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ABSTRACT Privacy protection, high labeling cost, and varying characteristics of seizures among patients
and at different times are the main obstacles to building seizure detection models. Considering these issues,
we propose a novel Mentor-Student architecture for Patient-Specific seizure detection (MS4PS). It contains
a new method of knowledge transferring called mentor-select-for-student, which exploits the knowledge
of a mentor model by using this model to select data for training a student model, making it possible to
avoid transferring patient data and the negative influence of transferring parameters/structures of pre-trained
models. It also contains a new method of active learning, which uses both an experienced mentor model and
a quick-learning student model to select high-quality samples for doctors to label. Each of the two models
is coupled with a particular sample selection strategy that combines uncertainty/certainty and the distance
between the unlabeled samples and labeled seizure samples. The proposedmethod can quickly train a suitable
detector for a patient at his/her first epilepsy diagnosis with the help of: (1) an experienced mentor model
that chooses the most category-certain electroencephalography (EEG) data segments; (2) a student model
(detector itself) that chooses the most category-uncertain EEG data segments; (3) doctors who label these
data segments selected by both the mentor model and student model. By replacing or improving the mentor
model and refining the historical models of patients when they come next time, the MS4PS system can be
sustainably promoted. The proposed method is tested on the CHB-MIT and NEO datasets, and the results
demonstrate its effectiveness and efficiency.

INDEX TERMS Active learning, epilepsy, mentor-student architecture, patient-specific, transfer learning.

I. INTRODUCTION
Epilepsy is a chronic neurological disorder of the brain that
causes death in many patients every year. If the symptoms
could be detected in a timely manner and patients receive
appropriate treatment, they are likely to live a normal life with
a high probability. Currently, many devices can record the
electroencephalography (EEG) of subjects, therefore, doc-
tors can check whether they have epilepsy and analyze their
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conditions using EEG. However, checking EEG signals is a
time-consuming and challenging task for doctors.

To relieve the burden on doctors and improve efficiency,
many machine learning-based methods have been proposed
to build automatic seizure detectors for EEG, such as the
dictionary-learning-based method [1], SVM-based method
[2], GMM-based method [3].

In recent years, with the surge in the development of deep
learning [4]–[6], many researchers [7]–[9] have attempted to
employ deep learning methods to train patient-independent
seizure detectors, and their works have shown great improve-
ment and potential. However, there are at least three main
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obstacles to building deep-learning-based seizure detectors:
privacy protection of patient data, high labeling costs, and the
varying characteristics of epilepsy EEG data.

The privacy protection of patient data and high label-
ing costs hinder the acquisition of sufficient training data.
To reduce the need for labeled data and improve the qual-
ity of labeled data, deep transfer learning [10] and deep
active learning (AL) [11] methods have been employed in
patient-independent seizure detection [12]–[15] and have
shown good performance.

The seizure characteristics vary among patients and even
at different times for the same patient. This makes it dif-
ficult for patient-independent seizure-detection models to
fit specific patients. Some research works [16]–[18] have
been done and proved that building a patient-specific seizure
detector for each patient seams more suitable than building
a patient-independent seizure detector for all patients. Con-
sidering that it is still difficult to train a suitable detector for
a specific patient who has no historically labeled data (e.g.,
when he/she sees a doctor for the first time) or does not have
enough historically labeled data, it is reasonable to employ
transfer learning. However, commonly used transfer learning
methods can lead to negative transfers [18], [19] when the
distributions of the source and target domains are different.

In light of these obstacles and solutions, we propose
a novel Mentor-Student architecture for Patient-Specific
seizure detection (MS4PS) that combines transfer learn-
ing and active learning. To the best of our knowledge,
no researchers have proposed this method for patient-specific
seizure detection.

Instead of transferring patients’ data or copying a pre-
trained model’s parameters/structures and then fine-tuning
[12]–[14], this method exploits the knowledge of a mentor
model by using the mentor model to select data for the learn-
ing of the student model. Transferring knowledge through
mentor-select-for-student makes it possible to avoid transfer-
ring patient data and the negative influence of transferring
parameters/structures (according to [18], [19] and our exper-
iments, transferring parameters/structures could be of little
help or even hinder the learning process in patient-specific
cases).

This method contains a new method of active learning,
which uses both an experienced mentor model and a quick-
learning student model to select samples for doctors to label.
Each of the two models is coupled with a particular sam-
ple selection strategy that combines the uncertainty/certainty
and the distance between the unlabeled samples and labeled
seizure samples. The new active learning method has the
potential to significantly reduce doctors’ burden of searching
for and labeling seizures in severely ill-balanced EEG data.

Overall, the proposed method could quickly train a good
student model for a specific patient at his/her first epilepsy
diagnosis with the help of: (1) an experienced mentor
model that chooses the most category-certain EEG data
segments; (2) a student model itself that chooses the most
category-uncertain EEG data segments; (3) doctors who label

these data segments selected by both the mentor model
and student model. These trained student models for spe-
cific patients would be saved, reused, and further trained
when these patients have an epilepsy diagnosis next time.
Moreover, the mentor model can be replaced and improved
when sufficient labeled data are collected. This means the
mentor-student system could work better and better.

The main contributions of this paper are as follows:
1) A novel method that combines transfer learning and

active learning with a mentor-student architecture for
patient-specific epilepsy detection is proposed. This
method makes training a patient-specific seizure detec-
tor easy and quick, and the mentor-student system
could be sustainably promoted.

2) A new knowledge transferring method, which uses a
mentor model to select data for student-model’s learn-
ing, is proposed for mentor-student system. It protects
patients’ privacy by not transferring their data and
avoids the negative influences of transferring model’s
parameters/structures.

