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ABSTRACT In this paper, we propose a conversion method from pipelined synchronous Register Transfer
Level (RTL) models into pipelined asynchronous RTL models with bundled-data implementation. To know
data-path resources controlled by each pipeline stage, the proposed method generates a control data flow
graph (CDFG) from synchronous RTL models. After generating the CDFG, the proposed method generates
asynchronous RTL models by analyzing each pipeline stage on the CDFG, assigning asynchronous control
modules, and connecting the control modules to the data-path resources. In addition, we also propose
optimization methods during the conversion. In the experiment, we converted four pipelined synchronous
RTL models into pipelined asynchronous ones. In addition, we performed logic synthesis for the converted
asynchronous RTL models to check the quality of the asynchronous RTL models. The synthesized asyn-
chronous circuits without the optimization methods could reduce the energy consumption by 1.47% on
average compared to synchronous circuits. Moreover, the optimization methods could reduce the energy
consumption by 15.12% on average compared to synchronous circuits. Furthermore, the optimization
methods reduced the energy consumption by up to 34.72% compared to asynchronous circuits without the

optimization methods.

INDEX TERMS Asynchronous circuits, RTL models, conversion, low power.

I. INTRODUCTION

Most of the digital integrated circuits used in computer sys-
tems are synchronous circuits. In synchronous circuits, circuit
components are controlled by global clock signals. When
the semiconductor miniaturization technology is advanced
more and more, the power consumption of clock networks
becomes high because clock signals with high frequency are
distributed to a wide area.

In asynchronous circuits, circuit components are controlled
by local handshake signals or self-timed signals instead of
global clock signals. Therefore, asynchronous circuits are
potentially low power consumption and low electromagnetic
interference compared to synchronous circuits. However, the
design of asynchronous circuits is more difficult than the
design of synchronous circuits. According to the selection of
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data encoding, handshake protocol, and delay model, design
methods and design constraints are different. In addition,
Electronic Design Automation (EDA) tools to support the
design of asynchronous circuits are insufficient.

To facilitate the design of asynchronous circuits, conver-
sion methods from synchronous Gate-Level (GL) netlists
into asynchronous ones were proposed in [1]-[5]. In the
GL conversion, D flip-flops (DFFs) in synchronous GL
netlists synthesized by a synthesis tool are converted into
master-slave latches. The converted latches are controlled by
inserting latch controllers based on local handshake signals.
However, logic optimization considering the characteristics
of asynchronous circuits cannot be performed, because logic
synthesis is performed for synchronous Register Transfer
Level (RTL) models with a clock constraint.

We proposed a conversion method from synchronous RTL
models into asynchronous ones in [22]. Compared to the GL
conversion methods, we can optimize asynchronous circuits.
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For example, operations at each cycle can be executed at their
delay using local handshake signals or self-timed signals in
asynchronous circuits. For the GL conversion methods, the
delays of operations at each cycle are equalized because logic
synthesis is performed for synchronous RTL models with a
clock constraint. For the RTL conversion method, the delays
of operations at each cycle can be changed because logic
synthesis is performed for asynchronous RTL models with
different delay constraints at each cycle.

However, the RTL conversion method in [22] cannot deal
with pipelined synchronous RTL models. Actually, pipelined
synchronous circuits are used to improve the performance
in many applications. Hence, by converting pipelined syn-
chronous RTL models into pipelined asynchronous ones,
we can design low power circuits more than pipelined syn-
chronous circuits.

In this paper, we propose a conversion method from
pipelined synchronous RTL models into pipelined asyn-
chronous RTL models. The proposed method is an extension
of [22]. To know which data-path resources in pipelined syn-
chronous RTL models are controlled at each pipeline stage,
we extend [22] to generate a control data flow graph (CDFG)
from pipelined synchronous RTL models. In addition, to deal
with pipeline stalls, the proposed method generates a CDFG
including conditions that pipeline stages stall the operations.
After generating the CDFG, the proposed method assigns
asynchronous control modules by analyzing each pipeline
stage in the CDFG. Then, the proposed method generates
asynchronous RTL models by connecting the control mod-
ules to the data-path resources.

On the other hand, the quality of asynchronous circuits
from the RTL conversion depends on the representation style
of the synchronous RTL models. To obtain the high quality of
asynchronous circuits, we also propose optimization methods
during the RTL conversion. The optimization methods are
based on [24]. In addition, in this paper, we propose a new
optimization method to convert DFFs into D latches to reduce
the dynamic power consumption of registers.

The main contributions of this paper are as follows.

1) The proposed method converts pipelined synchronous
RTL models to pipelined asynchronous RTL ones,
enabling different input intervals and pipeline stalls.

2) The proposed method generates optimized asyn-
chronous RTL models in terms of circuit area, dynamic
power consumption, and energy consumption.

The rest of this paper is organized as follows.
Section 2 describes related work. Section 3 describes asyn-
chronous circuits with bundled-data implementation used
in this work. Section 4 describes the overview of the RTL
conversion method proposed in [22]. Section 5 describes
the proposed RTL conversion method for pipelined syn-
chronous RTL models. Section 6 describes the experimental
results. Finally, section 7 describes the conclusion and future
work.
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Il. RELATED WORK

To design asynchronous circuits, design methods based on the
design flow for synchronous circuits were proposed. In this
section, we describe the differences between these methods
and our proposed method.

Conversion methods from synchronous GL netlists into
asynchronous GL netlists with bundled-data implementa-
tion were proposed in [1]-[5]. Branover et al. [1] replaces
each register in synchronous GL netlists synthesized by a
commercial synthesis tool into a pair of latches with corre-
sponding latch controllers based on Doubly-Latched Asyn-
chronous Pipeline (DLAP). Similarly, [2]-[4] are approaches
to replace DFFs in synchronous GL netlists into master-slave
latches with corresponding latch controllers. These methods
are called Desynchronization. A tool which automatically
performs Desynchronization was developed in [5].

On the other hand, conversion methods from synchronous
GL netlists into dual-rail asynchronous GL netlists were
proposed in [6]-[10]. Zhou et al. [6] generates dual-rail
asynchronous circuits by replacing gates in synchronous GL
netlists with gates in an asynchronous library. A toolset called
Uncle (Unified NULL Convention Logic Environment)
which generates asynchronous circuits based on Null Con-
vention Logic (NCL) [11], [12] was proposed in [7]. Uncle
generates asynchronous circuits by expanding single-rail
netlists to dual-rail netlists and generating acknowledgment
networks. Similarly, design flows for asynchronous circuits
based on NCL were proposed in [8] and [9]. In addition, [10]
is a compiler to generate Quasi-Delay-Insensitive (QDI) cir-
cuits using NCL gates or Differential Cascade Voltage Swing
Logic (DCVSL) gates.

Compared to [1]-[10] where the GL conversion is the tar-
get, we focus on the RTL conversion. The RTL conversion has
advantages compared to the GL conversion. As an example,
we can generate optimized asynchronous circuits (e.g., per-
formance, area, or power consumption) by performing logic
synthesis assigning path delay constraints for asynchronous
RTL models.

In contrast, a synthesis flow called Pulsar-F which gen-
erates asynchronous circuits based on QDI circuits was pro-
posed in [13]. Sartori et al. [13] is based on the Pulsar flow
described in [14]. Pulsar-F accepts RTL models which are
treated using commercial synthesis tools such as Cadence
Genus. It can automatically generate optimized asynchronous
circuits from RTL models and cycle time constraints. How-
ever, to achieve better performance and area results for QDI
circuits, it uses a specific cell library. Compared to [13], [14],
in this paper, the target asynchronous circuit is bundled-data
implementation and the target library is a standard cell library.

In addition, as related work, design flows for asynchronous
circuits were proposed in [15], [16], and [21]. In [15], a design
environment called Proteus was proposed. Proteus synthe-
sizes synchronous GL netlists from synchronous RTL models
obtained from Communicating Sequential Processes (CSP)
models. Then, Proteus translates the synchronous GL netlists
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to asynchronous GL netlists. In [16], a design environment
called TiDE was proposed. TiDE synthesizes handshake cir-
cuits from high-level languages called Haste. Then, TiDE
generates asynchronous circuits from the handshake circuits.

Furthermore, synthesis methods for asynchronous RTL
models from VHDL behavior models were proposed in
[17]-[19]. Garcia et al. [17] generates locally-clocked asyn-
chronous circuits by generating data-path resources and
asynchronous controllers based on Extended Burst-Mode
(XBM) [20]. A tool called VHDLASYN which automatically
generates an asynchronous RTL model using [17] was devel-
oped in [18]. On the other hand, a synthesis system to syn-
thesize an asynchronous circuit called MOODs was proposed
in [19]. For a VHDL behavior model, MOODs generates
an asynchronous RTL model by operation scheduling and
resource allocation.

In [15]-[19], the target is not the conversion from syn-
chronous circuits to asynchronous circuits. These methods
directly generate asynchronous circuits from behavioral mod-
els through operation scheduling of asynchronous circuits
and synthesis of asynchronous controllers. In this paper,
we focus on the conversion from synchronous circuits into
asynchronous circuits.

