorithms can be concluded
using Wilcoxon’s rank-sum test.

As an application of POEA, we present an approach in
identifying the parameters of a pendulum systemmodel. This
model involves a neutral delay differential equation (NDDE),
which is a differential equation with delay both in state and
the derivative. NDDEs have been used in modeling various
applications in science and engineering [113]–[119].

In this work, we consider a Pendulum-Mass-Spring-
Damper (PMSD) system consisting of a mass M mounted
on a linear spring. Attached to the spring via a hinged rod
of length l is a pendulum of mass m [120]. The angular
deflection of the pendulum from the downward position is
assumed to be negligible. The parameter C is the damping
coefficient. Furthermore, it is assumed that external force
does not act on the system. This mechanical system can be
modeled using the following delay differential equation of
neutral type

Mẍ(t)+ Cẋ(t)+ Kx(t)+ mẍ(t − τ ) = 0. (16)

Here, K and C denote the stiffness and damping coefficients,
respectively. The position, velocity, and acceleration of the
system at a given time t are represented by the quantities
x(t), ẋ(t), and ẍ(t), respectively. By dividing both sides of
(16) by M , we obtain the following modified equivalent
equation

ÿ+ 2ζ ẏ+ y+ pÿ(t − τ ) = 0. (17)

For this model, the history function is given by φ(t) =
cos(t/2) [120].

The parameters of (17) are estimated from a set of sim-
ulated noisy data, which are generated in two steps. First,
the following parameter values from [120] are used to solve
(17): τ = 1, ζ = 0.05, and p = 0. Secondly, the noisy
data y∗(ti), i = 1, 2, . . . , n are generated by assuming a
normal distribution, with the standard deviation equal to 10%
of the standard deviation of the computed solution of the
model [112]. For this study, we set n = 50. We find the
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FIGURE 10. Average number of function evaluations of the Philippine Eagle optimization algorithm upon reaching a function value
error of 10−8 compared to the 13 other examined algorithms. This is over 30 independent runs of each test function with 20 test
functions per dimension.
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TABLE 14. Final solutions and their corresponding relative error
(|truevalue−avevalue|/|truevalue|) generated by PEOA for the EIT inverse
conductivity problem in a disk domain with one elliptical inclusion. Note
that 7π/8 ≈ 2.74889357.

FIGURE 11. Left: true conductivity distribution. Right: reconstructed
conductivity distribution (mean of the 20 approximate solutions).

FIGURE 12. Plots of the solution curves (cyan) to the pendulum model in
(17) using the estimated parameters obtained by PEOA.

TABLE 15. Estimated values of the parameters of the pendulum model.

minimum of least-squares error formulation given by

min
θ∈R3

50∑
i=1

(
y?i − yθ (ti)

)2
50∑
i=1

(
y?i
)2 ,

where θ is the parameter vector containing the triple τ, ζ,
and p. We denote yθ (ti) as the model solution at time ti
given θ .

Because PEOA is probabilistic, we run the algorithm
20 times independently. This way, we can gauge the accuracy
and consistency of the solutions obtained. The results are

presented in Figure 12 and Table 15. We can see that all
the 20 obtained estimates are close to the true solution. The
different plots of the y(t) using the estimated parameters fit
the simulated data well. Furthermore, the relative errors of
the calculated parameters are all less than 2%.

V. CONCLUSION
This work proposes a novel, meta-heuristic, and nature-
inspired optimization algorithm called the Philippine Eagle
Optimization Algorithm. It is an algorithm that is inspired by
the hunting behavior of the Philippine Eagle and uses three
different global operators for its exploration strategy. It also
has an intensive local search every iteration, contributing to
its strong exploitation ability.

Twenty optimization test functions of varying proper-
ties on modality, separability, and dimension were solved
using PEOA, and the results were compared to those
obtained by 13 other optimization algorithms. PEOAwas also
applied to two real-world optimization problems: the inverse
conductivity problem in Electrical Impedance Tomogra-
phy (EIT) and parameter estimation in a Pendulum-Mass-
Spring-Damper system (PMSD) involving neutral delay
differential equations.