3) A novel active learning method, which uses both an
experiencedmentormodel and a quick-learning student
model to select samples for doctors to label, is pro-
posed for the mentor-student system to relieve doctors’
burden of searching and labeling seizures in severely
ill-balanced EEG data.

On the CHB-MIT [20] and NEO [21] datasets, 39 dif-
ferent methods (including MS4PS methods, two state-of-
art transfer learning methods [12]–[14], two classic active
learning methods, and many other methods) are compared.
It should be known that the two transfer learning methods
(denoted in this paper by SM (TF)-R and SM (TAL)-R) are
not exactly the same as methods in [12]–[14] because to
make the comparison among 39 methods fairs, we force them
all to use our model and dataset. The SM (TF)-R method
replaces the source-model’s classifier with a task-specific
classifier (in [14], it is a SVM layer; in [12], [13], and
in this study, it is fully-connected and softmax layers) and
then fine-tunes this task-specific classifier; the SM (TAL)-R
method does the same but fine-tunes all the model’s layers.
The two classic active learning methods are random and
maximum entropy (denoted in this paper by S(TAL)-R and
S(TAL)-U). The top 5 of the 39 on Avg_F1 (average F1-score
over given budgets and patients) and the top 1 of the 39 on
Avg_seizures (average number of seizure samples selected
over given budgets and patients) are all MS4PS methods.
The best MS4PS method surpasses the two transfer learning
methods, random and maximum entropy by 30.5%, 26.7%,
19.3% and 9% on Avg_F1, and by 39, 39, 39, and 5 on
Avg_seizures. These results demonstrate the feasibility of
MS4PS for patient-specific seizure detection problems.

II. RELATED WORKS
A. PATIENT-SPECIFIC SEIZURE DETECTION
There are many works that study patient-independent seizure
detection, for example, [1] employs a real-time method

VOLUME 10, 2022 29647



S. Ma et al.: MS4PS With Combination of Transfer Learning and Active Learning

based on dictionary learning and sparse representation; [22]
employs a method based on a deep neural network that com-
bines a seizure representation part to eliminate inter-subject
noise and an attention mechanism part to enhance
interpretability.

To adapt to the variation in seizure characteristics among
patients and at different times, some patient-specific seizure
detection algorithms have been proposed. Most of them sup-
pose having enough labeled EEG data and try to improve
the performance of patient-specific detectors by using elab-
orate models and features, for example, [2] uses a group of
SVMs and features extracted through empirical mode decom-
position (EMD) and common space patterns (CSP); [17]
uses a voting SVM system and features containing both
the temporal-domain and spectral-domain information of
EEG; [23] uses a RVM model and the harmonic multiresolu-
tion and self-similarity-based fractal features from EEG data;
and [16] builds a predictor based on spatio-temporal-spectral
hierarchical GCN with an active pre-ictal interval learning
scheme (STS-HGCN-AL).

In contrast, our work supposes not having enough labeled
EEG data and tries to solve it with MS4PS that combines
transfer learning and active learning. To the best of our
knowledge, only a few works have considered the problem
of not enough labeled EEG data and try to solve it, for
example, [18] employs a probabilistic framework for training
a personalized neonatal seizure detector based on transfer
learning and semi-supervised learning. It uses a source-task
model (a patient-independent seizure detector) as the initial
target-task model (personalized seizure detector) and labels
specific patients’ EEG data with the source-task model when
doctors are absent. This work is the most relevant to ours.
However, our work transfers knowledge through mentor-
select-for-student rather than copying and refining model
parameters/structures, and we use the pre-trained (patient-
independent) model to select samples for active learning
rather than to provide a hypothesis label for semi-supervised
learning.

B. ACTIVE LEARNING
Active learning aims to alleviate the need for plenty of
labeled data in training a model by selecting the most infor-
mative data for labeling [11]. The most commonly used
active learning methods are uncertainty-based methods and
representativeness-based methods.

The uncertainty-based methods select the most uncertain
samples for the current model, making a quickmodel learning
process. The representativeness-based methods select data
that well represent the overall input patterns of unlabeled
data, reducing the redundancy of selected data. Although
they can achieve good results in many areas, they have
some weak points: uncertainty-based methods rely on a
not-lousy model and would select redundant samples [24];
the representativeness-based methods need more labeled
data than the uncertainty-based ones to make a model con-
verge. Therefore, methods that combine uncertainty and

representativeness usually yield better results [24], [25].
Combining different active learning strategies is popular and
valuable, so the combinations of uncertainty, certainty and
representativeness (measured by distance) are considered in
our work.

Few works have used active learning methods in seizure
detection. The work most similar to ours is the cost-sensitive
deep active learning method [15]. It integrates uncertainty,
misclassification cost and diversity to construct a utility
function for the samples-selection strategy in the labeling
process and develops a new generic double-deep neural net-
work (double-DNN) to obtain utility. The critical difference
between our work and the work in [15] is that our work
uses both models to select samples instead of using only one
model for selecting samples and the other for obtaining cost-
sensitive utility.

C. TRANSFER LEARNING
Transfer learning aims to reduce the need for labeled data in
the target domain by applying source domain data and source
domain model to the target domain [10].

The most commonly used transfer learning methods in
EEG data analysis are domain adaption, improved CSP algo-
rithms, deep neural network-based (DNN-based) algorithms,
and subspace learning, according to [19].

