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ABSTRACT Metaheuristic optimization algorithms (MOAs) are popularly deployed for medical image
enhancement (MIE) purposes. However, with an ever-increasing rate of newer MOAs being proposed
in the literature, the question arises as to whether there exist any significant advantage(s) among these
different MOAs, particularly as it pertains to MIE. In this paper, we explore this question by analyzing nine
well-known MOAs for MIE, namely the artificial bee colony, cuckoo search, differential evolution, firefly,
genetic algorithm, particle swarm optimization (PSO), covariance matrix adaptive evolutionary strategy
(CMAES), whale optimization algorithm (WOA), and the grey wolf optimization (GWO) algorithms. First,
instead of measuring an MOA’s performance based on the number of generations, we adopted the fitness
computation rate (FCR), which enables MOAs to be compared in a fairer sense. Secondly, we used a
combination of a well-known transformation function and a robust evaluation function as our objective
function in the MOAs considered in our study. Then, medical images were obtained from the Medpix
database with representative samples selected from across the different parts of the body for MIE evaluation
purposes. Within the constraints of the datasets used, the results indicate that, while the GWO and WOA
algorithms performed slightly better empirically than the other methods over an average of 1000Monte Carlo
trials, there was little/no statistical significant difference between the other methods. The timing performance
also demonstrates that there was no significant difference in the real-time processing speeds of the various
MOAs, particularly when evaluated under the same FCR. As a consequence, preliminary findings from our
study suggest that employing a range of past and current MOAs or proposing newer MOAs for MIE may
not necessarily guarantee substantial comparative enhancement benefits. This might suggest that under high
FCR levels, any MOA can be utilized for MIE.

INDEX TERMS Comparison, images, metaheuristic, optimization, performance.

I. INTRODUCTION
Medical images are important tools for detecting and diag-
nosing different medical conditions and ailments [1], [2].
However, the quality ofmedical images can often be degraded
during the capture procedure due to factors such as noise
interference, poor illumination, and artifacts. This may lead
to the misdiagnosis of medical conditions, which can further
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exacerbate life threatening situations [3]. Consequently, it is
imperative that effective approaches be developed for enhanc-
ing the quality of medical images [4].

There are different image enhancement approaches that
aim to transform an input image towards obtaining a bet-
ter, more detailed, and less noisy output image [5]–[12].
However, these image enhancement methods often produce
either poorly or overly enhanced images, thus warranting
the need for more effective techniques [13], [14]. To this
effect, one early image enhancement method is the histogram
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equalization (HE) technique, which operates by adjusting
an image’s contrast by either decreasing or increasing the
global contrast of the image. Such an approach is often
plagued by the problem of over-enhancement, particularly
when low occurring intensities are transformed and combined
with neighboring high occurring intensities [9]. As a solution,
the bi-histogram equalization (BHE) was introduced for its
ability to maintain the quality of an original image. Never-
theless, BHE becomes limited when the pixel distribution of
an image is asymmetrical, which often occurs under real-life
conditions. Other existing techniques include the logarithm
transformation, gamma correction, and adaptive histogram
equalization (AHE) methods, which were proposed to have
less computational complexities. However, they become less
effective under complex lighting differences [15]. Other
approaches have been proposed such as the linear contrast
stretching (LCS) method, which makes use of the concept of
linear transformation wherein the gray level’s dynamic range
is increased. However, the need to configure manually the
threshold value of the LCS often limits its performance by
making it susceptible to wrong threshold values, thus leading
to poor output images [16].

In terms of medical image enhancement (MIE), the authors
in [3] presented an enhancement technique comprising of
two modules. The fuzzy dissimilarity histogram (FDH) is
conducted in the first module, which uses the fuzzy neigh-
borhood dissimilarity metric to evaluate each pixel via fuzzy
rules. The contrast and entropy parameters were used to
obtain the fuzzy dissimilarity clip limit using a fuzzy infer-
ence system (FIS). Then, the enhanced image was derived
can be obtained by equalizing the FDH. Contextual inten-
sity transformation (CIT) is applied in the second mod-
ule to the FDH-based equalized output to generate a final
enhancedmedical image. Some studies were carried out using
images from the BRATS 2015 dataset and satisfactory results
were obtained using the peak signal-to-noise ratio (PSNR),
entropy, and the contrast ratio. In [17], a morphological
transformation process was conducted on medical images
to improve their contrast. A disk-shaped mask was used in
the bottom-hat and top-hat transformation process, which
improves the method’s performance. The enhanced medical
images were further generated by an iterative exfoliation
process. The experimental results obtained demonstrated that
the contrast of medical images were improved. In another
article [18], a feedback graph attention convolutional neural
network approach was presented that considers the global
structure of an image by building a graph network from
image sub-regions. The model comprises of three main parts,
which include the parallel graph similarity branch, a feed-
back mechanism that refines the low-level representations
using a recurrent structure, and an elimination of the arti-
facts to generate higher quality images. The results obtained
showed satisfactory performance when compared to other
approaches. In [4], an adaptiveMIE technique was presented,
wherein training samples were clustered into neighborhoods.
The low-resolution space was then sectioned by exchanging

the dictionary atoms with the cluster patch centers for com-
puting K-nearest patches. These were then projected to map
the low resolution patches upon the high resolution area. The
authors conducted experiments using two medical datasets
and showed that satisfactory results were obtained. Further-
more, in [19], a contrast optimization approach based on
genetic algorithm was proposed by introducing a kernel that
detects the edges of an image. The results obtained from their
experiments demonstrated that the proposed approach was
effective.

Owing to the subjective nature of the image enhance-
ment process, several metaheuristic optimization algo-
rithms (MOA) have found great application for image
enhancement and with remarkable results to show [20]. The
use of MOAs for MIE purposes has been demonstrated sev-
eral times in the literature to outperform the existing methods
mentioned above [11], [20]. Consequently, the literature has
literally exploded with a long list of different MOAs, with
many being deployed for MIE functions [21]. However, the
question arises as to whether there exist any significant dif-
ference in both the qualitative and quantitative performances
of these different MOAs. Hence, this paper investigates the
performance of some selected well-known MOAs for MIE,
namely, the artificial bee colony (ABC), cuckoo search opti-
mization (CSO), differential evolution (DE), firefly, genetic
algorithm (GA), particle swarm optimization (PSO), covari-
ance matrix adaptive evolutionary strategy (CMAES), whale
optimization algorithm (WOA), and the grey wolf optimiza-
tion (GWO) algorithms. Firstly, our concern was to ensure
that all MOAs were compared fairly, and to this effect we
adopted the fitness computation rate (FCR) instead of the
number of generations. By using the FCR, we can ensure
that the objective function is computed the same number of
times for all MOAs, thus guaranteeing that the computational
resources of the MIE machine are consumed almost equally
by all MOAs. Next, we deployed the transformation function
proposed in [20] coupled with a robust evaluation function
used in [11] to serve as the objective function for MIE pur-
poses. Finally, a number of performance parameters were
used to analyze the different MOAs in the qualitative and
quantitative sense. As a result of our findings, the current
article’s contributions can be described as follows:

1) We explore whether there exists any significant advan-
tage(s) in using different MOAs for MIE. To this effect,
nine state-of-the-art MOAs were considered, which
were selected across both evolutionary and swarm-
based classes. This distinguishes the current article as
having researched a considerable number of MOAs
only for the purpose of MIE.

2) By using the FCR as a metric of evaluation instead
of the number of generations, we discovered that,
although the GWO and WOA algorithms yielded
slightly better empirical results than the other methods,
nevertheless, there was little/no significant difference
in both qualitative and quantitativemeasures among the
different MOAs.
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3) Physical timing performances were measured across
the different MOAs with little/no statistical significant
difference to show. Thus, this confirmed that using a
fixed FCR translates to the same timing performance
across most MOAs.

The remainder of the paper is structured as follows:
Section II presents the method used in this study, which
includes the transformation and evaluation functions used,
a description of the different MOAs, the datasets and per-
formance evaluation metrics utilized. Section III presents the
results and discussion from the different experiments carried
out and conclusions are drawn in Section V.

II. METHOD
In order to produce an enhanced output image, most image
enhancement techniques typically use an effective transfor-
mation function to map the intensity values of an original
input image [22]. Such a transformation function will often
be characterized by parameters whose values are required to
be optimally determined in order to improve performance.
To this effect, metaheuristic-based approaches are normally
applied to optimize such parameters of a transformation func-
tion via an objective function (typically called an evaluation
function) [20]. Consequently, we first describe the specific
transformation function deployed in our study. Then we dis-
cuss the evaluation function used in each MOA. We describe
each MOA, focusing specifically on the modifications made
to ensure that the FCR is accurately measured. Then the
performance evaluation metrics used and the medical image
database considered in our study are described.

A. TRANSFORMATION FUNCTION
The transformation function proposed in [20] was used in our
study. Following its formulation, the function has remained
highly effective and thus widely applied in the literature. The
function is stated as follows:

T (f (i, j)) = g(i, j) = k
(

M
σ (i, j)+ b

)
× [f (i, j)−c× m(i, j)]+ m(i, j)a (1)

where T denotes the transformation function, f (i, j) denotes
the input image with pixels located at pixel (i, j), and g(i, j)
refers to the output image with modified gray-level intensities
at each pixel (i, j). The parameters a, b, c, and k play the
following roles: Parameter a represents the brightening bias
on the output image, which allows control of the amount
of smoothening required in the output image. Parameter b
ensures that a zero-standard deviation value in the local
neighborhood pixels does not have much whitening effect
on the final output image. Parameter c allows a fraction
of the mean to be subtracted from the original pixels of
the input image, and it also controls the amount of dark-
ening effects produced in the output image. The parameter
k creates an unbiased balance between pixels existing in
the mid-range boundaries of the gray scale. This prevents
the pixels from becoming either too dark or too bright during

the enhancement process. The statistics m(i, j) and σ (i, j)
denote the gray-level mean and standard deviation computed
for pixels within a neighbourhood (window) centered at (i, j)
and having n× n pixels. The global meanM is computed as

M =
∑H−1

i=0

∑V−1

j=0
f (i, j), (2)

where H and V denote the row (horizontal) and column
(vertical) size of the image.