Results show that PEOA effectively solves the differ-
ent benchmark tests implemented in this work. The algo-
rithm outperforms the other examined algorithms in terms
of accuracy and precision in finding the optimal solution of
the tested functions. PEOA also uses the least number of
function evaluations compared to the other algorithms, indi-
cating that it employs a computationally inexpensive opti-
mization process. Such a feature of PEOA is due to its
heavy exploitation technique. Furthermore, PEOA can pro-
vide good results for the six unknowns in the EIT problem
and gives proper estimates for the parameters involved in the
PMSD model.

We emphasize that PEOA gave better results than IMODE
in solving the test functions chosen in this paper. This is
a significant highlight because IMODE ranked first in the
CEC 2020 Competition on Single Objective Bound Con-
strained Numerical Optimization [67]. Since certain aspects
of PEOA were derived from IMODE and its several source
algorithms, PEOA can be considered a further improved ver-
sion of these algorithms.

Therefore, PEOA is a competitive algorithm that can be
applied to a variety of functions and problems while keeping
the number of function evaluations at a minimum. It shows
promising features in comparison to the other optimization
algorithms selected. It also highlights the distinctive charac-
teristics of the national bird of the Philippines, the Philippine
Eagle, which could hopefully initiate conservation efforts for
the critically endangered bird.

Future research will consider more modifications of PEOA
that can further improve its performance. This includes
thoroughly studying the sensitivity of the parameters of
PEOA and tuning the parameters based on specific kinds
of problems. Experimentation of PEOA to a broader scope
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TABLE 16. Average, best, and worst function value errors and standard deviations over 30 independent runs obtained by the Philippine Eagle
Optimization Algorithm compared to those obtained by the 13 other examined algorithms for the 20 different functions of varied types and having
dimension 2.

VOLUME 10, 2022 29111



E. A. T. Enriquez et al.: Philippine Eagle Optimization Algorithm

TABLE 17. Average, best, and worst function value errors and standard deviations over 30 independent runs obtained by the Philippine Eagle optimization
algorithm compared to those obtained by the 13 other examined algorithms for the 20 different functions of varied types and having dimension 5.

of optimization functions and algorithms, finding more
real-world applications where PEOA can be used, comparing
the results of PEOA in real-world applications with other

algorithms, and creating versions of PEOA that can handle
constrained or multi-objective optimization problems may
also be considered.
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TABLE 18. Average, best, and worst function value errors and standard deviations over 30 independent runs obtained by the Philippine Eagle optimization
algorithm compared to those obtained by the 13 other examined algorithms for the 20 different functions of varied types and having dimension 10.
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FIGURE 13. Boxplots over 30 independent runs (in logarithmic scale) of the function value errors obtained by the Philippine Eagle optimization
algorithm and the 13 other examined algorithms for the 20 different functions of varied types and having 2 dimensions.
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FIGURE 14. Boxplots over 30 independent runs (in logarithmic scale) of the function value errors obtained by the Philippine Eagle optimization
algorithm and the 13 other examined algorithms for the 20 different functions of varied types and having 5 dimensions.
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FIGURE 15. Boxplots over 30 independent runs (in logarithmic scale) of the function value errors obtained by the Philippine Eagle optimization
algorithm and the 13 other examined algorithms for the 20 different functions of varied types and having 10 dimensions.
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APPENDIX A
RESULTS FOR FUNCTIONS WITH 2, 5,
AND 10 DIMENSIONS
Tables 16, 17, and 18 present the average, best, and worst
function value errors as well as the standard deviations
obtained for functions with dimensions D = 2, 5, 10, respec-
tively, using the different examined algorithms. The cells
having a value of 0 are highlighted in green for emphasis.

On the other hand, Figures 13, 14, and 15 present
the boxplots for functions with dimensions D =

2, 5, and 10 respectively. They show the function value
errors of the corresponding algorithms on the bottom axis.
All values less than or equal to 10−8 are treated as 10−8 in
the boxplots. Also, the logarithmic scale is used here.
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