Ourwork employsDNN-based algorithms. There aremany
related works, for example, [12] uses ImageNet dataset to
pre-train googlenet, resnet101 and vgg19 as source domain
models, then replaces each source-domain-model’s classifier
layer with a task-specific classifier and uses EEG data to
fine-tune only the task-specific classifier; [13] does almost
the same as [12], but pre-trains different source domain
models; [14] uses ImageNet dataset to pre-train ten different
source domain models, then replaces each source-domain-
model’s classifier layer with two different kinds of task-
specific classifier, and at last uses EEG data to fine-tune all
the layers of the model or only fine-tune the task-specific
classifier.

These works focus on reusing the feature extractor
pre-trained with source domain data in the target model.
Meanwhile, they suppose that the labeled target domain
data are sufficient for fine-tuning. Unlike them, our work
trains a target model from scratch with the assistance of
the pre-trained source domain model and supposes that the
labeled data are not sufficient and should be accumulated
through active learning.

III. METHOD
As shown in Fig.1, the student model is a personalized model
for a patient. The main process for training and using this
model is as follows:

Firstly, the unlabeled EEG data segments of a specific
patient are added into the unlabeled data pool after data
processing (re-referencing and splitting), and if there are,
the patient’s historically labeled data and student model
are loaded from the Database and Modelbase, respectively;
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FIGURE 1. The structure of MS4PS.

Secondly, the segments from the unlabeled data pool and the
key segments (labeled seizure segments of this patient) from
the labeled data pool go through both the mentor model and
student model to get predictions; Thirdly, a batch of EEG
data segments is selected with specific active learning (AL)
strategies and sent to a doctor for labeling. Among those,
α ∗ batch_size segments are selected basing on predictions
from the mentor model, and (1 − α) ∗ batch_size segments
basing on predictions from the student model; Fourthly, the
doctor labels these selected EEG data segments and adds
them into the labeled data pool; Fifthly, all data in the labeled
data pool are used for training the student model, meanwhile,
updating the α according to (8). The process (including the
second, third, fourth and fifth steps) keeps iterating until
running out of the budget, saving the labeled data and trained
student model into the Database and Modelbase, respec-
tively. The pseudocode of the MS4PS method is presented
in Algorithm 1.

When a patient comes for the first-time checking, there
are no historically labeled data in the Database and trained
student model in the Modelbase for him/her. However, when
the patient comes for the second and the nth-time checking,
there are historically labeled data in the Database and a
trained student model in the Modelbase for him/her. These
historical data and model can be reloaded to further fine-tune
the student model and assist doctors’ diagnosis.

In the following, we will describe in detail the mentor
and student models, active learning strategies, knowledge
transferring from mentors to students, and how to calculate
the parameter α.

A. MENTOR MODEL AND STUDENT MODEL
1) MENTOR MODEL
A mentor model carries accumulated historical knowledge
from the EEG data of the patients. It can be obtained from
other institutions or trained with the accumulated EEG data of

Algorithm 1MS4PS Method
Input: budget of active learning Budget; unlabeled data

pool Du0; labeled data pool Dl0; Mentor modelM ;
Student model S0; AL strategy for Mentor model
f1; AL strategy for Student model f2; α← 0.5;
batch_size

Output: trained Student model ST (T = Budget);
labeled data pool DlT (T = Budget)

1: for t = 0 to Budget do
2: use f1 to select α * batch_size samples from Dut .
3: use f2 toselect (1−α)* batch_size samplesfromDut .
4: label the selected samples (denote them with Dst ).
5: Dlt+1 = Dlt + D

s
t

6: Dut+1 = Dut − D
s
t

7: train St with Dlt+1 to St+1
8: calculate α using (8)
9: end for

this institution. It can be any useful model, and in this paper,
we use a deep Convolutional Neural Network (CNN) trained
with the NEO dataset [21] as the mentor model.

2) STUDENT MODEL
For each patient, a student model should be built to capture
his/her personalized characteristics.When a patient comes for
the first-time checking, his/her specific student model must
be built from scratch or from a general model for all patients.
When the patient comes for the second and the nth time,
his/her historical student model could be reloaded and further
fine-tuned. A student model could be any useful model, and
in this paper, we use a deep CNN as the student model.

B. ACTIVE LEARNING STRATEGY
All active learning strategies try to select themost informative
samples for labeling. We name these strategies with their
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measurements for informativeness and these used in this
paper are as follows.

1) UNCERTAINTY STRATEGY
Here the uncertainty of each sample x for the current model
is measured using its entropy as

Uncertainty(x) = −
1∑
i=0

p(ci|x) ∗ log[p(ci|x)], (1)

where c0 is the normal category, and c1 is the seizure category
in the case of seizure detection.

The p(ci|x) can be calculated by softmax, as

p(ci|x) =
ezi∑1
j=0 e

zj
, i = 0, 1, (2)

where z0 and z1 are the outputs of the last fully-connected
layer of the model in this paper.

The uncertainty strategy selects the samples that are the
most uncertain or closest to the classification hyperplane
of the current model, as shown in Fig.2 (red dotted circle).
The uncertainty measurement can be calculated with either
a student model or a mentor model, and we intuitively think
that the model with a student model will be more useful for
MS4PS.