B. EVALUATION FUNCTION
An evaluation function is a mathematical expression that
computes the quality of an enhanced image g(i, j) with an
aim to replace dependencies on subjective human assess-
ments. It is used to determine the optimal parameter val-
ues of a transformation function T towards improving the
performance of an MIE technique. In this study, we used
the evaluation function proposed in [11]. It was selected for
the following reasons: First, it integrates four different key
metrics, thus making it robust compared to other methods.
Second, the metrics were normalized, which presents a linear
function that assigns specific boundaries to pixels in the dark
and bright regions. Lastly, it is easily adaptable for use in
different MOAs.

Further, the metrics considered in designing the evaluation
function include the number of edge pixels, entropic measure,
the number of foreground pixels, and the peak signal to noise
ratio (PSNR). The steps involved in computing the function
are as follows:

1) The number of edge pixels Ng in the enhanced image is
computed using a Sobel threshold Sf , which is automat-
ically computed from the original image f (i, j) using a
Sobel edge detector.

2) The Sobel threshold Sf is then used in the Sobel edge
detector to obtain the edge intensities Eg(i, j) of the
enhanced image. It is noted that in addition to being
invariant, Sf was considered for computing Eg(i, j) in
order to ensure a fair comparison between the origi-
nal image and the different instances of the enhanced
image. Thus, the number of edge pixels Ng in the
enhanced image is obtained as:

Ng =
H∑
i=1

V∑
j=1

Eg(i, j) (3)

3) The variance ϑg(i, j) of g(i, j), and the variance
ϑf (i, j) of f (i, j) are computed within a neighborhood
(window) having n × n pixels. And a threshold value
ηf is automatically computed for ϑf (i, j) using Otsu’s
threshold algorithm.

4) Then, a binary function Dg(i, j) is used to classify
the pixels belonging to the foreground objects in the
enhanced image as follows:

Dg(i, j) =
{
1 if ϑg(i, j) ≥ ηf
0 if otherwise

(4)

for i = 1, 2, . . . ,H and j = 1, 2, . . . ,V .
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5) Thereafter, the number of pixels φg belonging to the
foreground objects in g(i, j) is computed as

φg =

H∑
i=1

V∑
j=1

Dg(i, j) (5)

6) The entropic measure βg of g(i, j) is also given as

βg =

−
∑
m

�m log(�m) for �m 6= 0

0 for �m = 0
(6)

where�m is the frequency of pixels having gray levels
in the histogram bin m = 1, . . . , 256.

7) The PSNR ρg of g(i, j) is obtained as

ρg = 10 log10

[
(L − 1)2

MSE

]
(7)

where L is the maximum pixel intensity value in g(i, j)
and the mean squared errorMSE is given as

MSE =
1

H × V

H∑
i=1

V∑
j=1

|f (i, j)− g(i, j)|2 (8)

8) Based on the parameters computed in (3) – (7), the
evaluation function E is stated as

E = 1− exp
(
−
ρg

100

)
+
Ng + φg
H × V

+
βg

8
(9)

where E is a linear combination of the normalized
values of the different metrics described in (3) – (7).
By normalizing each metric in (8), each parameter are
bounded between 0 and 1. Thus, based on this linear
combination, the evaluation function is described by
a defined scale bounded between a minimum value of
zero and maximum value of four. A minimum value of
zero represents an entirely dark enhanced image, while
a maximum value of four represents an entirely bright
enhanced image.

C. METAHEURISTIC OPTIMIZATION ALGORITHMS
This section discusses the rationale for selecting the algo-
rithms explored in this study. The FCR concept is discussed,
as well as the variousMOAs and their associated input/output
parameters.

1) CHOICE OF MOAs
Some of the earliest MOAs are the evolutionary techniques,
with the GA making its debut in 1975 [23]. Since then,
a plethora of MOAs have been proposed in the literature.
To this end, with an inclusion of the GA, we look at three
generations of MOAs starting from the 1990s to the present,
with a ten-year gap between each generation. The CMAES
algorithm was chosen in part because it has been one of
the top performers at the Genetic and Evolutionary Com-
putation Conference (GECCO) between 2009 to 2018 [24],
a conference which showcases the most recent high-quality

advances in genetic and evolutionary computation. We also
considered algorithms with less than five occasions where
the objective function is computed within a single iteration
of the algorithm. Thus, in the order of the year of devel-
opment and the number of times the fitness function (F)
is computed in a single iteration of a single solution, the
following significant algorithms were chosen and listed in
this format (Algorithm (year,F)): GA (1975,4), DE (1995,2),
PSO (1995,2), CMAES (1996,2), ABC (2005,4), Firefly
(2007,2), CSO (2009,3), GWO (2014,1), andWOA (2016,1).
Nonetheless, with an almost endless number of MOAs being
suggested and deployed in the literature, we do not claim
to have researched all MOAs, which is nearly impossible
to achieve; thus, we consider this article as only a stepping
stone to further empirical research in this and other areas of
metaheuristic research.

2) FITNESS COMPUTATION RATE
The FCR is defined here as the number of times the fitness
(i.e objective) function is computed during the execution
of an MOA. In our study, such a fitness/objective function
is termed the evaluation function, and both terms are used
interchangeably.

In many MOA-based articles, the number of generations
is often used as the termination criteria for an MOA. How-
ever, in recent publications, such as in [25]–[28], it has been
argued that the number of generations does not guarantee
fair comparison between different MOAs because an MOA
may compute the fitness function more times than other
MOAs. Consequently, it is fairer to use the FCR since it
ensures that the number fitness evaluations consumed is
kept constant while executing the different MOAs. However,
because the FCR is often difficult to computemathematically,
it is ideal to measure it algorithmically during runtime [26],
[27], which is what we have done for each MOA consid-
ered in our study as presented in their different pseudocodes
(see Algorithms 1 - 9).

3) COMMON AND SPECIFIC INPUT AND
OUTPUT PARAMETERS
The different MOAs considered in our study are governed
by different input parameters, some of which are common
across all MOAs. Thus, we define these parameters in Table 1
including their respective values obtained after a manual fine-
tuning process. These parameter values are thus the best
performing values, which were used for the MIE comparative
exercise.

For the common inputs, there were a total of four different
parameters to be optimized in our study (i.e. D = 4, where D
is the total number of parameters) namely, the a, b, c, and k
parameters of the transformation function, which have been
discussed in Section II-A. In our pseudocodes, these parame-
ters are denoted as X = {x1, x2, . . . , xD}, where for example,
parameter a is x1, b is x2, c is x3, and k is x4. Each parameter is
constrained within certain bounds, and the following bounds
were used: 2 ≤ a ≤ 2.5; 0.3 ≤ b ≤ 0.5; 0 ≤ c ≤ 3; and
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TABLE 1. Input and output parameters used across the different MOAs.

3 ≤ k ≤ 4, which were obtained from extensive experiments
conducted in [11]. Other common inputs already well known
in the literature are the evaluation function E , population
size P, and the maximum fitness computation rate FCRmax .
All other specific parameters related to the different MOAs
and their respective values used in our study are highlighted
in Table 1.

4) ARTIFICIAL BEE COLONY
The ABC algorithm is modeled based on the intelligent for-
aging behavior of the honey bee swarm [29]. It follows the
process by which sets of honey bees (i.e swarm) accomplish
their tasks successfully through social cooperation. Techni-
cally, the ABC algorithm employs three types of bees in the
swarm, namely: employed (recruitment) bees, onlooker bees,

and scout bees. The concept of a swarm corresponds to the
total population P of solutions, whereas each bee refers to a
single solution Xprp , i.e. the pth solution in the population.
The ABC algorithm initializes by generating a random

population of solutions, then image transformation is per-
formed per pth solution Xprp and the fitness of each trans-
formed image is computed. The best solutions are then
obtained and the FCR is verified to determine whether the
process is terminated or not. In the recruitment stage, new
solutions Xnewp are generated via:

Xnewp = Xprp + φp × (Xprp + X
pr
k ) (10)

where φp refers to the acceleration coefficient, which is a
uniform random number generated between−1 and 1 per pth

solution, Xprp is the pth previous solution obtained during the
initialization phase, and Xprk is a k th randomly selected solu-
tion, where p 6= k . After all employed bees have been evalu-
ated, the algorithm proceeds to the onlooker bees stage. In this
stage, solutions are improved via a probabilistic selection
process based on the roulette wheel mechanism described as

Prp =
Ep∑
i Ei

(11)

where Ep is the fitness value of the pth solution in the popu-
lation. Essentially, it is obvious from (11) that the better the
pth solution, the higher the probability of the solution being
selected.

In the third (scout bees) stage, the algorithm determines a
new pth solution as follows:

Xnewp = Ld + φp,d × (Ud − Ld ) (12)

where φp,d is acceleration coefficient generated via a uniform
random number within the bounds [0, 1], Ld and Ud are the
lower and upper boundaries of the d th dimension. The pseu-
docode of the ABC algorithm tailored forMIE is summarized
in Algorithm 1.