As another research, a design flow for asynchronous cir-
cuits was proposed in [21]. The design flow accepts a design
language called ACT (for asynchronous circuit toolkit). The
ACT supports representing circuits at several levels such
as Communicating Hardware Process (CHP), handshaking
expansion (HSE), GL, and transistor-level. For example,
a CHP description is transformed into a GL description. Com-
pared to [21], we focus on the conversion from synchronous
circuits into asynchronous circuits at RTL.

This paper is an extension of [22]-[24]. Semba and
Saito [22] converts non-pipelined synchronous RTL models
into non-pipelined asynchronous ones. To deal with vari-
ous synchronous RTL models, the RTL conversion method
generates intermediate representations from the synchronous
RTL models. Then, the RTL conversion method generates the
asynchronous RTL models from the intermediate representa-
tions. However, there is a problem that the RTL conversion
method cannot deal with pipelined synchronous RTL models.
To solve this problem, [23] converts pipelined synchronous
RTL models into pipelined asynchronous ones. However,
there is a restriction that the input interval of pipeline circuits
is one cycle in [24]. In this paper, there is no such restric-
tion. On the other hand, [24] proposed optimization methods
during the RTL conversion [22] to obtain the high quality
of asynchronous circuits. In this paper, we also propose a
conversion from DFFs to D latches to optimize the area of
registers which is not described in [24].

Ill. ASYNCHRONOUS CIRCUITS WITH BUNDLED-DATA
IMPLEMENTATION

Bundled-data implementation is one of the data encoding
schemes in asynchronous circuits. Figure 1 shows asyn-
chronous circuits with bundled-data implementation. In the
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FIGURE 1. Asynchronous circuits with bundled-data implementation.

bundled-data implementation, a one-bit signal is represented
by one signal. The timing for writing data to registers is
guaranteed by delay elements on request signals in a control
circuit. Hence, the performance of the bundled-data imple-
mentation depends on the delay of the data-path, and the
control-path is delay-matched to the data-path.

A. CIRCUIT MODEL USED IN THIS WORK

Figure 2(a) shows the circuit model of bundled-data imple-
mentation used in this work. This circuit model consists of a
data-path circuit and a control circuit.

Control circuit Data-path circuit
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FIGURE 2. Asynchronous circuits with bundled-data implementation
used in this work: (a) circuit model and (b) timing diagram of ctrl;.

The data-path circuit is almost the same as the one used in
synchronous circuits. It consists of registers regy, multiplex-
ers mux;, and functional units fuy,. Note that a delay element
hdyeg, s inserted on the input signal of regy if hold violations
occur on regy. In the traditional bundled-data implementa-
tion, delay elements are not used in the data-path because
the operation of the data-path is guaranteed by request
and acknowledgment signals. In this work, the acknowledg-
ment signal is not used to improve the performance of the

28951



IEEE Access

S. Semba, H. Saito: RTL Conversion Method From Pipelined Synchronous RTL Models Into Asynchronous Ones

bundled-data implementation. We assume that the bundled-
data implementation can start its operation without waiting
for the acknowledgment signal.

The control circuit is based on pipeline stages in syn-
chronous circuits. It consists of control modules ctrl; (0 <
i < n — 1) assigned for each pipeline stage stage;. Glue
logics glueyeq, and glue,,,,, are logics to control reg; and
mux;. If hold violations occur on regy by a transition of the
control signal for mux;, a delay element Adyy; , is inserted on
the control signal for mux;.

ctrl; is obtained by modifying a Click element [25]. It con-
sists of a DFF DFF;, an XOR gate, and a delay element
sd;. When there are control branches, a DFF bDFF; and
an AND gate are inserted before sd;. When ctrl; requires
several request signals, an XOR gate is inserted before sd;.
The acknowledgment signal used in traditional asynchronous
circuits is not used in ctrl;. Only the request signal regq; is
used for succeeding control modules. Hence, each ctrl; is
operated by self-timing using sd; which guarantees setup
constraints for regy. ctrl; is operated by the rising transition
and falling transition of req;. Data are written to reg; by
the rising transition of Iclk;. Hence, the performance of the
bundled-data implementation used in this work depends on
the delay of the control circuit including the delay elements.

The control circuit starts its operation when a rising tran-
sition of the input signal start arrives at the control circuit.
Figure 2(b) shows the timing diagram of ctrl;. ctrl; starts its
operation when a rising transition of out;_1 or lclk;—; from
ctrli_y arrives at ctrl;. The signal transition generates a rising
transition of reg;. Then, req; generates a rising transition of
st;. st; controls mux; through glue,y,. req; also generates a
rising transition of Iclk; through sd; and the XOR gate. Iclk;
controls regy through glue,.,, and DFF;. DFF; generates a
rising transition of out; to pass the control to ctrl; . Finally,
ctrl; generates a falling transition of Iclk; by using out;. Note
that the behavior of ctrl; in the case of the falling transition
of req; is the same as the case of the rising transition of req;.

B. TIMING CONSTRAINTS USED IN THIS WORK
In asynchronous circuits with bundled-data implementation
used in this work, it is necessary to satisfy setup, hold, branch,
and pulse width constraints to operate the circuit correctly.
The detail of the timing constraints is described in [30]. In this
sub-section, we describe the setup and hold constraints for
pipelined circuits.

Before the explanation for the timing constraints, we define
a local cycle time (Ict) and a global cycle time (gct). Ict;
represents a maximum delay for operating stage; while gct
represents the cycle time in asynchronous circuits.

Figure 3 represents paths related to Ict;. Ict; and gct can be
represented by the following equations.

leti = max(tmaxcpi,p — Dmaxiciktoreg; ,»

Tt tmaxcp,-’q - tmaxlclktoreg,-.q) (D
get = max(Istg, - -+, Ist,—1) 2)
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FIGURE 3. Paths related to a local cycle time.

p and g represent the identifier of paths. faxcp; , represents the
maximum delay of a control-path cp; , from Iclk;_ to the des-
tination register through sd;. Imaxiclktoreg; , T€PrEsents the max-
imum delay of a path from Iclk;_; to the source register. Ict;
is the largest value of tmaxcpi minus tmaxiclktoreg; in stage;.
gct is the maximum value of Ict;.

1) SETUP CONSTRAINT

The input data for the register reg; must be stable before the
setup time to write the input data to regy. This is called the
setup constraint for regy.

Control circuit
start
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FIGURE 4. Timing constraints for registers: (a) setup constraint and
(b) hold constraint.

Figure 4(a) shows data-paths sdp;, and sdp;, and a
control-path scp;, related to the setup constraint. sdp;,
(sdp; 4) represents a data-path from the output of Iclk; 1 to
the destination register reg; through rego (gluemuy,). scpip
represents a control-path from the output of Iclk;_; to the
destination register reg| through sd;. We define the maximum
delay of sdp; p as tmaxsdp; s the minimum delay of scp; ) as
Iminscpi > the margin for t;axsdp; » S Isdpm; ,» and the setup time
of the destination register as fyenp; . Thus, the setup constraint
can be represented by the following inequality.

tminxcp,;p > tmaxsdp,-yp + tsdpmi,p + tsetup,gp (3)

If the setup constraint is violated, we must adjust the number
of cells for sd;.

2) HOLD CONSTRAINT

The data must be stable for the hold time after the next input
data are written to the register regi. This is called the hold
constraint for regy.
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Figure 4(b) shows data-paths hdp;, and hdp;, and a
control-path hcp;, related to the hold constraint. hdp;,
(hdp; 4) represents a data-path from the input signal start to
the destination register reg through rego (gluemuy,). Scpip
represents a control-path from the input signal start to the
destination register reg; through sd;. We define the minimum
delay of hdp; p as tminndp; s the maximum delay of hcp; p as
Imaxhepi s the margin for tmaxhep; , @S thepmi s the hold time of
the destination register as Thold; ,» and the input interval as /1.
Then, the hold constraint can be represented by the following
inequality.

tminhdp;,, + 8¢t X I > tmaxhep,, + thepmy, + thold;,, ~ (4)

If the hold constraint is violated, we need to adjust the number
of cells for hdyeg;, OF hdpyy; -

IV. RTL CONVERSION

The RTL conversion method in [22] generates non-pipelined
asynchronous RTL models from non-pipelined synchronous
RTL models through Sync2XML and XML2Async. The
RTL conversion method takes a parameter file called
Info-eXtensible Markup Language (XML) as another input.
The Info-XML consists of a top-level module name, a global
clock signal name, and so on. Figure 5(a) shows the structure

Synchronous RTL model
Control circuit Data-path circuit
clock

Info-XML

<parameter>
<synctop name="sample"/>
<clk name="clock"/>
<rst name="reset"/>
<primitive>
<BUF cell="BUF" In="A" Out="Y" i
<INV cell="INV" “A" Out="YB" >
<FF cell="DFF" D="DATA" Q="Q" R="RB" CLK="CLK" init=""/>

</primitive>

</parameter>
(@)

AST Control-flow
ModuleDef: sample 0 --None--> 1
Always: 1--None--> 0

SensList:
Sens: posedge

IfStatement:

Eq:
Identifier: en0
IntConst: 1
NonblockingSubstitution:
Lvalue:

s
Fd
2
g
g
<

ier: reg0
Rvalue:
Identifier: mux0

(©)

Resource information
[<resource id="0" name="reg0" bit="32" type="reg”
ctrl_name="en0;1" substitution="nb"/>

Path i

<datapath>
<path id="0" start_name="in0" start_usebit=""
th0_name="mux0" th0_in="0" th0_usebit=""

end_name="reg0" end_in="0"/>

1
« Assigning and connecting data-path resources ] .
« Assigning and connecting control modules f </datapath>
|

* Generation of control signals <ctrlpath>

<ctrl id="0" name="s0">
——————————— l - T T T T T =77 777" || <pred id="0" name="start" ctrlname=""
ctrival="" feedback=""/>
Asynchronous RTL model <pred i name="s1" ctrlname=""
ctrlval="" feedback="1"/>

(b) <succ id="0" name="s1" ctrlname=""
ctrival="" feedback=""/>
</ctrl>

</ctrlpath>

Timing information

<reg id="0" name="en0" s0="1" s1="1"/>
<mux id="0" name="sm0" s0="0" s1="1"/>

)
FIGURE 5. RTL conversion method in [22]: (a) synchronous RTL model

and Info-XML, (b) RTL conversion flow, (c) AST and control-flow, and
(d) Model-XML.