2) CERTAINTY STRATEGY
In contrast to the uncertainty measurement, minus entropy is
used to measure the certainty of each sample x for the current
model, as

Certainty(x) =
1∑
i=0

p(ci|x) ∗ log[p(ci|x)]. (3)

3) DISTANCE STRATEGY
It is well known that EEG samples of epilepsy are ill-
balanced, and seizure samples are more critical than normal
samples for model learning and doctors to analyze patients’
conditions. To select more seizure samples than normal, the
distance strategy employs Kullback-Leibler divergence to
measure the distance between EEG samples and seizure sam-
ples already labeled, and then selects samples of theminimum
distance value, as shown in Fig.2 (blue dotted circle). The
distance is defined as

D(x||DX ) =
1∑
i=0

p(ci|x)log[
p(ci|x)
q(ci|DX )

], (4)

where p(ci|x) is the prediction probability of sample x belong-
ing to class ci. And q(ci|DX ) can be calculated as

q(ci|DX ) =
1
|DX |

∑
x∈DX

p(ci|x), i = 0, 1, (5)

where DX represents all seizure samples in the labeled
data pool and |DX | is the number of labeled seizure
samples.

FIGURE 2. Schematic diagram of sample selection with different AL
strategies. The MUD AL strategy tends to select samples that are close to
both the labeled seizure samples and the classification hyperplane. The
MCD AL strategy tends to select samples that are close to the labeled
seizure samples and away from the classification hyperplane.

4) MIXTURE OF UNCERTAINTY/CERTAINTY STRATEGY AND
DISTANCE STRATEGY
The uncertainty/certainty measurement and distance mea-
surement can be mixed to obtain a better one as

MUD(x) = γUncertainty(x)+ (1− γ )D(x||DX ) (6)

or

MCD(x) = γCertainty(x)+ (1− γ )D(x||DX ), (7)

where γ ∈ [0, 1] is an empirical parameter, and we set it to
0.5 in this paper.

C. KNOWLEDGE TRANSFERRING AND PARAMETER α

Based on the mentor-student architecture, we propose a dif-
ferent way of knowledge transferring named mentor-select-
for-student, which exploits a mentor model’s knowledge by
using the mentor model to select data for student-model’s
learning and train a student model from scratch instead of a
model transferred from a mentor model.

Transferring knowledge through mentor-select-for-student
(not the patients’ data or model parameters/structures) makes
it possible to protect the patients’ privacy and avoid the neg-
ative influence of transferring parameters/structures. Institu-
tions that own superior knowledge can safely distribute their
models to help others.

Intuitively, the mentor model should select the most certain
samples for training a student model, just like a mentor
teaches students with his/her most certain knowledge, and the
student model should select the most uncertain samples for
training itself, just like a student studies the knowledge that
confuses him/her for capability improvement.

In our method, a student model learns from the data chosen
by a mentor model and itself, with the supervision of a doctor.
The influence of thementormodel would be less and less with
the performance of the student model being better and better.
It is controlled by parameter α as

α=

β N (seizure) = 0
N (seizure,M , t)

N (seizure,M , t)+ N (seizure, S, t)
N (seizure)! = 0,

(8)

where N(seizure, M, t) is the number of seizure sam-
ples selected by mentor model at budget t, N(seizure,
S, t) is the number of seizure samples selected by stu-
dent model at budget t, N(seizure) = N(seizure, M, t)+
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TABLE 1. Abbreviations.

N(seizure, S, t), and β is an empirical parameter for the sake
of N(seizure) = 0.

IV. EXPERIMENTS
To verify the performance of MS4PS, we design experiments
to simulate two kinds of scenarios:

1) patients come for the first-time checking, in which their
personalized models must be trained from scratch.

2) patients come for the second-time checking, in which
historical models and labeled data could be used for
them.

In each experiment, we try different settings to compare
and find the best one. Each setting is named with a three-
part pattern, ‘‘selection model(training method)-AL strat-
egy’’. For simplicity and clarity, some abbreviations are
used and all of them are shown in Table1. For example,
M-MCD&S(TAL)-MUD means such a setting: using both
a mentor model and a student model for selecting samples,
MCD AL strategy for mentor model and MUD AL strategy
for the student model, and training all of the layers of student
model; SM (TF)-R means that using the student model, which
loads the parameters of mentor model for sample selection,
R AL strategy for this model, and only training its fully-
connected layers.

A. DATA
1) DATA DESCRIPTION
The EEG datasets of CHB-MIT [20] and NEO [21] are used
in this paper. Both of them comply with the international 10-
20 system of EEG electrode positions and are sampled with
256hz. TheNEO dataset is labeled by three experts, therefore,
there are disagreements. The CHB-MIT dataset has definite
labels. In CHB-MIT, there are 24 folders for 23 patients (the
chb01 and chb21 are from the same patient. Here we regard
them as different patients), and each folder containsmany.edf.
In NEO, there are only one.edf for each patient. In this paper,

FIGURE 3. The structure of EEG channels. [21]

TABLE 2. Number of data segments of CHB-MIT.

CHB-MIT and NEO are used for training the student model
and mentor model, respectively.

2) DATA PROCESSING
Firstly, the data of CHB-MIT and NEO are re-referenced into
the same channels: Fp1-F7, F7-T3, T3-T5, T5-O1, Fp1-F3,
F3-C3, C3-P3, P3-O1, Fz-Cz, Cz-Pz, Fp2-F4, F4-C4, C4-P4,
P4-O2, Fp2-F8, F8-T4, T4-T6, and T6-O2, as shown in Fig.3.
Secondly, the NEO dataset is relabeled with such rule: for
each duration of EEG data, if two or three experts annotated
it as seizure, it would be annotated with the seizure-category
label and otherwise annotated with the normal-category label.
Then, each.edf of CHB-MIT and NEO is split into seizure
durations and normal durations. Finally, each duration of
EEG data is split into 10-seconds segments. Seizure duration
is split with an overlapping of 8 seconds and normal duration
with no overlapping. The statistics of segments are shown in
Table2 and Table3.

B. STUDENT MODEL AND MENTOR MODEL
The same model structure (Fig.5) is used for both the student
model and the mentor model.