5) CUCKOO SEARCH OPTIMIZATION
The CSO algorithm is discussed following its presentation
in [30], and interested readers can access further details in the
same reference. The algorithm mimics the biological hatch-
ing process of the cuckoo bird. Biologically, some cuckoo
bird species typically lay their egg(s) in a foreign bird’s nest
in order to be hatched by the foreign bird. In translating this
concept into an algorithm, the cuckoo’s egg is denoted as a
solution where all the eggs in the nest of the foreign bird
constitute a population of solutions (i.e. many eggs). Thus,
the algorithm iterates by replacing the not-so-good solutions
in the population with better solutions. To achieve this, it uses
a Lėvy flight model to update its solution as follows [30]:

Xnewp = Xprp + α ⊗ Lėvy(λ) (13)

where Xnewp denotes the pth new solution in the population P;
the flight function Lėvy is computed based on theMantegna’s
algorithm using a parameter λ, which denotes the Lėvy walk
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Algorithm 1 The ABC Algorithm for MIE
Require: See Table 1

**Initialization phase**
1: FCR← 0 **Initialize FCR counter**
2: Emax ←− inf **Initialize best fitness value**
3: for p = 1 to P do
4: Generate random parameter values Xprp ,
5: Perform image transformation using (2) based on Xprp
6: Compute fitness Ep of transformed image using (9)
7: FCR++ **Increment FCR counter**
8: If Ep ≥ Emax , then Emax = Ep, else keep Emax
9: Save best solutions (i.e. Xbest == Xprp )

10: Terminate process if FCR == FCRmax
11: end for

**Main loop begins here**
12: while FCR < FCRmax do
13: for p = 1 to P do

**Phase 1: Recruited bees stage**
14: Get new solution Xnewp using (10)
15: Perform image transformation using (2) based on Xnewp
16: Compute fitness Ep of transformed image using (9)
17: FCR++ **Increment FCR counter**
18: If Ep ≥ Emax , then Emax = Ep, else keep Emax
19: Save best solutions (i.e. Xbest = Xnewp ) if Ep ≥ Emax
20: Terminate process if FCR == FCRmax
21: end for

**Phase 2: Onlooker bees stage**
22: for p = 1 to P do
23: Select a pth solution using (11)
24: Improve the pth solution Xnewp using (10)
25: Perform image transformation using (2) based on Xnewp
26: Compute fitness Ep of transformed image using (9)
27: FCR++ **Increment FCR counter**
28: If Ep ≥ Emax , then Emax = Ep, else keep Emax
29: Save best solutions (i.e. Xbest = Xnewp ) if Ep ≥ Emax
30: Terminate process if FCR == FCRmax
31: end for

**Phase 3: Scout bees stage**
32: for p = 1 to P do
33: Obtain a new pth solution Xnewp using (12)
34: Perform image transformation using (2) based on Xnewp
35: Compute fitness Ep of transformed image using (9)
36: FCR++ **Increment FCR counter**
37: If Ep ≥ Emax , then Emax = Ep, else keep Emax
38: Save best solutions (i.e. Xbest = Xnewp ) if Ep ≥ Emax
39: Terminate process if FCR == FCRmax
40: end for
41: end while
42: Save best value and terminate process if FCR == FCRmax
43: Post process and visualize the results

parameter, α is the step size related to the scale of the problem
of interest, and ⊗ symbol means entry wise multiplication.
The Lėvy flight function provides a random walk with a
random step length being drawn from a Lėvy distribution
Lėvy ∼ u = v−λ, (1 < λ ≤ 3).

The CSO algorithm for MIE is presented in Algorithm 2,
with an aim to show how the FCR is computed within
the algorithm. Similar to most MOAs, an initial popula-
tion of solutions is randomly generated in the initialization

Algorithm 2 The CSO Algorithm for MIE
Require: See Table 1

**Initialization phase**
1: FCR← 0 **Initialize FCR counter**
2: Emax ←− inf **Initialize best fitness value**
3: for p = 1 to P do
4: Generate random parameter values Xprp ,
5: Perform image transformation using (2) based on Xprp
6: Compute fitness Ep of transformed image using (9)
7: FCR++ **Increment FCR counter**
8: If Ep ≥ Emax , then Emax = Ep, else keep Emax
9: Save best solutions (i.e. Xbest == Xprp )
10: Terminate process if FCR == FCRmax
11: end for

**Main loop begins here**
12: while FCR < FCRmax do
13: for p = 1 to P do

**Phase 1: Get Cuckoo stage**
14: Get new parameters Xnewp randomly by Lėvy flight using

Mantegna’s algorithm
15: Perform image transformation using (2) based on Xnewp
16: Compute fitness Ep of transformed image using (9)
17: FCR++ **Increment FCR counter**
18: If Ep ≥ Emax , then Emax = Ep, else keep Emax
19: Save best solutions (i.e. Xbest = Xnewp ) if Ep ≥ Emax
20: Terminate process if FCR == FCRmax
21: end for

**Phase 2: Abandon nest stage**
22: for p = 1 to P do
23: Empty a fraction of the worst solutions based on Pa using

biased/selective random walks
24: Update the new solutions Xnewp using Eq. 13
25: Perform image transformation using (2) based on Xnewp
26: Compute fitness Ep of transformed image using (9)
27: FCR++ **Increment FCR counter**
28: If Ep ≥ Emax , then Emax = Ep, else keep Emax
29: Save best solutions (i.e. Xbest = Xnewp ) if Ep ≥ Emax
30: Terminate process if FCR == FCRmax
31: end for
32: end while
33: Save best value and terminate process if FCR == FCRmax
34: Post process and visualize the results

phase (see Algorithm 1) wherein each pth solution Xprp is
generated randomly within the parameter constraints. The
algorithm then iterates following the FCR, which is continu-
ously checked to terminate the algorithm whenever FCR ==
FCRmax . Since the MIE task is a maximization problem (i.e.
to obtain an enhanced image with the largest fitness value),
thus, the solution Xprp that yields the largest E values is
saved as the best solutions. Then, new improved solutions are
obtained via (13). To accomplish this, in the first phase (i.e.
the get cuckoo stage), new solutions are obtained using the
Lėvy flight function based on Mantegna’s algorithm (see [30]
for details). Thereafter, poorer solutions are expunged and
replaced in the second phase (i.e. the abandon nest stage)
based on the Pa parameter. Then, the algorithm continues to
iterate until FCR == FCRmax , after which the best solutions
and fitness values are obtained.
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6) DIFFERENTIAL EVOLUTION
The DE algorithm proposed in [31] works using a population
of candidate solutions, called agents. These agents explore the
search space towards an optimal solution by combining the
positions of existing agents within the population. Similar to
other MOAs, it adopts an initialization phase where starting
solutions are generated randomly. The algorithm then selects
three agents (i.e. solutions) a, b, and c randomly from the pop-
ulation, which are different from the solution being evaluated.
Proceeding to the mutation stage, the algorithm obtains new
solutions as follows:

Xnewp = ap + β × (bp − cp) (14)

where β is a scaling factor obtained using a uniform ran-
dom generator constrained between a lower and upper bound
value, whose values are stated in Table 1.

Algorithm 3 The DE Algorithm for MIE
Require: See Table 1

**Initialization phase**
1: FCR← 0 **Initialize FCR counter**
2: Emax ←− inf **Initialize best fitness value**
3: for p = 1 to P do
4: Generate random parameter values Xprp ,
5: Perform image transformation using (2) based on Xprp
6: Compute fitness Ep of transformed image using (9)
7: FCR++ **Increment FCR counter**
8: If Ep ≥ Emax , then Emax = Ep, else keep Emax
9: Save best solutions (i.e. Xbest = Xnewp ) if Ep ≥ Emax

10: Terminate process if FCR == FCRmax
11: end for

**Main loop begins here**
12: while FCR < FCRmax do
13: for p = 1 to P do

**Phase 1: Mutation stage**
14: Select three solutions a, b, and c randomly from the

population
15: Get new solution Xnewp using (14)

**Phase 2: Crossover stage**
16: Obtain a uniform random number rp ∼ U(0, 1)
17: if rp < Pc then
18: Maintain new solution Xnewp
19: else
20: Maintain previous solution
21: end if
22: Perform image transformation using (2) based on Xnewp
23: Compute fitness Ep of transformed image using (9)
24: FCR++ **Increment FCR counter**
25: If Ep ≥ Emax , then Emax = Ep, else keep Emax
26: Save best solutions (i.e. Xbest = Xnewp ) if Ep ≥ Emax
27: Terminate process if FCR == FCRmax
28: end for
29: end while
30: Save best value and terminate process if FCR == FCRmax
31: Post process and visualize the results

Then, in the second (crossover) stage, the algorithm
updates the pth solution using (14) on the condition that rp <
Pc, else it simply maintains the previous solution, where rp is
a uniformly distributed random number rp ∼ U(0, 1) and Pc
is the crossover probability. Once the updates of all solutions

Algorithm 4 The Firefly Algorithm for MIE
Require: See Table 1

**Initialization phase**
1: FCR← 0 **Initialize FCR counter**
2: Emax ←− inf **Initialize best fitness value**
3: for p = 1 to P do
4: Generate random parameter values Xprp ,
5: Perform image transformation using (2) based on Xprp
6: Compute fitness Ep of transformed image using (9)
7: FCR++ **Increment FCR counter**
8: If Ep ≥ Emax , then Emax = Ep, else keep Emax
9: Save best solutions (i.e. Xbest = Xnewp ) if Ep ≥ Emax
10: Terminate process if FCR == FCRmax
11: end for

**Main loop begins here**
12: while FCR < FCRmax do
13: for p = 1 to P do
14: for k = 1 to P do
15: Compute the distance rp,k using (16)
16: Get new solution Xnewp using (15)
17: Perform image transformation using (2) based on Xnewp

18: Compute fitness Ep of transformed image using (9)
19: FCR++ **Increment FCR counter**
20: If Ep ≥ Emax , then Emax = Ep, else keep Emax
21: Save best solutions (i.e. Xbest = Xnewp ) if Ep ≥ Emax
22: Terminate process if FCR == FCRmax
23: end for
24: end for
25: end while
26: Save best value and terminate process if FCR == FCRmax
27: Post process and visualize the results

are completed, the fitness values of the entire population are
computed, and the best values are saved if they are better than
the previous values.We summarize the pseudocode of the DE
algorithm for MIE in Algorithm 3.