VOLUME 10, 2022

of a synchronous RTL model and a part of the Info-XML.
Figure 5(b) shows the RTL conversion flow in [22].

Sync2XML generates the abstract syntax tree (AST) and the
control-flow from given synchronous RTL models through
Pyverilog [26]. Figure 5(c) shows a part of the AST and
the control-flow for the synchronous RTL model in Fig.5(a).
The AST represents the structure of RTL models. “Lvalue”
and “Rvalue” represent the left side and right side of an
assignment statement. ‘“IfStatement” and *“‘CaseStatement”
represent ““if” statement and “‘case” statement. On the other
hand, the control-flow represents state transitions of RTL
models. Values described by decimal numbers represent state
variables. Arrows represent state transitions and the condi-
tions of the state transition. Note that Pyverilog generates
the control-flow only when there are finite state machines in
synchronous RTL models.

After generating the AST and control-flow, Sync2XML
generates an intermediate representation called Model-XML
from the AST and control-flow. The Model-XML consists of
data-path resource information, path information, and timing
information as shown in Fig.5(d). In the data-path resource
information, (resource) represents a data-path resource in
synchronous RTL models. In the path information, (path)
represents a data-path while (ctrl) represents a control-path.
(ctrl) includes (pred) and (succ). (pred) represents a preced-
ing control state while (succ) represents a succeeding control
state. In the timing information, (reg) represents a register
write signal name and its value while (mux) represents a
multiplexer control signal name and its value.

After generating the Model-XML, XML2Async gener-
ates asynchronous RTL models from the Model-XML.
XML2Async assigns and connects data-path resources by
referring to the resource and path information. Then,
XML2Async assigns and connects control modules by refer-
ring to the path information. Finally, XML2Async connects
the control modules to the data-path resources by referring to
the timing information.

V. PROPOSED METHOD

To deal with pipelined synchronous RTL models, we extend
the RTL conversion method described in Sec. IV. Figure 6
shows the extended RTL conversion flow. The bold types rep-
resent extensions. The extensions are a generation of a CDFG
and an analysis of pipeline stages in Sync2XML. The other
extensions are assigning and connecting control modules and
a generation of register write signals and multiplexer control
signals in XML2Async.

A. TARGET PIPELINED SYNCHRONOUS RTL MODELS

There are restrictions of pipelined synchronous RTL models.
The proposed method assumes that the data-path circuit is
composed of functional units, registers, and multiplexers as
described in Sec. III. The proposed method assumes that
the target synchronous RTL models have only one control
circuit. The control circuit must be represented by a finite
state machine (FSM) or registers to control pipeline stages.
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+ Generation of control signals |

FIGURE 6. Extended RTL conversion flow.

The proposed method assumes that the target synchronous
RTL models are described by Verilog Hardware Descrip-
tion Language (HDL). Syntax such as “function”, “task”,
“for”, “while”, “wait”, and ‘““[sub,5’h0+:32] (concatena-
tion)” must not be included in Verilog HDL. We are going
to deal with the syntax in our future work.

On the other hand, the proposed method can deal with
several synchronous RTL models. For example, it can deal
with synchronous RTL models regardless of whether clock
gating for registers is performed. In addition, it can deal with
synchronous RTL models even if the number of cycles for the
input interval (II) in pipelined circuits is changed.

Figure 7 shows examples of pipelined synchronous RTL
models. If pipeline stalls are included in synchronous RTL
models, pipeline stages stall the operation during the stall.
When the II is two cycles or more, resources can be shared
by multiplexers.

B. EXTENSION OF Sync2XML

To convert pipelined synchronous RTL models into asyn-
chronous ones, we must know which data-path resources in
pipelined synchronous RTL models are controlled at each
stage;. This is because data-path resources at each stage; are
controlled by each ctrl; in pipelined asynchronous circuits.

To know the data-path resources controlled by each stage;,
we extend Sync2XML to generate a CDFG from the AST
and control-flow generated by Pyverilog. By analyzing each
stage; in the CDFG, we can know the data-path resources
controlled by each sfage;. Then, Sync2XML generates the
Model-XML by extracting pipeline stage information and
timing information.

In addition, we extend Sync2XML to deal with different
IIs which is not described in [23]. When the input inter-
val is two or more, pipelined circuits can include multi-
plexers to share registers and functional units at different
pipeline stages. The multiplexers and shared registers are
controlled by several pipeline stages. Therefore, the analysis

28954

Control circuit Data-path circuit

istart clock stall in0
__________________ y l

FIGURE 7. Example of pipelined synchronous RTL models.

of pipelined synchronous RTL models will be complex to
know multiplexers and registers controlled at each pipeline
stage. In this paper, to know them, the proposed method gen-
erates a CDFG including multiplexers and shared registers at
different pipeline stages. The generation of such CDFG is not
described in [23]. Note that we consider applications where
the input interval is fixed. We do not consider applications
where the input interval can vary in time. To deal with such
applications is our future work.

1) GENERATION OF A CDFG

The CDFG used in this work represents the control flow
and data flow in synchronous RTL models. The CDFG is a
combination of the control flow graph (CFG) and data flow
graph (DFG). The CFG represents a flow of the control circuit
while the DFG represents a flow of the data-path circuit.
The CDFG consists of nodes, edges, and stage; as shown
in Fig.10. The nodes represent resources such as registers,
multiplexers, functional units, and basic logic operations. The
nodes except functional units and basic logic operations have
a control signal name and its value (the underside of the
nodes in Fig.10). The edges represent a connection between
resources. Between registers represents stage;. stage; has a
conditional signal cond and its value val to start the operation
in stage;.

For a DFG, Sync2XML generates nodes and edges from
the AST. Sync2XML generates nodes from ‘““Lvalue” in the
AST and edges from “Rvalue” in the AST. Sync2XML also
extracts the label for the nodes from the variable name for
“Lvalue’ and the control signal with its value for the nodes
from “IfStatement” or “CaseStatement” in the AST.

When the II is two cycles or more, Sync2XML generates
nodes of multiplexers to share registers and functional units.
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The same nodes are generated multiple times. On the other
hand, Sync2XML generates appropriate edges for multiplex-
ers from “Rvalue”, “IfStatement”, and ‘“CaseStatement’ in
the AST.

Figure 8 shows the generated DFG from the AST for Fig.7.
The red color represents the relationship between the AST
and nodes for the DFG. For example, node reg is generated
from ‘“Lvalue” at line 13 in the AST. In addition, control
signal reny is extracted in regg from “IfStatement” atline 8 in
the AST. The blue color represents the relationship between
the AST and edges for the DFG. For example, the edge
from muxg to regp is generated from “Rvalue’ at line 15 in
the AST. Note that regp and muxp are generated two times
because regg is shared by muxg. The edges of muxy are
generated from “IfStatement” at line 20, ‘““‘Rvalue’ at line 26,
and “Rvalue” at line 33 in the AST.

AST

ModuleDef: sample

DFG

1

2

3 | Always:

4 SensList:

5 Sens: posedge
6 Identifier: clock
7 “ ..

8

IfStatement:

Eq:
10 Identifier: ren0
1 IntConst: 1

12 NonblockingSubstitution:
13 Lvalue:

14 Identifier: reg0

15 Rvalue:

16 Identifier: mux0

17 .« ..

18| Always:

19 “ ..

20| IfStatement:
21 Identifier: sm0
22 Block: None

23 NonblockingSubstitution:
24 Lvalue:

25 Identifier: mux0

26 Rvalue:

27 Identifier: add0

28 Block: None
29 NonblockingSubstitution:

30 Lvalue:
31 Identifier: mux0
32 Rvalue:

33 Identifier: in0

FIGURE 8. DFG for the synchronous RTL model in Fig.7.