1) MODEL INPUT
In this paper, the raw data format is chosen as the input of the
model, although there are other commonly used formats such
as frequency features [26] and spectrograms [27]. For each
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TABLE 3. Number of data segments of NEO.

FIGURE 4. Model input schematic.

FIGURE 5. Deep neural network architecture.

EEG segment, the 18 channels of 1-D time-domain signals
are stacked in a specific order to form a 2-D matrix (Fig.4)
which contains the information of both the time and spatial
domains. And as the input of the model used in this paper,
the matrix has a shape of 18× 2560.

2) MODEL STRUCTURE
To effectively extract the features in a 2-D input format,
a deep CNN [28] is used. It consists of 5 convolutional blocks,
two fully-connected blocks, and a softmax block, as shown in
Fig.5. The details are provided in the Appendix.

C. HOW TO GET MENTOR MODEL
A deep CNN, as shown in Fig.5, is trained with the NEO
[21] dataset to be the mentor model. All seizure segments
and normal segments that are randomly sampled and twice as
many as the seizure segments are used for training. Themodel
is trained until the performance could not be improved. The
Adam algorithm is chosen as the optimization algorithm. The
learning rate is set to 0.0001. And the cross-entropy function
is selected as the loss function.

D. EVALUATION CRITERIA
Two different performance metrics that cover different
demands are considered here.

1) F1-SCORE
If a relative adequate test dataset can be obtained for each
patient, as for the selected patients in this paper from
CHB-MIT, the F1-score is a good metric for evaluating the
performance of a student model. The F1-score is a commonly
used metric that well balances Recall and Precision as the
harmonic mean of them, and is defined as

F1− score =
2 ∗ Recall ∗ Precision
Recall + Precision

, (9)

where Recall = TP/(TP+FN) and Precision = TP/(TP+FP),
TP (true positive) is the number of segments correctly
detected as the seizure class, FN (false negative) is the number
of segments incorrectly detected as the normal class, TN (true
negative) is the number of segments correctly detected as
the normal class, and FP (false positive) is the number of
segments incorrectly detected as the seizure class.

2) #seizure/B
In practice, when training a patient-specific model for the one
who comes for checking, it is hard to get a test dataset for
calculating F1-score on it. In this case, the number of seizure
samples detected in a given Budget B (#seizure/B) could be a
good metric to evaluate the performance of a student model.
It is available during the process of a doctor’s diagnosis.
Meanwhile, it is intelligible and friendly to the doctor. It could
be defined as

#seizure/B =
B∑
k=1

(#seizure)k , (10)

where (#seizure)k is the number of seizure segments detected
in the kth AL loop. In this paper, B is set to 10 for the experi-
ments of the first-time checking and to 3 for the experiments
of the second-time checking.

3) AVERAGE METRICS
To alleviate the bias of performance caused by random fac-
tors, the average metrics will be employed as

Avg_F1 =
1

T ∗ P ∗ B

T∑
i=1

P∑
j=1

B∑
k=1

F1− scoreijk (11)

and

Avg_seizures =
1

T ∗ P

T∑
i=1

P∑
j=1

B∑
k=1

(#seizure)ijk , (12)

where T is repeat times of experiment (T= 5), P is the number
of patients (P = 23 or P = 1), and B is the Budget (B =
10 for the first-time checking and B = 3 for the second-time
checking).

E. THE FIRST TIME CHECKING
In this section, experiments are assumed to be in such a
scenario: patients come for the first-time checking, in which
their personalized models must be trained from scratch.
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FIGURE 6. Data for the first-time checking.

1) TARGET
The experiments are designed to answer the following
questions:

1) Comparing with training a student model from scratch,
could the common knowledge transferring method,
copying and refining parameters of a pre-trained
model, bring improvement for patient specific seizure
detection?

2) Of the many different AL methods composed by cou-
pling different models (such as S, SM , M, and their
combination) with element sample selection strategies
(as described in Section III.B), which is the best for
MS4PS?

3) Does the method of transferring knowledge through
mentor-select-for-student work well in training good
patient-specific seizure detectors?

4) Is the distance strategy (proposed in Section III.B)
helpful in MS4PS?

2) DATA PREPARING
The CHB-MIT dataset is used for training the student model.
Because chb16 has too few seizure segments (see Table2),
it is ignored, and so at last, there are 23 patients’ data for the
experiments. As shown in Fig.6, for each patient, all segments
are used. In each experiment, the segments of each patient
are shuffled and divided into a training dataset and a testing
dataset with 80% and 20% of the total, respectively.

3) STUDENT MODELS
There are two ways to obtain an initial student model: using
an empty model (denoted as S) and transferring from other
pre-trained models such as mentor model(denoted as SM ).
For the empty model S, we train all its layers (denoted
as S(TAL)). For SM , we fine-tune all its layers (denoted
as SM (TAL)) or fine-tune only the fully-connected layers
(denoted as SM (TF)).

4) ACTIVE LEARNING METHODS
Five different element sample selection strategies are cho-
sen here, and they are Random active learning strategy (R),
Uncertainty active learning strategy (U), Certainty active
learning strategy (C), Mixture of Uncertainty and Distance
active learning strategy (MUD) andMixture ofCertainty and
Distance active learning strategy (MCD).

We select five different models (S(TAL), SM (TAL),
SM (TF), M&SM (TAL), and M&S(TAL)) to couple with the
above element strategies for sample selection, getting dozens
of different AL methods totally.

FIGURE 7. Data for the second-time checking. For each patient, only the
EEG data containing seizure are used and they are chronologically divided
into two groups. The first group (labeled by black dot rectangles) is used
for simulating the first-time checking, and the second (labeled by red dot
rectangles) for simulating the second-time checking.