7) FIREFLY ALGORITHM
The firefly algorithm works by modeling the flashing behav-
ior of fireflies. It was proposed in [32] based on the con-
cept that fireflies (i.e. solutions) will be attracted within
the population based on an attractiveness property, which is
proportional to their brightness. Thus, less brighter fireflies
will migrate towards brighter ones. Essentially, the algorithm
updates any pair of fireflies Xprp and Xprk as follows:

Xnewp =X
pr
p + β × exp[−γ × r

2
p,k ]× (Xprp − X

pr
k )+ α × ε

(15)

where Xprp is the previous pth solution and Xprk is a distinct
k th solution selected from the population, β is the attraction
coefficient, γ is the light absorption coefficient, α is the
mutation coefficient that controls the step size, and ε is a
uniformly distributed random parameter drawn between 0
and 1.

First, an initial population of solutions is generated similar
to the other MOAs considered in our study. The distance
rp,k between any pair of fireflies p and k (i.e. between two
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solutions) is then computed as

rp,k =
norm(Xprp − X

pr
k )

dmax
(16)

where norm(·) is the Euclidean norm and dmax is farthest
normalize distance between any pair of solutions in the pop-
ulation, computed as

dmax = norm(U − L) (17)

where U and L are the largest and smallest values across all
parameters to be optimized. Then, new solutions Xnewp are
obtained using (15). Afterwards, the image is transformed
based on the new solution and then the fitness of the enhanced
image is computed and updated accordingly. The algorithm
terminates when FCR == FCRmax . A summary of the entire
procedure is presented in Algorithm 4.

8) GENETIC ALGORITHM
The GA is modeled after the natural selection process and it
is intended to produce high-quality solutions to optimization
problems [23]. Similar to other MOAs, it begins with the
initialization phase where candidate solutions are generated
randomly and their respective fitness values are computed.

In the first phase (i.e. the selection phase), the fittest
solutions are selected as the parent indices based on the
roulette wheel mechanism. The selected parents (i.e. candi-
date solutions) are then subjected to the crossover operator in
the crossover stage in order to produce new offsprings (i.e.
new solutions) Xnewp . These new solutions are then used in
the transformation function to generate an enhanced image,
whose fitness value is computed using (9). The best fitness is
saved and the best solutions are processed in the third stage
(i.e. the mutation phase).

In the mutation phase, a number of solutions are randomly
selected and their values are changed to form new solutions
as follows

Xnewp = Xprp + σ × randn(D) (18)

where randn(·) is a normal random number generator, D is
the dimensionality, and σ is obtained as

σ = 0.1× (U − L) (19)

where U and L are the lower and upper constraints of the
different parameters to be optimized. Then, the fitness of the
newly mutated solutions are computed and the best values are
saved, while the iteration proceeds until FCR == FCRmax ,
which serves to terminate the algorithm. The entire algorith-
mic process is documented in Algorithm 5.

9) PARTICLE SWARM OPTIMIZATION
The PSO algorithm models the movement of particles (i.e.
candidate solutions) over a search space towards converging
to an optimal solution. The evolution of each solution (or
particle) in the population (i.e. a swarm) is governed by its
local best position and guided towards better solutions via

Algorithm 5 The Genetic Algorithm for MIE
Require: See Table 1

**Initialization phase**
1: FCR← 0 **Initialize FCR counter**
2: Emax ←− inf **Initialize best fitness value**
3: for p = 1 to P do
4: Generate random parameter values Xprp ,
5: Perform image transformation using (2) based on Xprp
6: Compute fitness Ep of transformed image using (9)
7: FCR++ **Increment FCR counter**
8: If Ep ≥ Emax , then Emax = Ep, else keep Emax
9: Save best solutions (i.e. Xbest = Xnewp ) if Ep ≥ Emax
10: Terminate process if FCR == FCRmax
11: end for

**Main loop begins here**
12: while FCR < FCRmax do
13: for p = 1 to P do

**Stage 1: Selection phase**
14: Performance selection using the roulette wheel

mechanism
**Stage 2: Crossover phase**

15: Apply crossover based on selected parents to obtain new
solution Xnewp

16: Perform image transformation using (2) based on Xnewp
17: Compute fitness Ep of transformed image using (9)
18: FCR++ **Increment FCR counter**
19: If Ep ≥ Emax , then Emax = Ep, else keep Emax
20: Save best solutions (i.e. Xbest = Xnewp ) if Ep ≥ Emax
21: Terminate process if FCR == FCRmax

**Stage 3: Mutation phase**
22: Select new parents randomly
23: Apply mutation using (18) to obtain new solution Xnewp
24: Perform image transformation using (2) based on Xnewp
25: Compute fitness Ep of transformed image using (9)
26: FCR++ **Increment FCR counter**
27: If Ep ≥ Emax , then Emax = Ep, else keep Emax
28: Save best solutions (i.e. Xbest = Xnewp ) if Ep ≥ Emax
29: Terminate process if FCR == FCRmax
30: end for
31: end while
32: Save best value and terminate process if FCR == FCRmax
33: Post process and visualize the results

a velocity parameter. Essentially, the algorithm updates a
particle’s velocity using

V new
p = ω × V pr

p + c1× rand(D)× (Xbestp − Xprp )

+c2× rand(D)× (Gbest − Xprp ) (20)

where V pr
p is the previous velocity of the pth solution, c1 and

c2 are the personal and global learning coefficients, ω is the
inertial weight, Xbestp is the best solution of the pth particle,
Xprp is the previous solution of the pth particle, and Gbest is
the global best solution across the entire population. Once a
particle’s velocity has been updated, the algorithm proceeds
to obtain a new solution as follows

Xnewp = Xprp + V
new
p (21)

Then, the new solutionsXnewp are applied in the transforma-
tion function of (1) to obtain an enhanced image. Thereafter,
the fitness of the enhanced image is computed using (9) and
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compared with previous fitness values. If the new fitness
value is larger than the previous, then the solutions are saved.
The algorithm proceeds iteratively until FCR == FCRmax ,
which serves as the termination criteria. A summary of the
pseudocode is presented in Algorithm 6.

Algorithm 6 The Particle Swarm Optimization for MIE
Require: See Table 1

**Initialization phase**
1: FCR← 0 **Initialize FCR counter**
2: Emax ←− inf **Initialize best fitness value**
3: for p = 1 to P do
4: Generate random parameter values Xprp ,
5: Perform image transformation using (2) based on Xprp
6: Compute fitness Ep of transformed image using (9)
7: FCR++ **Increment FCR counter**
8: If Ep ≥ Emax , then Emax = Ep, else keep Emax
9: Save best solutions (i.e. Xbest = Xnewp ) if Ep ≥ Emax

10: Terminate process if FCR == FCRmax
11: end for

**Main loop begins here**
12: while FCR < FCRmax do
13: for p = 1 to P do
14: Update velocity of particle using (20)
15: Obtain new solution Xnewp using (21)
16: Perform image transformation using (2) based on Xnewp
17: Compute fitness Ep of transformed image using (9)
18: FCR++ **Increment FCR counter**
19: If Ep ≥ Emax , then Emax = Ep, else keep Emax
20: Save best solutions (i.e. Xbest = Xnewp ) if Ep ≥ Emax
21: Terminate process if FCR == FCRmax
22: end for
23: end while
24: Save best value and terminate process if FCR == FCRmax
25: Post process and visualize the results

10) COVARIANCE MATRIX ADAPTIVE
EVOLUTIONARY STRATEGY
The covariance matrix adaptation evolution strategy
(CMAES) is a type of numerical optimization method that
falls under the umbrella of evolutionary algorithms and evo-
lutionary computation. In the CMAES algorithm proposed
in [33], new candidate solutions are sampled from amultivari-
ate normal distribution in RD. Recombination is equivalent
to choosing a new mean value for the distribution. Muta-
tion is the addition of a random vector, a perturbation with
zero mean. A covariance matrix C represents the pairwise
relationships between the variables in the distribution. The
covariance matrix adaptation (CMA) approach is used to
update the distribution’s covariance matrix. This is especially
important if the fitness function is ill-conditioned.

The adaptation of the covariance matrix is analogous to
learning a second order model of the underlying objective
function in classical optimization, comparable to the approx-
imation of the inverse Hessian matrix in the quasi-Newton
technique. In contrast to most conventional approaches,
the CMAES method makes less assumptions about the
underlying objective function. The approach does not need

derivatives because it just employs a ranking (or, equivalently,
sorting) of candidate solutions.