For a CFG, Sync2XML generates nodes and edges from the
AST or control-flow. The generation method for nodes and
edges differs depending on whether there is a control-flow.
For a control-flow, Sync2XML generates nodes and edges
from the control-flow. Sync2XML extracts the label for the
nodes from values described by decimal numbers and the
control signal with its value from the arrows in the control-
flow. Sync2XML also generates edges from arrows in the
control-flow. In the absence of a control-flow, Sync2XML
generates nodes from ‘““Lvalue” for the control circuit in the
AST. Sync2XML extracts the label for the nodes from the
variable name for “Lvalue” and the control signal with its
value for the nodes from “IfStatement” or “CaseStatement”
in the AST. Sync2XML also generates edges from “Rvalue”
in the AST.

Figure 9 shows the generated CFG from the AST for the
synchronous RTL model in Fig.7. In this example, the CFG
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AST
1 | ModuleDef: sample
2 LR CFG
i Always: istart stall
5 IfStatement:
6 q:
7 Identifier: encO
8 IntConst: 1
9 NonblockingSubstitution:
10 Lvalue:
1 Identifier: creg0
12 Rvalue:
13 Identifier: istart
14|« -«
15| Always:
16 .« ..
17| IfStatement:
18 q:
19 Identifier: enc1
20 IntConst: 1
21 NonblockingSubstitution:
22 Lvalue:
23 Identifier: creg1
24 Rvalue:
25 Identifier: creg0

FIGURE 9. CFG for the synchronous RTL model in Fig.7.

is generated from the AST. A control-flow is not generated
by Pyverilog because the synchronous RTL model does not
have FSMs. The red color represents the relationship between
the AST and nodes for the CFG. For example, node cregy is
generated from “Lvalue” at line 10 in the AST. In addition,
control signal ency is extracted in cregg from “IfStatement”
atline 5 in the AST. The blue color represents the relationship
between the AST and edges for the CFG. For example, the
edge from istart to cregp is generated from ‘“Rvalue” at
line 12 in the AST.

Then, Sync2XML regards between registers as stage;. The
extraction method for cond and val for stage; differs depend-
ing on whether there is a control-flow. With a control-flow,
Sync2XML extracts cond and val for stage; from arrows in
the control flow. Without a control-flow,, Sync2XML extracts
cond and val for stage; from “IfStatement” and ‘‘CaseState-
ment” for the control circuit in the AST.

In addition, the extraction method for cond and val for
stage; differs depending on whether there are stall signals.
Without a stall signal, Sync2XML extracts cond and val from
the AST and control-flow. With stall signals, the extraction
method differs depending on whether there are multiple stall
signals or one stall signal. Sync2XML does not extract cond
and val if there is one stall signal, because the operations of
ctrl; and ctrl;_| cannot be resumed by one stall signal at the
same time. In contrast, Sync2XML extracts cond and val from
the AST and control-flow if there are multiple stall signals.

Figure 10 shows the generated CDFG for the synchronous
RTL model in Fig.7. For example, we regard between in(0 and
rego as stagep. The conditional signal cond and its value val
of stageo are empty because there is one stall signal in the
synchronous RTL model.

2) ANALYSIS OF PIPELINE STAGES

For the generated CDFG, Sync2XML analyzes preceding and
succeeding pipeline stages for each stage;. Sync2XML also
analyzes register write signals and multiplexer control sig-
nals from the CDFG. After analyzing the CDFG, Sync2XML
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stageq
cond = none cregg
val = none encq(1)

stageq
cond = none
val = none

cregq
encq(1)

stage,
cond = none
val = none

FIGURE 10. CDFG for the synchronous RTL model in Fig.7.

generates pipeline stage information and timing information
into the Model-XML.

a: ANALYSIS OF PRECEDING AND SUCCEEDING

PIPELINE STAGES

Sync2XML analyzes preceding and succeeding pipeline
stages for each stage;. In the CDFG, stage; (j # i) is a
succeeding pipeline stage for sfage; when resources of stage;
are connected to resources of stage;. In contrast, stage; is a
preceding pipeline stage for stage; when resources of stage;
are connected to resources of stage;. Sync2XML also extracts
a conditional signal and its value for the transition between
pipeline stages from cond and val of stage;.

After analyzing stage;, Sync2XML generates pipeline stage
information into the Model-XML. In the pipeline stage infor-
mation, Sync2XML generates the pipeline stage informa-
tion for each stage; using (ctrl). (ctrl) represents stage;.
Sync2XML also generates preceding pipeline stage infor-
mation (pred) and succeeding pipeline stage information
(succ) into {ctrl). (pred) and (succ) represent preceding
and succeeding pipeline stages for each stage;. If there is
no preceding pipeline stage, Sync2XML assigns the external
input signal start to (pred). Moreover, Sync2XML assigns a
conditional signal ctrlname and its value ctrlval to operate
preceding or succeeding pipeline stages to (pred) or (succ).

Figure 11(a) shows the generated pipeline stage informa-
tion from the CDFG in Fig.10. The blue color represents the
relationship between the CDFG and pipeline stage informa-
tion. Sync2XML generates three (ctrl). For (ctrl) correspond-
ing to stage1, Sync2XML assigns stageq to (pred) because the
preceding pipeline stage for stage is stageg. ctrlname and
ctrlval are empty because stage| does not have a conditional
signal. Sync2XML also assigns stages to (succ) because the
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succeeding pipeline stage for stage; is stage>. ctrlname and
ctrlval are empty because stage, does not have a conditional
signal. Sync2XML generates all (ctrl) in the same way.

b: ANALYSIS OF REGISTER WRITE SIGNALS AND
MULTIPLEXER CONTROL SIGNALS

Sync2XML analyzes values of register write signals and mul-
tiplexer control signals. If there is regy in stage; on the CDFG,
the value of the register write signal for regy is 1 for stage;.
If there is mux; in stage; on the CDFG, the value of the
multiplexer control signal for mux; is the control value held
by mux; for stage;.

After analyzing stage;, Sync2XML generates the register
write signal information and the multiplexer control signal
information for each control signal of registers and multi-
plexers using (reg) and (mux). In the timing information,
the control signal name of registers and multiplexers and
the control value at each pipeline stage are described. (reg)
represents a register write signal name and its value while
(mux) represents a multiplexer control signal name and its
value. Sync2XML assigns the control values to (reg) and
(mux) from the analyzed values of the control signals.

Figure 11(b) shows the generated timing information from
the CDFG in Fig.10. The red color represents the relationship
between the CDFG and timing information. Four (reg) and
one (mux) are generated. For example, for regy, the register
write signal ren; whose values of stage; is 1 to (reg) because
there is reg in stage; on the CDFG.

C. EXTENSION OF XML2Async

XML2Async generates pipelined asynchronous RTL models
from the Model-XML by assigning control modules, connect-
ing the control modules, and generating control signals. Gen-

erated asynchronous RTL models are represented by Verilog
HDL.

1) ASSIGNING AND CONNECTING CONTROL MODULES
XML2Async assigns ctrl; for each (ctrl) in the Model-XML.
XML2Async also connects ctrl; by referring to (pred) and
(succ) in (ctrl). If there are pipeline stalls or if the II is
different, XML2Async assigns and connects ctrl; in the same
way.

ctrl; in Fig.12 represents assigned ctrl; by referring to (ctrl)
in Fig.11(a). XML2Async assigns three ctrl; for three (ctrl).
For ctrly, XML2Async connects ctrly to ctrl; by referring to
(pred) in (ctrl). XML2Async also connects ctrlj to ctrly by
referring to (succ) in (ctrl). XML2Async connects all control
modules in the same way.

2) GENERATION OF CONTROL SIGNALS

XML2Async generates register write signals and multiplexer
control signals by referring to (reg) and (mux) in the Model-
XML. The assignment of register write signals consists of
the logical OR of Iclk; where stage; in (reg) is equal to 1.
The assignment of multiplexer control signals consists of
the logical XOR of st; where stage; in (mux) is different
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stageq
cond = none
val = none

stageq
cond = none
val = none

cregq
encq(1)

stage,
cond = none
val = none

Pipeline stage information

<ctrlpath>
<ctrl id="0" name="stage0" >
<pred " name="start” ctriname="" ctrlval=""/>
<succ id="0" name="stage1" ctriname="" ctrlval=""/>
</ctrl>
<ctrl id="1" name="stage1">
<pred id="0" name="stage0” ctrlname="" ctrlval=""/>
<succ id="0" name="stage2” ctrlname="" ctrlval=""/>
</ctrl>
<ctrl id="2" name="stage2">
<pred id="0" name="stage1” ctriname="" ctrlval=""/>
</ctrl>
</ctrlpath>

(a)

Timing information

<timing>
<reg id="0" name="ren0" stage0="1" stage1="1" stage2="0"/>
<reg id="1" name="ren1" stage0="0" stage1="0" stage2="1"/>
i i "enc0" stage0="1" " />
“enc1” stage0="0" stage1="1" />

</timing>

(b)

FIGURE 11. Model-XML generated from the CDFG in Fig.10: (a) pipeline
stage information and (b) timing information.

from the value of previous stage stage;_. If there are sev-
eral XOR gates, XML2Async generates multiplexer control
signals using the logical OR of these XOR gates.