5) OTHER SETTINGS
The experiments are repeated 5 times to alleviate the influ-
ence of random factors. In each experiment, the studentmodel
is randomly initialized, Budget is set to 10, batch_size is set
to 32, training times (epoch) is set to 10, and the learning
rate is set to 0.0001. The Adam algorithm is chosen as the
optimization algorithm and cross-entropy as the loss function.

F. THE SECOND TIME CHECKING
In this section, experiments are assumed to be in such a sce-
nario: patients come for the second-time checking, in which
historical models and labeled data could be used for them.

1) TARGET
The experiments are designed to answer the following:

1) Does fine-tuning the historical model work better than
retraining a new model from scratch for MS4PS?

2) Of the two methods, reusing the historically labeled
segments and not using these segments, which is better
for MS4PS?

3) Could the student model get sustained promotion
through MS4PS, when patients come more times and
his/her data are accumulated more and more?

2) DATA PREPARING
The CHB-MIT dataset of 23 patients (except chb16) is
used here. For each patient, only the EEG data contain-
ing seizure are used, and they are chronologically divided
into two groups (see Fig.7): the first one is used for sim-
ulating the first-time checking (with the same setting as E.
THE FIRST TIME CHECKING) to get a historical stu-
dent model and labeled data; and the second for simulating
the second-time checking. In each experiment, segments of
the second group are shuffled and divided into a training
dataset and a testing dataset with 80% and 20% of the total,
respectively.

3) OTHER SETTINGS
The experiments are repeated 5 times to alleviate the influ-
ence of random factors. In each experiment, the studentmodel
is randomly initialized, Budget is set to 3, batch_size is set
to 32, training times (epoch) is set to 7, and the learning
rate is set to 0.0001. The Adam algorithm is chosen as
the optimization algorithm, and cross-entropy as the loss
function.
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FIGURE 8. The Avg_F1 (the F1-score averaged over all patients and five
independent repeats) curves of all 39 methods in Table4. The legends only
show nine methods, including five MS4PS methods, two commonly used
active learning methods (S(TAL)-R, S(TAL)-U), and two transfer learning
methods (SM (TAL)-R, SM (TF)-R). The color shade shows the standard
deviation over five independent repeats. It should be known that the two
transfer learning methods (SM (TAL)-R, SM (TF)-R) are not exactly the same
as methods in [12]–[14], because to make the comparison among
39 methods fair we force them all use our DNN models and dataset.

V. RESULTS AND ANALYSIS
In this section, we would analyze the results of experi-
ments and answer the questions proposed in section IV
EXPERIMENTS.

A. THE FIRST TIME CHECKING
1) Avg_F1
For each patient, the Avg_F1 of different AL methods are
shown in Table10-Table15 of the Appendix, and the F1-score
curves are shown in Fig.9-Fig.14 of the Appendix. The
Avg_F1 is 0 for patients 4, 6, and 21 in almost every experi-
ment. The main reason for that is that it is too hard to select
seizure segments of these patients for training the model due
to the severe imbalance between seizure segments and normal
segments, as shown in Table2.

Table4 shows the Avg_F1 (P=23, T=5, B=10) and Fig.8
shows the Avg_F1 (P=23, T=5) curves of all 39 methods in
Table4. It could be found that when coupling with a same
AL strategy, SM (TF) gets worse performances than SM (TAL).
It implies that the difference between the NEO dataset and
CHB-MIT dataset is so significant that the feature extractor
(the convolutional layers in this paper) trained with segments
of the NEO dataset could not be used directly for segments
of the CHB-MIT dataset. Meanwhile, when coupling with
most AL strategies, the empty model S works better than
SM . Model S gets its top Avg_F1 0.241 with S(TAL)-U, and
SM gets its top Avg_F1 0.218 with SM (TAL)-C. The above
results show that transferring knowledge with the parameters
of the pre-trained model (denoted as SM ) could not bring
improvement for patient-specific seizure detection models in
this paper. This finding is consistent with that of [18].

Of all the cases, the top 5 Avg_F1 performances
(0.334, 0.322, 0.287, 0.278, and 0.263) are obtained
by M-MCD&S(TAL)-MUD, M-C&S(TAL)-U, M-MCD&
S(TAL)-MCD, M-C&S(TAL)-C and M-MCD&S(TAL),

respectively. These top 5 settings all use our new knowledge
transferring method, mentor-select-for-student. It proves that
the proposed knowledge transferring method of MS4PS
really works well.

It could be found that coupling model S with U/MUD
gets better performance than with other AL strategies, and
coupling model M with C/MCD gets better performance than
with other AL strategies. That is consistent with our intuition
(see III. Method).

In addition, it is hard to say the distance strategy helps
all models, and it is difficult and meaningless to ana-
lyze the results one patient by one patient. Nevertheless,
M-MCD&S(TAL)-MUD and M-MCD&S(TAL)-MCD out-
perform the M-C&S(TAL)-U and M-C&S(TAL)-C with an
excess of 0.012 and 0.009 on Avg_F1, respectively, suggest-
ing that the distance strategy really does some help in these
cases.

2) Avg_seizures
Table5 shows the Avg_seizures of different AL methods.
It could be found that theM-MCD&S(TAL)-MUD selects the
most, 45, seizure segments. If we regard the ALmethods with
R as a basic-level doctor who tries to find seizure segments,
and other AL methods as higher-level doctors, then from
Table6, it could be found that the M-MCD&S(TAL)-MUD
could promote the efficiency of diagnosis with 7.5 times of
that of a basic-level doctor.