Algorithm 7 The CMAES for MIE
Require: See Table 1

**Initialization phase**
1: FCR← 0 **Initialize FCR counter**
2: Emax ←− inf **Initialize best fitness value**
3: Initialize the CMAES parameters M , σ , ω, pc = 0, pσ = 0,

and C
**Main loop begins here**

4: while FCR < FCRmax do
5: for p = 1 to P do
6: Sample new solutions Xnewp using (23)
7: Perform image transformation using (2) based on Xnewp
8: Compute fitness Ep of transformed image using (9)
9: FCR++ **Increment FCR counter**
10: If Ep ≥ Emax , then Emax = Ep, else keep Emax
11: Save best solutions (i.e. Xbest == Xnewp ) if Ep ≥ Emax
12: Terminate process if FCR == FCRmax
13: end for
14: Sort the population of solutions X sortp = sort(Xnewp )
15: Save present mean as Mpr

= M
16: Update the mean to obtain new mean valuesMnew using (25)

17: Update pσ
18: Update pc
19: Update C
20: Update σ
21: end while
22: Save best value and terminate process if FCR == FCRmax
23: Post process and visualize the results

The main loop of the algorithm is divided into three
sections: 1) sampling of new solutions, 2) re-ordering
(sorting) of sampled solutions based on fitness, and 3) updat-
ing of internal state variables based on the re-ordered
samples. The algorithm’s pseudocode is given inAlgorithm 7.
The sequence of the update assignments matters: M must be
updated first, pσ and pc must be updated before C , and σ
must be updated last. The update equations for the five state
variables are presented below. First, we note that the search
space dimension D and the iteration step p are given, which
are determined by the number of solutions that are calculated.
Then, the following are the five state variables:

1) Mp in RD, the mean of the distribution and the current
preferred solution to the optimization problem,

2) σp > 0, the step-size
3) C , a symmetric and positive-definite n × n covariance

matrix with the initialize matrix given as an identity
matrix C0 = I and

4) pσ in RD, pc in RD, two evolution paths, initially set to
the zero vector.

The iteration starts with sampling P > 1 candidate solu-
tions Xnewp ∈ RD from a multivariate normal distribution
N (Mp, σ

2
pCp), i.e. for p = 1, . . . ,P, such that Xnewp is

obtained as

Xnewp ∼ N (Mp, σ
2
pCp) (22)

∼ Mp + σp ×N (0,Cp) (23)
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After generating new solutions across the entire popula-
tion, then the solutions are sorted in descending order of
fitness values. The previous mean values M are saved as
Mpr in order to be used later when updating the other state
variables. A new set of mean values Mnew are computed for
the next round of iterations as:

Mnew
=

µ∑
p=1

wp X sortp:P (24)

= Mpr
+

µ∑
p=1

wp (X sortp:P −M
pr ) (25)

where X sort is the sorted population of solutions based on the
fitness values of each solution, the positive (recombination)
weights w1 ≥ w2 ≥ · · · ≥ wµ > 0 sum to one, and Mpr is
the previous mean value per solution p. Typically, µ ≤ P/2
and the weights are chosen such that µw := 1/

∑µ
p=1 w

2
p ≈

P/4. The only feedback used from the fitness function is an
ordering of the sampled candidate solutions due to the indices
p : P. However, for the sake of brevity, the updates for the
evolution paths pσ , pc, and the covariance matrix C and step-
size σ can be found in [33].

11) WHALE OPTIMIZATION ALGORITHM
The whale optimization algorithm (WOA) is a relatively
newer optimization algorithm proposed in [34] that mimics
the natural hunting mechanism of humpback whales. Hump-
back whales can detect the presence of prey and encircle it.
Because the optimum design’s position in the search space is
unknown at the outset, theWOA algorithm forMIE presented
in Algorithm 8 assumes that the current best candidate solu-
tion is the target prey or is near to it. When the best search
agent is determined, the other search agents will attempt to
update their locations in relation to the best search agent. The
following equations illustrate this behavior:

D = |C • Xprp − X
best
| (26)

Xnewp = Xprp − A • D (27)

where A and C are coefficient vectors, Xprp is the position
vector of the prey, and Xbest indicates the position vector of a
whale (i.e the best solution thus far), and ‘‘•’’ represents the
dot product. The vectors A and C are calculated as follows:

A = 2a • r1 − a (28)

C = 2r2 (29)

where components of vector a are linearly decreased
from 2 to 0 over the course of iterations and r1, r2 are
random vectors in [0,1]. The WOA algorithm begins with
a collection of random solutions. In each iteration, search
agents update their locations with relation to either a ran-
domly selected search agent or the best solution achieved thus
far. In order to facilitate exploration and exploitation, the a
parameter is reduced from 2 to 0. The optimal solution is
chosen when A < 1 for updating the position of the search

Algorithm 8 The Whale Optimization Algorithm for MIE
Require: See Table 1

**Initialization phase**
1: FCR← 0 **Initialize FCR counter**
2: Emax ←− inf **Initialize best fitness value**

**Main loop begins here**
3: while FCR < FCRmax do
4: Randomly initialize Pa
5: for p = 1 to P do
6: if Pa < 0.5 then
7: if |A| < 1 then
8: Update the position of current search agent to obtain

Xnewp using (27)
9: else if |A| ≥ 1 then
10: Select a random search agent (Xrand )
11: Update the position of current search agent to obtain

Xnewp using (31)
12: end if
13: else if Pa ≥ 0.5 then
14: Update the position of the current search agent to obtain

Xnewp using (32)
15: end if
16: Perform image transformation using (2) based on Xnewp
17: Compute fitness Ep of transformed image using (9)
18: FCR++ **Increment FCR counter**
19: If Ep ≥ Emax , then Emax = Ep, else keep Emax
20: Save best solutions (i.e. Xbest = Xnewp ) if Ep ≥ Emax
21: Terminate process if FCR == FCRmax
22: end for
23: Update a,A,C
24: end while
25: Save best value and terminate process if FCR == FCRmax
26: Post process and visualize the results

agents using (27), whereas when A > 1, a search agent Xrand
is picked randomly from the population of solutions, and the
solution is updated using (31).

D = |C • Xrand − Xbest | (30)

Xnewp = Xrand − A • D (31)

In the case where Pa ≥ 0.5, the solution is updated using

Xnewp = D′ebtcos(2π t)+ Xbest (32)

where D′ = |Xbest − Xprp | and it indicates the distance of
the pth whale to the prey (best solution obtained so far),
b is a constant (often b = 1) for defining the shape of
the logarithmic spiral, and t is a random number in [−1,1].
Finally, the WOA algorithm is ended when the termination
requirement is met i.e. FCR == FCRmax . Further details
regarding the WOA can be found in [34].

12) GREY WOLF OPTIMIZATION ALGORITHM
The GWO algorithm proposed in [35] simulates the natural
leadership structure and hunting mechanism of grey wolves.
For replicating the leadership structure, four sorts of grey
wolves are used: alpha, beta, delta, and omega. In addition,
three key hunting processes are incorporated to optimize per-
formance: seeking for prey, surrounding (i.e. encircling) prey,
and attacking prey. When building GWO, the fittest solution
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is designated as the alpha (Xα) to quantitatively describe the
social hierarchy of wolves. Similarly, the second Xβ and third
Xδ best solutions are designated as beta and delta, respec-
tively. The remaining possible solutions are all considered to
be omega (Xω). The GWO algorithm’s hunting (optimization)
is directed by Xα , Xβ , and Xδ .

Greywolves, as previously said, encircle victims during the
hunt. The following equations are presented to quantitatively
model their encircling behavior:

D = |C • Xprp − X
best
| (33)

Xnewp = Xprp − A • D (34)

where A and C are the coefficient vectors, Xprp is the position
vector of the prey, and Xbest indicates the position vector of a
wolf (i.e the best solution thus far). The vectors A and C are
calculated as follows:

A = 2a • r1 − a (35)

C = 2r2 (36)

where components of vector a are linearly decreased
from 2 to 0 over the course of iterations and r1, r2 are random
vectors in [0,1]. The value of a can be decreased as follows:

a = 2−
2 ∗ FCR
FCRmax

(37)

The grey wolves have the capacity to locate and surround
prey, thus, in the hunting phase, the alpha generally leads the
hunt. The beta and delta may also join in hunting on occasion.
However, in an abstract search space, we have no notion
where the optimal solution is (i.e. prey). To mathematically
mimic grey wolf hunting behavior, it is assumed that the
alpha (best candidate solution), beta, and delta have superior
knowledge of prospective prey locations. As a result, the first
three best solutions acquired so far are kept and the other
search agents (i.e. the omegas) are required to update their
locations in accordance with the best search agent’s position.
In this regard, the following formulae are used:

Dα = |C1.Xα − Xprp | (38)

Dβ = |C2.Xβ − Xprp | (39)

Dδ = |C3.Xδ − Xprp | (40)

X1 = Xα − A1.(Dα) (41)

X2 = Xβ − A2.(Dβ ) (42)

X3 = Xδ − A3.(Dδ) (43)

Xnewp =
X1 + X2 + X3

3
(44)

In the attacking prey phase, when the target (i.e. prey) stops
moving, the grey wolves conclude the hunt by attacking it.
To mathematically depict approaching the prey, the value of a
is reduced. It is worth noting that the fluctuation range of A is
similarly reduced by a. In other words, A is a random value in
the interval [−2a, 2a] where a is decreased from 2 to 0 during
the duration of repetitions (i.e. iterations of the algorithm).
When the random values of A are selected in [−1, 1], the

future position of a search agent can be anywhere between
its present position and the position of the prey.

To summarize the algorithmic process as presented in
Algorithm 9, the search process begins with the GWO
algorithm producing a random population of grey wolves
(potential solutions). Alpha, beta, and delta wolves deter-
mine the likely position of the prey during the duration of
iterations. Each potential solution changes its position with
relation to the prey. The value of a is reduced from 2 to 0 to
emphasize exploration and exploitation, respectively. Candi-
date solutions tend to diverge from the prey when A > 1 and
converge towards the prey when A < 1. Finally, the GWO
algorithm is ended when the termination criteria is satisfied
(i.e FCR == FCRmax).