On the other hand, the connection method through the gen-
eration of control signals differs depending on whether there
is a pipeline stall. The proposed method uses the components
in the control circuit of the synchronous circuits if there is
a pipeline stall. Therefore, XML2Async connects ctrl; to that
components and does not generate multiplexer control sig-
nals. In contrast, XML2Async generates multiplexer control
signals and does not connects ctrl; to that components.

The control signals in Fig.12 represent generated control
signals by referring to (reg) in Fig.11(b). As an example of
the generation of the register write signal ren; for regy, the
assignment of renj is just an assignment statement because
the values of stage, in (reg) is 1. Figure 12 shows converted
asynchronous RTL models from the synchronous RTL mod-
els in Fig.7.
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Control circuit Data-path circuit

stfrt istart stall in0

FIGURE 12. Pipelined asynchronous RTL models for the pipelined
synchronous RTL model in Fig.7.

D. OPTIMIZATION METHODS

The quality of asynchronous circuits after the RTL conversion
depends on the representation styles before the conversion.
To obtain the high quality of asynchronous circuits, we used
three optimization methods that can be applied during RTL
conversion. One is the conversion from DFFs into D latches
to reduce the dynamic power consumption of registers which
is not described in [24]. Second is the use of appropriate DFFs
to reduce the area of registers. Third is inserting latches before
data-path resources to reduce the dynamic power consump-
tion of data-path circuits. The second and third optimization
methods are based on [24].

The optimization methods depend on the II. The first and
second optimization methods can be used independently of
the II. On the other hand, the third optimization method can
not be used when the II is one cycle. This is because all
pipeline stages operate every cycle, thus unnecessary oper-
ations do not occur.

1) CONVERSION FROM DFFs INTO D LATCHES

The purpose of the conversion from DFFs into D latches
is to optimize the dynamic power consumption of registers.
In general, D latches are low power and small area compared
to DFFs. Therefore, the proposed method converts DFFs
into D latches during XML2Async.

a: TIMING CONSTRAINTS
It is necessary to satisfy the setup and hold constraints for the
converted D latches to operate the circuit correctly.

The input data for the D latch dly must be arrived at dij
until dl; is closed. This is called the setup constraint for
dly. Figure 13(a) shows a data-path sdp;, and a control-
path scp; p related to the setup constraint. sdp;, represents
a data-path from the output of Iclk;—; to the destination D
latch dly through the source D latch dly. scp; p represents a
control-path from the output of lclk;_1 to the destination D
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latch dI; through ctrl;. We define the maximum delay of sdp;
as maxsdp; s the minimum delay of scp; p as tinsep; s and the
margin for tmaxsdpi,, @S Isdpm; - Then, the setup constraint can
be represented by the following inequality.

tminscp,-,p > tmuxsdpi,p + tsdpm,-,p Q)

If the setup constraint is violated, we need to adjust the
number of cells for sd;.

The D latch dl; must be closed until the next input data
arrives at dly after the input data are written to dl. This
is called the hold constraint for dl;. Figure 13(b) shows a
data-path hdp; , and a control-path hcp; ), related to the hold
constraint. hdp; , represents a data-path from the input signal
start to the destination D latch d/; through the source D latch
dlp. hep; p represents a control-path from the input signal start
to the destination D latch di; through ctrl;. We define the
minimum delay of hdp; , as tminhdp; s the maximum delay
of hepip as tmaxhep; s the margin for tmaxhepi,, @S Thepm s the
hold time of the destination register as Thold;, > and the input
interval as /1. Then, the hold constraint can be represented by
the following inequality.

Uminhdp;, +gct x I > tmaxhcp,gp + Thepm, + Thold; , 6)

If the hold constraint is violated, we need to adjust the number
of cells for hddlj,.

Control circuit Data-path circuit  Control circuit Data-path circuit
B S — e Start T T :
ilredii-g g, red;. bt g i :
‘ ¥ ) i |
’ . |G|
-
Y 90 ' hd |
dio |

Iclki_.. FFi1l e, | hdPip -
e D:
out;.g ¥ out; g [
i ¥ D
i req; ctrl; o il req; ctrl; « QJ) :
' ik hdimuxo,i*9lUemuxori~ mixg |
s T i |
J S H :
Y & i hdgyg
Eg Ielk; o telk; | hepi i [%
Sdl
out; out; : '
S USRI | NUSSNSIN sy SRR NN

@ (b)

FIGURE 13. Timing constraints: (a) setup constraint and (b) hold
constraint.

2) USE OF APPROPRIATE DFFs
The purpose of the use of appropriate DFFs is to optimize the
area of registers. In general, DFFs without an enable signal
are low power and small area compared to DFFs with an
enable signal. During XML2Async, to avoid the use of DFFs
with an enable signal, the optimization method moves the
assignment for the enable signal to the outside of the register
descriptions. This results in the insertion of a glue logic
(e.g., AND operation) for the registers in which consists of
lclk; and the enable signal.

The optimization method moves the assignments to the
outside of the registers when the following inequality is
satisfied.

areqengpleDFF — areaprpr > threshold @)
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where aredenapieprF, areaprr, and threshold represent the
circuit area for DFFs with an enable signal, the circuit area
for DFFs without an enable signal, and a threshold value. The
detail of the use of appropriate DFFs is described in [24].

Figure 14 shows an example. The optimization method
calculates aredacnapieprr and areappr by referring to the area
parameters, the bit-width of the registers, and the number of
logics and literals in the assignments of the enable signals.
In this example, the DFFs without an enable signal are used
because the difference between aredenapieprr and areaprp
is more than the threshold value. The optimization method
moves the condition signal (rego_out[0]) for the assignment
of reg, to outside of regy with ““assign” statement. Then, the
optimization method inserts a new logic which consists of
logical AND of rego_out[0] and gluereg,_out to generate a
register write signal (eny) for regs.

Control circuit

Data-path circuit

ctrl;

i redi (stage;)

Area parameter

<paremeter> H

<threshold area="1000"/> Y

<enableDFF area="300"/> : Y 5 -

<DFF area="200"/> H hlm Iclk;
<INV area="50"/> out;

<AND> "'""'""""""""""""':1"""""""""
<type id="0" input="2" area="100"/>
<type id="1" input="3" area="150"/>
e Control dircuit
<type id="0" input="2" area="100"/>| | t
<type id="1" input="3" area="150"/>| || req;
</OR> i
<XOR> '
<type id="0" input="2" area="100"/>| |
</XOR> H
</parameter>

l areagnableDEF = (300°32) = 9,600 |

Data-path circuit

ctrl;
(stage;)

R
[ areapg = (100)+(200732) = 6,500 |

FIGURE 14. Area estimation for reg,.

3) LATCH INSERTION AS OPERAND ISOLATION

The purpose of latch insertion as operand isolation is to
reduce the dynamic power consumption of data-path circuits.
The optimization method prevents the dynamic power con-
sumption by using D latches during XML2Async. Compared
to AND gates, D latches do not propagate unnecessary sig-
nal transitions to the functional units. However, when the
optimization method inserts D latches in critical paths, the
performance may be degraded by the delay of the inserted
D latches. To preserve critical path delays, we only insert
D latches for data-paths which are not critical paths in each
pipeline stage. The detail of the latch insertion algorithm is
described in [24].

To estimate path delays, we prepare delay parameters as
shown in Fig.15(a). In Fig.15(a), max represents the maxi-
mum delay of data-path resources. In this method, the delay
parameters are prepared by the following way. First, we per-
form logic synthesis for RTL models including registers,
functional units, and multiplexers using a clock constraint.
We also explore the fastest clock cycle time without tim-
ing violations. Then, we obtain the delays of the registers,
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functional units, and multiplexers after logic synthesis.
Finally, we define the delays as max for data-path resources.

The optimization method inserts D latches for data-paths
which are not critical paths. By referring to the delay param-
eters, the optimization method calculates the path delays 74, ,
by summing max of each data-path resource in dp; ;. dp;,
represents the /-th data-path in stage;. The critical path delay
Istage; N stage; i the maximum delay in 7,4, , . Then, optimiza-
tion method inserts D latches dl; for data-paths which #4p,, is
not fyage; -

Figure 15 shows an example of the latch insertion. The
value represented by ““()” is the estimated delay of the corre-
sponding data-path. #ygge, is 1,350 and fyqge, is 650. addy
operates in stage; and subg operates in stagep. In such a
case, when the value of regg which is the source of addy
and subg is changed, both addy and sub( operate because the
value of regg is propagated to addy and suby. In each stage;,
one of the operations is valid while the other operation is
invalid. Therefore, dly is inserted between regg and addy to
prevent the propagation of the value of regg to addy in stage;.
On the other hand, dl; does not inserted between rego and
subq because the insertion of a latch results in the increase of

the critical path delay in stages.
@ CL) L

sub o(? (1,350)}—
max : 5000 tdpy add tdpy,i”
mul (870) - ~v (870) (750)

=
cond = none
val = none

n,

add

muxz

max : 1100.0 totage, Sj"o(} )
reg cond = none r;Lg
max : 150.0 val = i an(%
mux (1,350)
max : 100.0
latch (.
max : 120.0 . ©50)
suby
Ystage, 2 tstage, 2
(a) cond = none cond = none
val = none regs val = none regs
(650) ens(1 (650) ens(1
(b) (c)

FIGURE 15. Latch insertion: (a) delay parameters, (b) DFG before applying
the latch insertion, and (c) DFG after applying the latch insertion.