From the above results and analysis of the first-time
checking, it could be verified that the
M-MCD&S(TAL)-MUD is the best in this paper, not only
on Avg_F1 but also on Avg_seizures. Furthermore, because
M-MCD&S(TAL)-MUD does select more seizure segments
thanM-C&S(TAL)-U, it could be confirmed that the distance
strategy makes sense.

B. THE SECOND TIME CHECKING
Note that only the top 1 ALmethod of the first-time checking
is employed in the second-time checking.

1) Avg_F1
Table7 shows the Avg_F1 of the second-time checking. It is
evident that the reloaded student model gets better perfor-
mance than the empty student model in the same conditions.
When the segments of the first-time checking are used to
assist the second-time checking, there are performance pro-
motions of 0.059 and 0.262 for the reloaded student model
and the empty student model, respectively.

2) Avg_seizures
Table8 shows Avg_seizures of the second-time checking. The
M-MCD&S(TAL)-MUD with the reloaded student model
and the segments of the first-time checking selects 24 seizure
segments, getting the best performance.

M-MCD&S(Fixed)-MUD means that the student model
would not be trained in the second-time checking, simulating
an actual scenario where there is not enough computing
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TABLE 4. Avg_F1 (P = 23, T = 5, B = 10) of the first-time checking. The standard deviation information are calculated over T(independent repeats).

TABLE 5. Avg_seizures (P = 23, T = 5, B = 10) of the first-time checking (Avg_S stands for Avg_seizures). The standard deviation information are
calculated over T (independent repeats).

TABLE 6. The efficiency of diagnosis. Regarding the AL methods with R as basic-level doctors with efficiency ratio 1.

TABLE 7. Avg_F1 of the second-time checking (T = 5, P = 23, B = 3). The
field name ‘‘segment’’ means using historical segments, ‘‘non-segment’’
means not using historical segments. ‘‘Reloaded’’ means using the
reloaded student model. ‘‘Empty’’ means using an empty student model.

resource for training a model online. In that case, a slight
performance degradation (in Table8, 20 instead of 24 seizure
segments are selected) would happen.

Meanwhile, it could be found that using historically labeled
segments of the first-time checking always gets a larger
or equal number of seizure segments than without using
them.

From the above results and analysis of the second-time
checking, it could be verified that the reloaded student
model is better than the empty student model, and reusing
historically labeled segments would help improve perfor-
mance, revealing that the patient-specific models would
get sustained promotion through MS4PS when patients
come more times and their data are accumulated more
and more.

TABLE 8. Avg_seizures of the second-time checking. The field name
‘‘segment’’ means using historical segments, ‘‘non-segment’’ means not
using historical segments. ‘‘Reloaded’’ means using the reloaded student
model. ‘‘Empty’’ means using an empty student model.
M-MCD&S(Fixed)-MUD means that the student model would not be
trained.

C. FURTHER DISCUSSION
Considering the complexity of the method we proposed,
we would make a further discussion to explain how and why
MS4PS could effectively help to obtain advances and better
effects, and support the reasoning with the results shown in
Table4-5 and Fig.8. We think there are several factors that
help MS4PS to obtain advances.

1) The knowledge transferring method named mentor-
select-for-student. Transferring knowledge through
mentor-select-for-student makes it possible to avoid
the negative transfer [19] of transferring parame-
ters/structures. In our experiments (see Table4), the
negative transfer is that the SM (TAL)-R and SM (TF)-R
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TABLE 9. The details of the deep neural network used in this paper as student model and mentor model.

TABLE 10. Avg_F1 (P = 1, T = 5, B = 10) of the first-time checking.
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TABLE 11. Avg_F1 (P = 1, T = 5, B = 10) of the first-time checking.

TABLE 12. Avg_F1 (P = 1, T = 5, B = 10) of the first-time checking.
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TABLE 13. Avg_F1 (P = 1, T = 5, B = 10) of the first-time checking.

TABLE 14. Avg_F1 (P = 1, T = 5, B = 10) of the first-time checking.
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FIGURE 9. F1-score curves of different AL methods for different patients in their first-time checking. For AL method, 1 is S(TAL)-R, 2 is
SM (TAL)-R, 3 is SM (TF)-R, 4 is M-R&S(TAL), 5 is M-R&SM (TAL), 6 is M-R&S(TAL)-R, 7 is M-R&SM (TAL)-R.
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FIGURE 10. F1-score curves of different AL methods for different patients in their first-time checking. For AL method, 1 is S(TAL)-U, 2 is
SM (TAL)-U, 3 is SM (TF)-U, 4 is M-U&S(TAL), 5 is M-U&SM (TAL), 6 is M-U&S(TAL)-U, 7 is M-U&SM (TAL)-U.
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FIGURE 11. F1-score curves of different AL methods for different patients in their first-time checking. For AL method, 1 is S(TAL)-C, 2 is
SM (TAL)-C, 3 is SM (TF)-C, 4 is M-C&S(TAL), 5 is M-C&SM (TAL), 6 is M-C&S(TAL)-C, 7 is M-C&SM (TAL)-C.
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FIGURE 12. F1-score curves of different AL methods for different patients in their first-time checking. For AL method, 1 is S(TAL)-MUD, 2 is
SM (TAL)-MUD, 3 is SM (TF)-MUD, 4 is M-MUD&S(TAL), 5 is M-MUD&SM (TAL), 6 is M-MUD&S(TAL)-MUD, 7 is M-MUD&SM (TAL)-MUD.
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FIGURE 13. F1-score curves of different AL methods for different patients in their first-time checking. For AL method, 1 is S(TAL)-MCD, 2 is
SM (TAL)-MCD, 3 is SM (TF)-MCD, 4 is M-MCD&S(TAL), 5 is M-MCD&SM (TAL), 6 is M-MCD&S(TAL)-MCD, 7 is M-MCD&SM (TAL)-MCD.
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FIGURE 14. F1-score curves of different AL methods for different patients in their first-time checking. For AL method, 1 is M-C&S(TAL)-U, 2 is
M-MCD&S(TAL)-MUD, 3 is M-C&SM (TAL)-U, 4 is M-MCD&SM (TAL)-MUD.
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TABLE 15. Avg_F1 (P = 1, T = 5, B = 10) of the first-time checking.

work worse than S(TAL)-R, implying that the trans-
ferred model SM is of no help and even hinders the
learning process in the patient-specific case.