Algorithm 9 The Grey Wolf Algorithm for MIE
Require: See Table 1

**Initialization phase**
1: FCR← 0 **Initialize FCR counter**
2: Emax ←− inf **Initialize best fitness value**
3: Initialize Xα = − inf, Xβ = − inf, Xσ = − inf
4: Generate initial random solutions Xnewp for p = 1, 2, . . . ,P

**Main loop begins here**
5: while FCR < FCRmax do
6: for p = 1 to P do
7: Perform image transformation based on Xnewp using (2)
8: Compute fitness Ep of transformed image using (9)
9: FCR++ **Increment FCR counter**
10: If Ep ≥ Emax , then Emax = Ep, else keep Emax
11: Save best solutions (i.e. Xbest = Xnewp ) if Ep ≥ Emax
12: Terminate process if FCR == FCRmax
13: Update Xα = Xnewp if Ep ≥ Emax
14: Update Xβ = Xnewp if Ep < Emax and Ep ≥ Xβ
15: Update Xδ = Xnewp if Ep < Emax and Ep < Xβ and

Ep > Xδ
16: end for
17: Update a using (37)
18: Update A using (35)
19: Update C using (36)
20: Compute X1,X2, and X3 using (41),(42), and (43),

respectively.
21: Update new solution Xnewp using (44)
22: end while
23: Save best value and terminate process if FCR == FCRmax
24: Post process and visualize the results

D. DATASET
Medical images selected from the MedPix database were
used in our study. The MedPix database is a free open online
database containing medical images, clinical topics, teaching
cases, and textual metadata. It consists of about 12,000 patient
case scenarios, 9000 topics, and about 59,000 images. The
images within the database are grouped into categories such
as the brain and neuro, cardiovascular, chest, pulmonary, eye
and orbit, and abdomen [36]. In this study, we have ran-
domly selected images as representative samples from across
the human body, which are classed under three use cases
described as follows:
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1) Use case 1: This image comprises an oral contrast-
enhanced axial computed tomographic (CT) scan of
a distended appendix as shown in Figure 1(a). The
appendix can be seen in the area identified by the blue
dotted arrow in Figure 1(a), which depicts a distended
appendix having thickened enhancing walls and peri-
appendiceal inflammatory changes with fat stranding.
This image (of Figure 1(a)) was obtained freely from
theMedPix database and can be searched for and down-
loaded using the code name ‘‘synpic28644’’.

2) Use case 2: This image presents the CT image of a brain
presenting the case of an arteriovenous malformation
of the right occipital lobe. The original image is shown
in Figure 3(a) with the region of interest enclosed by
the dotted yellow box wherein the vascular mass can
be seen. It is noted that this image (of Figure 3(a)) can
be downloaded freely from the MedPix database using
the code name ‘‘synpic51882’’.

3) Use case 3: This use case presents a lateral digital
subtraction angiography view of the external carotid
artery, showing the filling of the right external carotid
artery branches obtained after the injection of some
contrast medium. The original image from this process
is shown in Figure 5(a), which can be searched for and
downloaded from the MedPix database using the code
name ‘‘synpic15935’’.

E. PERFORMANCE METRICS
In order to adequately assess the effectiveness of any MIE
technique, it is essential to define the quantitative measures
used in the evaluation process. To this effect, the metrics
considered include the number of edges, number of pixels
in the fore-ground, entropic measure, and the peak signal to
noise ratio, which can be obtained as previously stated in (3),
(5), (6), and (7), respectively. Also, the absolute mean bright-
ness error (AMBE) ξ value, which is used to measure the
brightness level of an enhanced image has been considered
as a metric and can be computed as

ξ = |δ(f (i, j)) −δ(g(i, j))| (45)

Equation (45) evaluates the difference in the mean bright-
ness error value between the original and enhanced medical
images. Furthermore, the mean brightness of the original and
enhanced images can be computed as follows:

δ(f (i, j)) =
1
HV

∑
i

∑
j

δ(f (i, j)) (46)

δ(g(i, j)) =
1
HV

∑
i

∑
j

δ(g(i, j)) (47)

where δ(f (i, j)) represents the mean brightness of the origi-
nal image, and δ(g(i, j)) denotes the mean brightness of the
enhanced image.

III. RESULTS AND DISCUSSION
The MOAs considered in our study were evaluated using
different medical images selected from different regions of
the body. The qualitative and quantitative results obtained are
presented and discussed in this section. By qualitative results,
we imply the visual assessment of the enhanced images from
the viewpoint of a radiologist or any human observer. Such
an assessment is based upon the salient differences between
the different enhanced output images and the original input
image.

In terms of quantitative outcomes, we begin by discussing
the fitness evolution trend of each method per input image.
The fitness trends are provided in terms of the best, worst,
and mean fitness values derived as a function of the FCR
from 1000 independent trials (i.e. Monte Carlo experiments).
In addition, the values of each measure produced by each
method are displayed and analyzed in relation to the corre-
sponding enhanced images. For each approach, we then show
the final optimized parameter values that were utilized in
the transformation function to generate the various enhanced
images. The physical timing performance of each method
and a thorough statistical significance tests of the results per
use-case are discussed in the last part of this section.

A. USE-CASE 1: IMAGE OF ACUTE APPENDICITIS
We applied each algorithm to use case 1, where the area of
interest to a radiologist is depicted by the magnified region
in Figure 1(a), which depicts a distended appendix having
thickened enhancing walls and periappendiceal inflammatory
changes with fat stranding. Following the application of the
different algorithms to the image of Figure 1(a), we present
the enhanced output images per MOA in Figures 1(b) - 1(j),
respectively.

1) QUALITATIVE ANALYSIS
It can be seen that the enhanced images in Figures 1(b) - 1(j)
demonstrate an improved contrast and brightness level as
against the original image. Visually, the original image
presents a blurrier and less detailed CT scan. Such improve-
ment in the contrast level in Figures 1(b) - 1(j) implies that
the boundaries of the different organs were better delineated
in the enhanced images than in the original image.

Specifically, the zoomed area of each image shows that
the thickened walls of the distended appendix were better
enhanced with an improved intensity and brightness around
the boundaries of the wall protruding to the caecum. This
ensures that the radiologist is better informed about the
degree of distension around the appendix as compared to
using only the original image. Furthermore, the oral contrast
liquid used during the diagnostic procedure as seen by the
whitish dispersion in the original image are more vivid in the
enhanced images. Additionally, the details of the fat stranding
in the appendix region are better pronounced in the enhanced
images than in the original image, thus allowing a radiologist
to provide an improved diagnosis.
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FIGURE 1. Use case 1: Original and enhanced CT images of an acute appendicitis.

Looking closely at the different enhanced images, it can
be seen that the ABC algorithm produced an overtly brighter
image than the other methods, which caused the region of
interest to be more obscured than expected. At first glance,
it may be difficult to visually determine the best enhanced
image, however, by enlarging the images and visually pars-
ing through them in a slideshow manner, we came to the
following opined conclusions:

1) The ABC algorithm produced a slightly blurrier image
than the other algorithms, with a generally lesser feel
of texture and provision of details. Thus, the ABC
algorithm performed least in this use case.

2) The enhanced images produced by the DE and Firefly
algorithm were visually indistinguishable, thus imply-
ing that both algorithms achieved similar performance
levels.

3) It is generally difficult to distinguish visually between
the performances of the different MOAs as it
concerns the enhancement of the present use case
image.

Following the above observations, we shall next examine
and analyse the quantitative results perMOA towards arriving
at some substantial conclusions.

2) QUANTITATIVE ANALYSIS
a: FITNESS EVOLUTION PERFORMANCE
Figure 2 presents the fitness evolution graphs of the dif-
ferent MOAs as a function of the FCR. There are three
different results presented in this regard, including the
best, worst, and mean fitness evolution performance results
shown in Figures 2(a) - 2(c), respectively.We note thatMonte
Carlo (MC) simulation consisting of 1000 different MC trials
were used to arrive at the different results of Figure 2. In par-
ticular, Figure 2(a) represents the best fitness evolution results
obtained per algorithm from within a set of 1000 different
MC trials. It is worth noting that the different enhanced
images presented in Figure 1 are the outcomes of this best
fitness value graphed in Figure 2(a). On the other hand,
the output images produced by the worst and mean fitness
performance processes of each algorithm are not presented
here since the evolution trends of Figures 2(b) and 2(c) are
sufficient to describe their different performance levels. The
worst performance graph of Figure 2(b) corresponds to the
lowest fitness values obtained after conducting 1000 MC
trials per algorithm. Whereas, we computed the mean results
of Figure 2(c) by averaging the fitness evolution graphs
over 1000 MC trials.
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FIGURE 2. Fitness value evolution for use case 1.

Generally, it can be seen from Figure 2 that the perfor-
mance rate of each algorithm improves with an increase
in the FCR. Such an increase in the performance of each
algorithm is expected since only better solutions (i.e better
enhanced images) are retained whenever the fitness function
is computed. In particular, it can be seen in Figure 2(a) that
after computing the fitness function 200 times, the different
algorithms can be rated as follows: the CMAES algorithm
achieved the highest fitness value, followed closely by the
GWO and WOA, then the PSO followed by the DE, Fire-
fly, GA, CSO, and the ABC algorithm. We can also see in
Figure 2(a) that there exists a small difference (≈0.015) in
the fitness values of the seemingly best algorithm (i.e the
CMAES) and the least performing algorithm (i.e the ABC).
Such close fitness values typically correspond to an almost
indistinguishable visual difference between the enhanced
images of the different algorithms, thus supporting the qual-
itative conclusions drawn in section III-A1.