VI. EXPERIMENTAL RESULTS

In the experiment, we converted pipelined synchronous RTL
models into asynchronous RTL models using the proposed
method. For the experiments, we implemented a conversion
tool for the proposed method using Java. The conversion tool
was performed on a Windows 10 machine (Intel Core i7-8700
@3.2 GHz CPU and 16 GB memory).

We prepared four synchronous RTL models synthesized
by high-level synthesis (HLS) from SystemC models using
Cadence Stratus HLS 18.1. The prepared synchronous
RTL models were a differential equation solver (DIFFEQ),
an elliptic wave filter (EWF), the multilayer perceptron
(MLP) [27] whose number of neurons is 32, and the advanced
encryption standard (AES) [28]. To show that the proposed
method can deal with synchronous RTL models with different
IIs, we also prepared synchronous RTL models whose II was
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one cycle and two cycles. In addition, we prepared syn-
chronous RTL models with a hard stall (Hard) and a soft
stall (Soft) by applying directives [29] in Stratus HLS. Hard
means that the operations of all pipeline stages stall, whereas
Soft means that the operations of specified pipeline stages
stall. We also applied the clock gating option to HLS for
synchronous RTL models. The library was eShuttle 65 nm
process technology.

As a reference, we synthesized the synchronous circuits
(sync) from the RTL models for DIFFEQ, EWF, MLP, and
AES using Cadence Genus 18.1 with an eShuttle 65 nm tech-
nology library. To compare the quality of the asynchronous
circuits generated by the proposed method with the quality of
the synchronous circuits, we explored the fastest synchronous
circuits without timing violations. When the II was one cycle,
the clock cycle times of DIFFEQ, EWF, MLP, and AES were
1,400 ps, 1,500 ps, 600 ps, 900 ps. When the II was two
cycles, the clock cycle times of DIFFEQ, EWF, MLP, and
AES were 1,400 ps, 1,500 ps, 700 ps, 900 ps. We also applied
the clock gating option to logic synthesis for synchronous
circuits.

To evaluate the quality of the converted asynchronous RTL
models (async), we performed logic synthesis based on the
design flow in [30]. To obtain the same performance as the
synchronous circuits, we synthesized the asynchronous RTL
models with maximum delay constraints for all control-paths
and local clock constraints for Iclk;. To generate these con-
straints, we referred to [30]. We obtained five asynchronous
RTL models from the synchronous RTL model.

e async - no optimization

o async; - with D latches instead of DFFs

o async, - with appropriate DFFs

e asyncp - with latch insertion as operand isolation
e asyncep - with combination of async; and async,

Note that async,p; does not include async, because the used
library does not include a D latch with an enable signal.
We also could not design async,, for MLP and AES because
there was no non-critical path in each pipeline stage.

A. CONVERSION RESULTS
Table 1 shows the conversion results using the proposed
method. Type, CT, Stage, and Sverilog represent the type of
synchronous RTL models, the clock cycle time, the number
of pipeline stages, and the number of lines in Verilog HDL of
synchronous RTL models. AST, Model-XML, Averilog, and
Time represent the number of lines in the AST, the number of
lines in the Model-XML, the number of lines in Verilog HDL
of asynchronous RTL models, and the conversion time.
From table 1, the conversion time depends on the number
of pipeline stages and the number of lines in the AST. This
is because the proposed method generates Model-XML from
the AST and analyzes data-paths and control-paths in syn-
chronous RTL models for each pipeline stage. Compared to
the conversion time for the RTL models without stalls, the
conversion time for the RTL models with stalls was increased
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TABLE 1. RTL conversion results. This table represents the type of synchronous RTL models, the clock cycle time, the number of pipeline stages, the
number of lines in Verilog HDL of synchronous RTL models, the number of lines in the AST, the number of lines in the Model-XML, the number of lines in
Verilog HDL of asynchronous RTL models, and the conversion time. Red colors represent the worst results in each class and blue colors represent the best

results in each class.

Name l Type “ CT [ps] l Stage l Swverilog [lines] l AST [lines] l M odel-X M L [lines] l Awverilog [lines] l Time [s]
DIFFEQ | II=1 1,200 4 164 765 110 348 1.9
11=2 1,200 4 149 662 99 337 2.0

Hard 1,200 4 209 859 188 384 2.1

Soft 1,200 4 208 922 177 410 2.0

EWF =1 1,200 9 668 3,202 429 1,337 2.5
=2 1,200 9 648 2,738 372 1,190 3.9

Hard 1,200 9 859 3,588 746 1,428 2.8

Soft 1,200 9 825 3,703 715 1,557 2.7

MLP =1 400 20 16,925 94,130 22,276 36,609 283.1
=2 400 20 17,074 93,363 22,856 43,227 613.9

Hard 400 20 20,734 101,164 28,039 36,464 341.9

Soft 400 20 18,863 99,661 27,974 36,618 338.1

AES =1 600 41 130,036 946,154 192,782 138,553 2,992.3
11=2 600 41 129,062 936,948 191,462 133,713 22,177.8

Hard 600 41 133,499 955,070 198,594 139,278 3,130.8

Soft 600 41 132,152 954,490 198,474 139,600 3,172.3

Total 13,600.0 296.0 602,075.0 | 4,197,419.0 885,293.0 711,053.0 33,070.1
Average 850.0 18.5 37,629.7 262,338.7 55,330.8 44,440.8 2,066.9

TABLE 2. Evaluation results after logic synthesis. This table represents the circuit area, execution time, dynamic power consumption, and energy
consumption of asynchronous circuits. Red colors represent the worst results in each class and blue colors represent the best results in each class. The
average ratio represents the average value for the increase/decrease ratio of each circuit.

Name Type Circuit area [um?] Execution Dynamic power [mW] Energy [pJ]
time [ps]
register comb. ‘ ctrl ‘ total clock register comb. ‘ ctrl ‘ total
DIFFEQ | II=1 sync 124,434 680,346 846 805,626 144,357 2.97 3.05 23.90 0.01 29.93 4,320.61
async 124,686 672,147 8,748 805,581 144,717 2.88 3.04 24.03 0.44 30.39 4,397.95
=2 | sync 91,008 736,389 1,125 828,522 282,957 1.66 2.13 25.40 0.03 29.22 8,268.00
async 90,918 739,332 8,712 838,962 283,739 1.23 1.74 24.78 0.26 28.01 7,947.53
EWF I1=1 sync 567,063 1,280,421 1,881 1,849,365 162,159 12.90 11.30 47.80 0.01 72.01 11,677.07
async 567,045 1,265,004 19,260 1,851,309 162,751 11.90 11.36 47.30 0.84 71.40 11,620.42
=2 | sync 378,747 1,295,442 2,628 1,676,817 310,659 578 6.33 39.00 0.07 5118 15,899.53
async 379,008 1,301,067 23,112 1,703,187 313,284 4.42 5.76 36.09 0.79 47.06 14,743.15
MLP =1 sync 1,473,579 937,350 4,158 2,415,087 71,560 85.40 41.70 38.70 0.02 165.82 11,866.08
async 1,473,795 937,458 20,178 2,431,431 72,541 70.70 41.20 37.71 243 152.04 11,029.13
=2 | sync 1,277,478 1,007,622 3,888 2,288,988 152,728 62.70 42.50 51.00 0.18 156.38 23,883.60
async 1,276,677 1,004,994 60,993 2,342,664 155,502 35.00 26.66 36.42 322 101.30 15,752.35
AES =1 sync 7,119,378 17,149,941 8,505 24,277,824 126,167 270.90 181.40 741.40 0.02 | 1,193.72 | 150,608.07
async 7,105,842 16,220,745 59,652 23,386,239 127,331 191.20 171.70 645.10 3.65 | 1,011.65 | 128.814.41
=2 | sync 4,209,957 18,018,693 9,090 22,237,740 215,234 96.10 100.20 721.00 0.32 917.62 | 197,503.02
async 4,188,654 16,637,049 59,643 20,885,346 217,226 65.30 70.80 393.60 2.15 531.85 115,900.93
Total sync 15,241,644 41,106,204 32,121 56,379,969 1,465,821 538.41 388.61 | 1,688.20 0.66 | 2,615.88 | 424,025.98
async 15,206,625 38,777,796 260,298 54,244,719 1,477,091 382.63 332.26 | 1,245.03 13.78 | 1,973.70 | 309,836.59
Average sync 1,905,205.50 | 5,138,275.50 4,015.13 | 7,047,496.13 | 183,227.63 67.30 48.58 211.03 0.08 326.99 53,003.25
async || 1,900,828.13 | 4,847,224.50 | 32,537.25 | 6,780,589.88 | 184,636.38 47.83 41.53 155.63 1.72 246.71 38,729.57
Average ratio async -0.07% -1.86% 790.42% -0.48% 0.85% | -22.88% | -12.53% | -12.49% | 5,857.00% | -14.04% -13.36%

because the number of lines in the AST with stalls is more
than the number of lines in the AST without stalls. When the
II was two cycles, the conversion time was increased because
shared data-path resources were analyzed multiple times.
We also performed logic simulation to verify the functional
correctness of the converted asynchronous RTL models. For
the simulation, we generated a Standard Delay Format (SDF)
file by synthesizing the asynchronous RTL models. Then,
we prepared a test bench with 100 arbitrary test patterns. After
the simulation, we confirmed that all output values of the
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asynchronous RTL models were the same as the output values
of the synchronous RTL models.