2) The AL method using both a mentor model and a
student model to select samples. As shown in Table4
and Fig.8, the top 5 of 39 methods are all using both
a mentor model and a student model, implying that
using the double-model has more potential of perfor-
mance improvement than using only one model. In the
top 2 MS4PS methods, M-MCD&S(TAL)-MUD and
M-C&S(TAL)-U, the mentor model is coupled with
certainty-based AL methods, and the student model
is coupled with uncertainty-based AL methods. That
is consistent with our intuition that the mentor model
should select the most certain samples for training the
student model, just like a mentor teaches students with
his/her most certain knowledge, and the student model
should select the most uncertain samples for training
itself, just like a student studies the knowledge that
confuses him/her for capability improvement.

3) The distance strategy for solving the problem of
ill-balanced EEG samples. The EEG samples of
epilepsy are ill-balanced, and seizure samples are more
critical than normal samples for model learning and
for doctors to analyze patients’ conditions. To select
more seizure samples than normal, we introduce the
distance strategy. As shown in Table4 and Table5,
M-MCD&S(TAL)-MUD gets a higher Avg_F1 and

selects more seizure samples than M-C&S(TAL)-U.
So, the distance strategy does make sense.

As shown in Fig.8, the top 5 of 39 methods in Table4
are all MS4PS methods. The more factors are included, the
better performance the MS4PS methods will get. Combin-
ing all the above factors makes the best MS4PS method,
M-MCD&S(TAL)-MUD.

VI. CONCLUSION
Themain obstacles to building good seizure detection models
are privacy protection, high labeling costs, and the varying
characteristics of seizures among patients and at different
times.

In this paper, we have proposed a novel mentor-student
architecture for patient-specific seizure detection. It contains
a new way of knowledge transferring named mentor-select-
for-student, which exploits mentor-model’s knowledge by
using a mentor model to select data for student-model’s
learning, making it possible to protect the data of patients
and avoid the negative influence of transferring parame-
ters/structures of pre-trained models. It also contains a new
way of active learning, which uses both an experienced men-
tor model and a quick-learning student model to select sam-
ples for doctors to label, and each of these with a particular
sample selection strategy that combines uncertainty/certainty
and the distance between unlabeled samples and labeled
seizure samples.
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The proposed method could quickly train a suitable
detector for a patient at his/her first epilepsy diagno-
sis, with the help of: (1) an experienced mentor model
that chooses the most category-certain EEG data seg-
ments; (2) a student model (detector itself) that chooses the
most category-uncertain EEG data segments; (3) the doctors
who label these data segments selected by both the mentor
model and student model. By replacing or improving the
mentor model and refining the historical models of patients
when they come next time, the MS4PS system could be
sustainably promoted.

Except for the potential advantages in protecting
the privacy of patients, getting good performance for
patient-specific seizure detection, and sustainably capability
promoting, the MS4PS has another merit, it could be easily
generalized to any other object-specific problems that suffer
similar obstacles to patient-specific seizure detection, for
example, patient-specific depression detection.

There are still some insufficiencies in this paper, such
as (1) the labeled seizure segments are too few for
some patients in the CHB-MIT, which causes zero per-
formance for them in almost every experiment, drag-
ging down the overall performance of MS4PS. (2) The
primary attention is paid to verifying the feasibility of
MS4PS rather than improving seizure detection perfor-
mance. Further performance improvement could be made
by elaborately designing deep neural networks and fea-
ture inputs for seizure detection, which will be one of our
future works.

APPENDIX
In this section, we will explain why the parameters Budget
and β are set such values in this paper, and show the further
details of the DNN model and results.

A. BUDGET
We set the Budget to a not big number, 10, in THE FIRST
TIME CHECKING. There are two main reasons for this:
(1) most patients in the CHB-MIT have a few of seizure
segments (see Table2). (2) A good student model (seizure
detector) should select seizure samples out of EEG data as
fast as possible. We set the Budget to 3 in THE SECOND
TIME CHECKING, mainly because that there is only a
smaller number of segments left for simulating the second
time checking, after using some for simulating the first time
checking (see Fig.7).

B. β

In our works, we set the β to 0.5. This is because when
neither the mentor model nor the student model could select
seizure segments, we should let both of them have an equal
opportunity to make a tentative choice.

C. DETAILS OF DNN
The details of the deep neural network are shown
in Table9.

D. DETAILS OF RESULTS
Table4 has shown the Avg_F1 averaged over 23 patients,
5 repeat times and 10 budgets, for 39 different AL methods.
Here, the 39 different AL methods are divided into 6 sub-
groups. Table10-Table15 show the Avg_F1 averaged over
each patient, 5 repeat times and 10 budgets. And Fig.9-Fig.14
show F1-score curves along Budget, averaged over each
patient and 5 repeat times.
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