Based on an average of 1000 different MC trials,
Figure 2(c) shows that the GWO algorithm provides the best
performance followed by the WOA algorithm. Essentially,
the figure reveals that there exists only a marginal difference
(< 0.008) in the fitness values of the best and least perform-
ing algorithm. This thus leads to the conclusion that theremay
be no significant difference in using one MOA over another
in this use case.

b: OTHER PERFORMANCE METRICS
Although the fitness evolution performance graphs of
Figure 2 have provided an overall assessment of the dif-
ferent algorithms, nevertheless, it is worthwhile to further
analyse other specific outcomes regarding the quality of the
enhanced images. Consequently, a few notable metrics were
measured and presented in Table 2. It can be seen in Table 2
that the CMAES algorithm achieved the best results (see
bold values in Table 2) in terms of its detailed variance
and number of edges, whereas the GA and WOA achieved
the best results in terms of the peak SNR and entropy,
respectively.

TABLE 2. Use case 1: Image enhancement performance metrics.

Interestingly, the AMBE result of the ABC algorithm (i.e.
AMBE = 0.0235) in Table 2 indicates that the ABC algo-
rithm contributed the largest brightness value compared to the
other algorithms. Such a high AMBE value corroborates the
visual conclusions drawn in section III-A1, which states that
the ABC algorithm produced an overtly brighter enhanced
image. This high AMBE value ultimately caused the ABC
algorithm to over brighten the region of interest as compared
to the other algorithms (see Figure 1(b)), thus diminishing its
overall visual performance.

Again, we cannot over emphasize the fact that there was
really no significant difference in the individual metric values
achieved by the different algorithms. For example, there was
no significant difference in the supposed better performance
of the DE algorithm over the Firefly algorithm (see close
values of both algorithms in Table 2). These close values of
both algorithms typically corroborates our visual conclusions
drawn in section III-A1, which affirms that there was no
significant difference between the DE and Firefly algorithms.

Additionally, our conclusions about the insignificant dif-
ferences in the performance levels of the different algorithms
can be further emphasized based on the number-of-edges
metric (see third column in Table 2). In this case, although
theDE and Firefly algorithmsmay have enhancedmore edges
than the ABC algorithm, it should nevertheless be noted that
these edges could as well have been enhanced in the wrong
regions of interest. For example, the dividing line seen clearly
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TABLE 3. Use case 1: Parameter values.

in the caecum region of Figure 1(a) (see red line) becomes
difficult to discern in all the enhanced images due to exces-
sive brightening of the pixel edges. Thus, it is possible that
introducing better results in one dimension of an enhanced
image does not necessarily imply a better overall enhanced
image. Consequently, we suggest that one single MOA may
not necessarily provide the best enhanced image with regards
to all constituting metrics of assessment.

We present in Table 3 the final optimized parameter values
of the transformation function as estimated by the differ-
ent MOAs. These values are reported here so that the final
enhanced images shown in Figures 1(b) - 1(g) can be inde-
pendently reproduced for validation purposes. These values
are also presented as they provide some plausible explana-
tion for the different outcomes obtained per algorithm. For
example, we can explain why theABC algorithm produced an
overtly bright image since it converged to a larger a parameter
value, which controls the brightness level of the enhancement
process.

B. USE-CASE 2: IMAGE OF RIGHT OCCIPITAL LOBE
Each algorithm was applied to use case 2 and the correspond-
ing enhanced images outputted per algorithm are presented in
Figures 3(b) - 3(j).

1) QUALITATIVE ANALYSIS
We observe from Figures 3(b) - 3(j) that the output CT
images are better enhanced compared to the original image in
Figure 3(a). Specifically, the finer details within the vascular
mass bounded by the yellow-dotted box are well delineated
in the enhanced images. Thus, this reveals to the radiologist
a more vivid display of the degree of growth of the vascular
mass as compared to using the original image for diagnostic
purposes.

In terms of the performance of the different MOAs, it can
be seen from closer examination of the enhanced images that
the GA algorithm introduced the largest degree of bright-
ness. Whereas, the CMAES algorithm produced the darkest
enhanced image. Such a dispersion in the brightness level
of the different enhanced images did not affect the region
of interest, neither was any other region of the CT image
affected. Thus, such negligible differences in the contrast and
brightness levels of Figures 3(b) - 3(g) makes it qualitatively
difficult to determine the best enhanced image with regards
to the region of interest.

2) QUANTITATIVE ANALYSIS
Here, an attempt is made to quantitatively appraise the perfor-
mance levels of the different MOAs based on the following
specific metrics:

a: FITNESS EVOLUTION PERFORMANCE
First, it is worth mentioning that the enhanced images of
Figures 3(b) - 3(j) correspond to the outcome of the best
fitness evolution per MOA out of 1000 MC trials graphed
in Figure 4(a). From Figure 4(a), it is noted that the dif-
ferent MOAs converged to very close fitness values after
computing the fitness function 200 times. Such close fitness
values (<0.045) between the best (i.e the CMAES algo-
rithm) and the least (i.e the CSO algorithm) affirms why
it was qualitatively difficult to determine the best enhanced
image in Section III-B1. From the best performance graph of
Figure 4(a), it is noted that the CMAES algorithm suffices
as the best performing algorithm towards the end range of the
FCR. This implies that if we had shortened the FCR (probably
to obtain output images faster), theWOA algorithm instead of
the CMAES algorithm would have yielded the best enhanced
image within such a simulation period.

Nevertheless, we note that such a high fitness value of
the CMAES algorithm may not always be guaranteed in all
trials, particularly as noted in the worst performance curve of
Figure 4(b). Note that the curve of Figure 4(b) corresponds
to the worst output result obtained out of 1000 different
MC trials. Thus, in this single trial, it can be seen that
the WOA algorithm yielded the highest fitness value and
closely followed by the PSO, DE, and GA algorithms. Since
such extreme cases (i.e best and worst case of Figures 4(a)
and 4(b), respectively) may not provide the best assessment
across 1000 different MC trials, thus, we provide the mean
performance curves computed over 1000 MC trials as shown
in Figure 4(c). Such a reliable fitness evolution statistics
of Figure 4(c) reveals that the GWO algorithm generally
yielded the highest fitness value (i.e best enhanced image),
whereas the CSO andCMAES algorithms sufficed as the least
performers.

b: OTHER PERFORMANCE METRICS
We further examined the enhanced images of
Figures 3(b) - 3(j) based on the performancemetrics that con-
stitute the overall fitness value. These results are documented
in Table 4. Interestingly, the GA algorithm yielded the largest
AMBE value, which is the metric that quantifies the degree of
brightness of an enhanced image. Such a large AMBE value
of the GA algorithm accurately affirms the conclusion drawn
in Section III-B1, which states that the GA algorithm yielded
the brightest enhanced image. Similarly, we note that the
CMAES algorithm produced the least AMBE value, which
affirms that it yielded the darkest enhanced image (see Figure
3(h)).

Although the CMAES algorithm may have yielded the
largest value for the detailed variance, number of edges,
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FIGURE 3. Use case 2: Original and enhanced CT images of the right occipital lobe of a brain.

FIGURE 4. Fitness value evolution for use case 2.

and the peak SNR, nevertheless, going by the fitness value,
it was not ranked as the best performing algorithm going
by the mean fitness graph of Fig 4(c). This is due to the

fact that, as a statistical method, such MOAs cannot be
evaluated by a single trial of the MIE procedure, and so
numerous trials are frequently necessary to pick the optimum
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TABLE 4. Use case 2: Performance metrics.

TABLE 5. Use case 2: Parameter values.

performance. We also noticed that the metric values acquired
across the multiple MOAs were not significantly different,
which resulted in significantly near fitness scores across all
methods. As a result, such near fitness values confirm the
difficulties in visually differentiating the best improved image
in Figure 3. Finally, Table 4 shows that no one MOA attained
the greatest value across all measures, showing that it is nearly
impossible to claim any MOA as the top performer across all
potential use cases.

The optimized parameters obtained by the different MOAs
are reported in Table 5 for the sake of repeatability.We remark
that these are the parameter values used to generate the
enhanced images shown in Figures 3(b) - 3(j). For instance,
we noticed that the GA algorithm’s large a value (see Table 5)
explains why it produced the brightest image (in Figure 3)
when compared to the other methods.

C. USE-CASE 3: IMAGE OF RIGHT COMMON CAROTID
ARTERY INJECTION
This use case was processed using the different MOAs and
the respective enhanced images by the different algorithms
are presented in Figures 5(b) - 5(j).

1) QUALITATIVE ANALYSIS
A radiologist’s major concern in analyzing the various images
of Figure 5 is to identify whether there is any indication
of opacification of the internal carotid artery (ICA) or its
branches. Although there was no indication of opacification
because the contrast medium can be seen to be clearly dissem-
inated over the ICA, any viewer can perceive that the original
image has a blurrier sight than the enhanced images. As a
result, several of the arteries in Figure 5(a) are made nearly

invisible to the human eye when compared to the enhanced
images in Figures 5(b) - 5(j). To that end, there is no doubt
that the enhanced images from the various MOAs provide a
radiologist with a more detailed perspective than viewing the
original image.

It may be challenging to determine the best improved
image based just on visual examination. However, when it
comes to the worst performance, it is clear that the contrast of
Figure 5(b) generated by the ABC algorithm is the blurriest.
It displays a lot of weak arterial lines at the image’s border,
resulting in fewer characteristics for analysis. To summarize,
while the original image was definitely enhanced across the
multiple MOAs, there is very little to separate visually the
performance of the different methods.