B. EVALUATION AFTER LOGIC SYNTHESIS

We evaluated the designed circuits after logic synthesis in
terms of circuit area, execution time, dynamic power con-
sumption, and energy consumption. The circuit area was
obtained from the report file generated by Genus. Note that
the circuit area does not include the wiring area. The execu-
tion time was obtained by simulating the designed circuits

VOLUME 10, 2022



S. Semba, H. Saito: RTL Conversion Method From Pipelined Synchronous RTL Models Into Asynchronous Ones

IEEE Access

TABLE 3. Evaluation results for asynchronous circuits applying the optimization methods. This table represents the circuit area, execution time, dynamic
power consumption, and energy consumption of asynchronous circuits applying each optimization method. Red colors represent the worst results in each

class and blue colors represent the best results in each class. The average ratio represents the average value for the increase/decrease ratio of each

circuit.
Name Type Circuit area [um?] Execution Dynamic power [mW] Energy [pJ]
time [ps]
register comb. ‘ ctrl total clock register comb. ‘ ctrl ‘ total
DIFFEQ II=1 async 124,686 672,147 8,748 805,581 144,717 2.88 3.04 24.03 0.44 30.39 4,397.95
asyncl 91,413 618,093 8,748 718,254 144,733 2.35 2.03 21.33 0.44 26.15 3,784.77
11=2 async 90,918 739,332 8,712 838,962 283,739 1.23 1.74 24.78 0.26 28.01 7,947.53
asyncy 66,636 661,059 8,694 736,389 284,328 1.02 1.12 21.95 0.29 24.38 6,931.92
asyncop 114,300 715,005 10,773 840,078 286,346 1.22 2.33 2291 043 26.89 7,699.84
asyncopl 89,748 642,429 10,845 743,022 286,333 1.01 1.65 20.57 0.44 23.67 6,777.50
EWF II=1 async 567,045 1,265,004 19,260 1,851,309 162,751 11.90 11.36 47.30 0.84 71.40 11,620.42
asyncl 402,147 1,331,469 19,260 1,752,876 162,741 9.44 7.01 47.70 0.84 64.99 10,576.54
11=2 async 379,008 1,301,067 23,112 1,703,187 313,284 4.42 5.76 36.09 0.79 47.06 14,743.15
asyncy 271,989 1,283,742 22,671 1,578,402 313,271 3.54 3.34 34.95 0.72 42.55 13,329.68
asyncop 402,822 1,300,662 24,714 1,728,198 312,680 443 6.22 35.73 0.94 47.32 14,796.02
asyncopl 296,514 1,303,731 24,597 1,624,842 312,866 3.55 3.17 35.15 0.93 42.80 13,390.66
MLP II=1 async 1,473,795 937,458 20,178 2,431,431 72,541 70.70 41.20 37.71 243 152.04 11,029.13
asyncl 1,028,916 937,197 20,664 1,986,777 72,531 55.00 25.60 37.02 243 120.05 8,707.35
=2 async 1,276,677 1,004,994 60,993 2,342,664 155,502 35.00 26.66 36.42 3.22 101.30 15,752.35
asyncy 891,486 1,123,218 61,362 2,076,066 155,520 27.40 16.23 47.20 3.33 94.16 14,643.76
asyncop n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
asynceop; n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
AES II=1 async 7,105,842 16,220,745 59,652 23,386,239 127,331 191.20 171.70 645.10 3.65 1,011.65 128,814.41
asyncl 5,022,477 19,387,251 59,661 24,469,389 127,323 151.00 113.90 488.00 3.65 756.55 96,326.22
=2 async 4,188,654 16,637,049 59,643 20,885,346 217,226 65.30 70.80 393.60 2.15 531.85 114,838.10
async; 2,993,463 18,156,240 59,643 21,209,346 217,218 52.20 47.10 300.70 2.15 402.15 87,357.44
asyncop n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
asyncopl n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Total async 15,206,625 38,777,796 260,298 54,244,719 1,477,091 382.63 33226 | 1,245.03 1378 | 1,973.70 309,836.59
asyncy 10,768,527 43,498,269 260,703 54,527,499 1,477,665 301.95 216.33 998.85 13.85 1,530.98 241,654.45
asyncop 517,122 2,015,667 35,487 2,568,276 599,026 5.65 8.55 58.64 1.37 74.21 22,495.86
asyncopt 386,262 1,946,160 35,442 2,367,864 599,199 4.56 4.82 55.72 1.37 66.47 20,168.17
Average async 1,900,828.13 4,847,224.50 32,537.25 6,780,589.88 184,636.38 47.83 41.53 155.63 1.72 246.71 38,729.57
asyncy 1,346,065.88 5,437,283.63 32,587.88 6,815,937.38 184,708.13 37.74 27.04 124.86 1.73 191.37 30,206.81
asyncop 258,561.00 1,007,833.50 17,743.50 1,284,138.00 299,513.00 2.83 4.28 29.32 0.69 37.11 11,247.93
asYNCopl 193,131.00 973,080.00 | 17,721.00 | 1,183,932.00 | 299,599.50 2.28 2.41 27.86 0.69 33.24 10,084.08
Average ratio asyncy -28.62% 3.21% 0.11% -7.40% 0.02% -20.13% | -36.66% -5.64% 0.76% -15.40% -15.37%
asyncop 16.00% -1.66% 15.29% 0.80% 0.36% -0.29% 20.95% -427% | 42.19% -1.72% -1.38%
asynceopl -11.53% -6.45% 15.45% -8.02% 0.39% -18.78% -25.07% -9.80% 43.48% -12.27% -11.95%

with an arbitrary test sequence using VCS Q-2020.03-SP1.
Note that the used delay data were data after post-synthesis.
The dynamic power consumption was obtained by Prime-
Time Q-2019.12-SP3 with the VCD file generated by VCS.
The energy consumption was the product of the execution
time and the dynamic power consumption.

Table 2 shows the evaluation results after logic synthesis.
async could reduce the circuit area by 0.48% on average due
to the insertion of the control modules and the change of the
structure of the data-path circuit by assigning the constraints.
Compared to async where II was one cycle, the area of the
control circuit of async where Il was two cycles was increased
because the control circuit includes the control signals for
multiplexers. The execution time of async was increased by
0.85% on average because we adjusted the delay element in
control modules to satisfy the setup constraint. The delays
of the control-paths were longer than the critical path delays
of the data-paths. async could reduce the dynamic power
consumption by 14.04% on average because the only required
circuit components are operated due to the use of local signals
instead of global clock signals. Compared to async where
IT was one cycle, the dynamic power consumption of async
where II was two cycles was reduced because all data-path
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resources are not operated every cycle. async could reduce
the energy consumption by 13.36% on average because the
reduction of the dynamic power consumption was higher than
the increase of the execution time.

Table 3 shows the evaluation results for the asynchronous
circuits applying the optimization methods. Compared to
async, async; could reduce the circuit area by 7.40% on
average due to the use of D latches instead of DFFs. On the
other hand, async; did not have a significant impact on the
execution because we assigned the same values for the max-
imum delay constraints and local clock constraints. async;
could reduce the dynamic power consumption by 15.40%
on average because the dynamic power consumption of the
register and clock was reduced due to the use of D latches
instead of DFFs. Compared to async; where Il was two
cycles, the reduction amount of the dynamic power consump-
tion of async; where Il was one cycle was high because the
area of registers is large. Similarly, async; could reduce the
energy consumption by 15.37% on average.

On the other hand, compared to async, the circuit area
of async,p, was increased by 0.80% on average because
we inserted D latches as isolators. async,, did not have a
significant impact on the execution time because D latches
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TABLE 4. Evaluation results for asynchronous circuits with Hard and Soft. This table represents the circuit area, execution time, dynamic power
consumption, and energy consumption of asynchronous circuits with Hard and Soft. Red colors represent the worst results in each class and blue colors
represent the best results in each class. The average ratio represents the average value for the increase/decrease ratio of each circuit.

Name Type Circuit area [pmz] Execution Dynamic power [mW] Energy [pJ]
time [ps]
register comb. ‘ ctrl ‘ total clock register comb. ‘ ctrl ‘ total
DIFFEQ | Hard sync 124,398 679,752 1,071 805,221 144,357 2.69 2.85 21.30 0.02 26.86 3,877.43
async 146,556 789,381 9.495 945,432 144,772 3.06 3.21 25.13 0.44 31.84 4,609.54
async, 124,128 676,008 9,360 809,496 144,744 2.60 2.81 21.03 0.44 26.88 3,890.72
asyncy 91,782 634,428 9,945 736,155 145,249 2.13 1.81 19.90 0.47 24.31 3,531.00
Soft sync 125,019 679,743 1,521 806,283 144,357 2.67 2.85 21.30 0.04 26.86 3,877.43
async 147,807 787,140 9,486 944,433 144,980 2.82 3.16 24.76 0.44 31.18 4,520.48
async, 124,677 678,798 9,522 812,997 144,948 2.60 2.79 20.96 0.45 26.80 3,884.61
asyncy 92,214 633,384 10,026 735,624 144,937 2.13 1.81 19.89 0.48 24.31 3,523.42
EWF Hard sync 565,173 1,234,206 2,106 1,801,485 162,159 11.60 10.26 40.10 0.02 61.98 10,050.61
async 696,843 1,379,943 21,357 2,098,143 162,779 12.90 12.37 45.31 0.83 71.41 11,624.05
async, 565,281 1,241,991 20,862 1,828,134 162,760 10.70 10.34 40.71 0.83 62.58 10,185.52
async; 402,930 1,354,446 22,581 1,779,957 162,873 8.40 6.21 42,98 0.90 58.49 9,526.44
Soft sync 567,225 1,241,478 3,681 1,812,384 162,159 11.10 10.27 40.50 0.08 61.95 10,045.75
async 699,975 1,385,451 22,932 2,108,358 162,811 11.60 11.68 45.46 0.93 69.67 11,343.04
async, 568,593 1,240,569 22,878 1,832,040 162,792 10.60 10.34 40.76 0.93 62.63 10,195.66
asyncy 403,911 1,349,577 24,012 1,777,500 162,782 8.43 6.20 42.71 0.99 58.33 9,495.07
MLP Hard sync 1,465,866 929,889 4,158 2,399.913 71,587 76.50 37.20 34.40 0.03 148.13 10,604.18
async 1,748,646 1,275,615 25,245 3,049,506 72,626 74.20 50.20 49.04 2.30 175.74 12,763.29
async, 1,459,368 931,491 24,030 2,414,889 72,598 61.70 36.50 33.84 2.30 134.34 9,752.82
asyncy 1,024,839 1,087,128 27,900 2,139,867 72,569 48.00 22.70 41.46 2.65 114.81 8,331.65
Soft sync 1,463,589 928,314 8,433 2,400,336 71,560 71.50 36.80 34.20 0.40 142.90 10,225.92
async 1,762,614 1,236,636 23,598 3,022,848 72,626 66.60 47.40 45.45 2.16 161.61 11,737.09
async, 1,467,360 926,901 23,517 2,417,778 72,598 61.70 36.50 33.95 2.15 134.30 9,749.91
asyncy 1,021,545 980,667 26,253 2,028,465 72,569 48.10 22.50 35.07 2.47 108.14 7,847.61
AES Hard sync 7,126,956 17,771,436 8,505 24,906,897 126,194 244.10 157.60 644.60 0.02 | 1,046.32 132,039.31
async 8,668,296 23,861,466 70,389 32,600,151 127,360 205.00 184.30 554.10 3.65 947.05 120,616.29
async, 7,106,868 16,476,984 67,878 23,651,730 128,123 163.60 146.30 557.33 3.62 870.85 111,575.91
async; 5,020,452 20,498,958 75,843 25,595,253 128,814 128.40 99.20 448.37 4.10 680.07 87,602.54
Soft sync 7,123,626 17,847,189 17,505 24,988,320 126,167 205.70 147.60 553.50 0.53 907.33 114,475.10
async 8,651,610 24,458,337 69,372 33,179,319 127,002 177.00 167.90 488.39 345 836.74 106,267.65
async, 7,121,196 16,846,452 70,380 24,038,028 127,951 163.90 147.60 541.82 3.72 857.04 109,659.13
asyncy 5,025,672 19,307,844 74,466 24,407,982 128,437 128.90 98.60 406.53 3.94 637.97 81,938.95
Total sync 18,561,852 41,312,007 46,980 59,920,839 1,008,540 625.86 405.43 1,389.90 1.14 | 2,422.33 295,195.74
async 22,522,347 55,173,969 251,874 77,948,190 1,014,956 553.18 480.22 | 1,277.64 14.20 | 2,325.24 283,481.43
async, 18,537,471 39,019,194 248,427 57,805,092 1,016,514 477.40 393.18 1,290.40 1444 | 2,175.42 268,894.28
asyncy 13,083,345 45,846,432 271,026 59,200,803 1,018,230 374.49 259.03 1,056.91 16.00 | 1,706.43 211,796.69
Average sync 2,320,231.50 | 5,164,000.88 5.872.50 | 7.490,104.88 | 126,067.50 78.23 50.68 173.74 0.14 302.79 36,899.47
async 2,815293.38 | 6,896,746.13 | 31,484.25 | 9.,743,523.75 | 126,869.50 69.15 60.03 159.71 1.78 290.66 35,435.18
async, 2,317,183.88 | 4,877,399.25 | 31,053.38 | 7.225,636.50 | 127,064.25 59.68 49.15 161.30 1.81 271.93 33,611.78
asyncy 1,635,418.13 | 5,730,804.00 | 33,878.25 | 7,400,100.38 | 127,278.75 46.81 3238 132.11 2.00 213.30 26,474.59
Average ratio async 20.69% 24.63% 557.27% 23.00% 0.75% -0.59% 19.03% 13.64% | 4.365.01% 9.60% 10.42%
async, -17.20% -20.33% -1.36% -18.76% 0.15% | -12.54% | -16.88% | -12.12% 1.10% | -12.27% -12.12%
asyncy -40.86% -14.28% 7.22% -23.22% 0.31% | -30.59% | -47.23% | -15.73% 10.86% | -24.97% -24.74%

were inserted considering the critical path delays. async,p
could reduce the dynamic power consumption by 1.72% on
average. This result comes from the insertion of D latches
to prevent unnecessary operations. Similarly, async,, could
reduce the energy consumption by 1.38% on average. Also,
asyncgp; could reduce the energy consumption by 11.95% on
average compared to async.

Table 4 shows the evaluation results for the asynchronous
circuits with Hard and Soft. Compared to sync, the circuit
area of async was increased by 23.00% on average because
DFFs with an enable signal were used. The execution time
of async was increased by 0.75% on average because the
control-path delays were longer than the critical path delays
of the data-paths. The dynamic power consumption of async
was increased by 9.60% on average due to the use of DFFs
with an enable signal. Compared to async with Hard, the
dynamic power consumption of async with Soft was low
because the number of operations of data-path resources was
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small by multiple stall signals in the case of Soft. The energy
consumption of async was increased by 10.42% on average.

On the other hand, compared to async, async, and async;
could reduce the circuit area by 18.76% and 23.22% on
average due to the use of DFFs without an enable signal in
async, and the use of D latches instead of DFFs in async;.
async, and async; did not have a significant impact on the
execution time because we assigned the same values for
the maximum delay constraints and local clock constraints.
Moreover, async, and async; could reduce the dynamic power
consumption by 12.27% and 24.97% on average. Compared
to async, with Hard and async; with Hard, the dynamic power
consumption of async, with Soft and async; with Soft was
low because the number of operations of data-path resources
was small by multiple stall signals in the case of Soft. async,
and async; could reduce the energy consumption by 12.12%
and 24.74% on average. This result comes from the reduction
of the dynamic power consumption.
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From the experimental results, the proposed method con-
verted pipelined synchronous RTL models into pipelined
asynchronous ones regardless of the difference in the IIs
and the type of stalls. In addition, compared to synchronous
circuits, the energy consumption of asynchronous circuits
without the optimization methods was reduced by 1.47% on
average. Moreover, the optimization methods could reduce
the energy consumption by 15.12% on average compared to
synchronous circuits. Furthermore, the energy consumption
of asynchronous circuits with the optimization methods was
reduced by up to 34.72% compared to the asynchronous
circuits without the optimization methods.

VIl. CONCLUSION

In this paper, we proposed a conversion method from
pipelined synchronous RTL models into pipelined asyn-
chronous RTL models with bundled-data implementation.
In addition, we also proposed optimization methods during
the proposed RTL conversion to obtain the high quality of
asynchronous circuits.

In the experiment, the proposed method converted
pipelined synchronous RTL models into pipelined asyn-
chronous ones regardless of the difference in the II and the
type of stalls. Moreover, we confirmed the quality of gener-
ated asynchronous RTL models. Compared to synchronous
circuits, the energy consumption of asynchronous circuits
using the proposed method was reduced by 1.47% on aver-
age. On the other hand, the optimization methods could
reduce the energy consumption by 15.12% on average com-
pared to synchronous circuits. In addition, the optimization
methods reduced the energy consumption by up to 34.72%
compared to asynchronous circuits without the optimization
methods.

As our future work, we extend the proposed method to deal
with pipelined synchronous RTL models including multiple
control circuits. In addition, we are going to propose low
energy optimization methods during the RTL conversion for
pipelined asynchronous circuits. Moreover, we are going to
reduce the conversion time.
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