2) QUANTITATIVE ANALYSIS
The quantitative performance of the different MOAs are anal-
ysed based on the following metrics:

a: FITNESS EVOLUTION PERFORMANCE
Figures 6(a), 6(b), and 6(c) show the findings of the best,
worst, and mean fitness values as a function of the FCR per
MOA. We examine Figure 6(a) because the enhanced images
in Figure 5 are derived from these data after computing the
fitness function 200 times. Figure 6(a) shows that remarkably
near fitness values were obtained across the different MOAs,
justifying the indistinguishable visual performance of the
various enhanced images. Nonetheless, the CMAES, DE, and
PSO algorithms are shown to have produced the best fitness
values, thus resulting in the better looking enhanced images
of these algorithms as shown in Figures 5(h), 5(d), and 5(g),
respectively.

Figure 6(b) presents the lowest fitness performance of the
different algorithms obtained out of 1000 MC trials. At an
FCR of 200, we found that the GWO algorithm produced the
largest fitness value, followed closely by theWOA, ABC, and
Firefly algorithms. This means that determining which MOA
would perform best based on a single run of the algorithm
is often challenging since randomized results may suffice
during the initial iterations of the different algorithms. How-
ever, after an average of 1000 MC trials, we can observe
in Figure 6(c) that the GWO and PSO algorithms surpassed
the DE and other algorithms in terms of their fitness val-
ues. Despite these findings, we infer that the fitness values
obtained by the algorithms are not significantly different,
which explains the difficulty in visually choosing the best
improved image.

b: OTHER PERFORMANCE METRICS
Table 6 shows the various performance measures that make
up the fitness values. Based on the detailed variance values
and the number of edges, an interesting finding is made,
revealing that the ABC algorithm yielded the lowest values.
These values explain why the ABC algorithm produced the
most blurry enhanced image. Again, the ABC algorithm’s
lower visual performance is supported by its lowest entropy
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FIGURE 5. Use case 3: Original and enhanced DSA images of the right carotid artery injection of a brain.

FIGURE 6. Fitness value evolution for use case 3.

value, which explains the absence of adequate information
(i.e. blurriness) in its enhanced image. The CMAES, DE,
Firefly, and PSO algorithms, on the other hand, provided

the highest performance values across all measures, which
confirms their somewhat improved visual performance in
Figures 5(h), 5(d), 5(e) and 5(h), respectively.
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TABLE 6. Use case 3: Performance metrics.

TABLE 7. Use case 3: Parameter values.

Table 7 presents the optimumparameter values of the trans-
formation function as computed by the different MOAs and
utilized to create the enhanced images of Figures 5(b) - 5(j).
These parameters are provided so that the various improved
images of Figure 5 may be recreated and confirmed indepen-
dently by any interested researcher. In particular, both the DE
and PSO algorithms converged to similar parameter values,
which explains why they produced comparable improved
images with identical output performance metrics.

D. CPU TIMING PERFORMANCE
The timing performance of the different algorithms were
compared and reported per use case in Table 8. For this
purpose, all simulations were conducted using a PC running
an Intel(R) Core i5-7500 CPU processor @ 3.40 GHz with an
installed memory (RAM) of 16GB. To ensure that the timing
experiments were relatively valid, the following measures
were taken:

1) All algorithms were encoded and simulated in
MATLAB 2017a.

2) All use-case images were resized to the same size (i.e.
256 × 256)

3) The population size and FCR were fixed for all MOAs.
4) The start time for measuring the timing performance of

each algorithm was taken at the initialization of each
algorithm and was ended strictly after the main loop
was completed.

5) It was ensured that only the MATLAB software was
kept running as the only foreground process during
each simulation period in order to ensure that no extra
processing time was incurred by the PC.

TABLE 8. CPU processing time (in seconds) across the different use cases.

6) Finally, the timing results reported in Table 8 were
obtained over an average of 1000 MC trials per
use-case.

In terms of the run-time of eachMOA,we observed that the
GA algorithm converged the quickest in the first and third use
case, whereas the CSO algorithm came quickest in the second
use case. Despite these algorithms being the fastest, we note
that there was less than an average difference of 0.1 - 0.3
seconds in the computing times of the different algorithms.
This implies that when the FCR is kept fixed and equal for all
MOAs, then there exists little or no significant difference in
their respective real time computational speeds.

IV. STATISTICAL SIGNIFICANCE TESTS BASED
ON THE USE-CASES
We performed statistical significance tests on the mean
outcomes over 1000 independent trials. Instead of merely
using the best results, we used the mean outcomes, which
ensures that a more rigorous analysis is achieved. To this
end, we ran the Brown-Forsythe and Welch ANOVA tests on
the mean outcomes per use-case, as well as a posthoc com-
parison of the various MOAs using Games-Howell’s mul-
tiple comparison tests. Our collected findings are therefore
provided in Tables 10 - 13 for the different use-cases. The
Games-Howell’s test was chosen because it is appropriate for
comparing two or more sample populations and, unlike the
Tukey’s test, it does not presuppose homogeneity of variances
or equal sample sizes, which better suits our test results.

The first column of Tables 10 - 13 mentions the paired
algorithms compared with, while the second column shows
the difference in the means of both algorithms. A positive or
negative mean difference in the second column indicates that
the mean of the first listed algorithm is bigger or smaller than
the mean of the second algorithm, respectively. The confi-
dence interval of the mean difference between the matched
algorithms is shown in the third column. The fourth column
indicates whether the estimated p-value is larger or less than
the threshold p-value (i.e. 0.05), and the last column offers
the statistical significance conclusion based on the threshold
p-value. Table 9 shows the symbols used to indicate the range
of p-values and their related meanings.

Table 10 for use-case 1 shows that, with the exception
of the CMAES, WOA, and GWO algorithms, there was no
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TABLE 9. The p-value range, corresponding symbol and interpretation.

TABLE 10. Use-case 1: Statistical significance test compared between the
different MOAs.

statistical significance between the different MOAs. In this
situation, the GWOmethod is acknowledged to have obtained
the best mean outcomes and is thus thought to be significantly
distinct from all other MOAs. Nonetheless, no significant
differencewas found between theGWOandWOA, indicating
that both algorithms function equally. As a result, only the
GWO and WOA algorithms produced a highly significant
difference in empirical performance when compared to the
other approaches.

Table 11 shows that, with an exception of the GWO,WOA,
and CMAES algorithms, there was no significant difference
between the other MOAs investigated in our study for use-
case 2. We notice that such a difference in mean values might
be either positive or negative; hence, the GWO algorithm
obtained positive differences when compared to the others,
suggesting that it performed better than the others.

The findings for use-case 3 shown in Table 12 indicate
that there was no significant statistical difference between
the other algorithms, save for the GWO and WOA algo-
rithms. Nevertheless, it should be noted that these results

TABLE 11. Use-case 2: Statistical significance test compared between the
different MOAs.

TABLE 12. Use-case 3: Statistical significance test compared between the
different MOAs.

were computed throughout the complete FCR range of values
(i.e. 1 - 200), thus demonstrating that the algorithms per-
formed similarly in half of the comparison list (see Table 12).
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TABLE 13. Statistical significance test between the run-times of the
different MOAs.

Essentially, it should be highlighted that, on average,
across 1000 separate trials, the GWO and WOA algorithms
performed significantly better than the other approaches.
It also shows that there was no substantial difference between
the GWO and WOA algorithms, meaning that either algo-
rithms can be employed. It also shows that there was no
statistically significant difference in the performance of the
ABC, CSO, DE, firefly, GA, and PSO algorithms. As a result,
any algorithm from this collection of approaches can be put
for usage.

Finally, we performed statistical significance tests between
the run-times of the various algorithms, and the results are
shown in Table 13. Because the number of samples per
technique was fewer than 50 (see Table 8), the Dunnett’s T3
posthoc test was utilized, showing itself as a superior strategy
than the Games-Howell’s test in this circumstance. It is clear
that there was no substantial variation in the run-time of the
different algorithms, which strongly supports the notion that
adopting equal FCR across all approaches ensures fairness in
comparison. As a result, when it comes to selecting an MOA
for MIE on a run-time basis, anyMOA can be chosen without
sacrificing timing performance.

V. CONCLUSION
This article has investigated whether there exist any signif-
icant difference in the performance of different metaheuris-
tic optimization algorithms (MOAs) as applied for medical
image enhancement (MIE). To this effect, well-knownMOAs
were investigated for MIE based on some selected medical

images obtained from the Medpix database. Fairness was
achieved by terminating the different algorithms based on
the fitness computation rate (FCR), which ensures that the
objective function is consumed equally by all MOAs dur-
ing their different algorithmic processes. From an empirical
standpoint, and based on an average of 1000 Monte Carlo
independent trials, the GWO and WOA algorithms achieved
slightly better results than the other methods. However, there
was no substantial difference in performance among the other
MOAs, including the ABC, DE, CSO, GA, Firefly, and PSO
algorithms. Furthermore, there was no significant difference
in the performance of the GWO and WOA algorithms, thus
suggesting that any of both algorithms can be used for MIE
purposes. In terms of qualitative (i.e. visual) evaluation, there
was little to differentiate the performance of the various algo-
rithms. Furthermore, statistical analyses showed that there
was no statistically significant difference in the computing
times of the various methods. As a result, there may be no
discernible difference in adopting one MOA over another for
MIE applications. Nonetheless, the aim of this study merely
seeks to inspire new and wider investigations based on a
larger corpus of images, as well as based on the analysis of
several other MOAs, with the goal to either substantiate or
dispute the conclusions found herein.
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