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ABSTRACT In this paper, the model predictive control (MPC) strategy is utilized in smart homes to
handle the optimal operation of controllable electrical loads of residential end-users. In the proposed model,
active consumers reduce their daily electricity bills by installing photovoltaic (PV) panels and battery
electrical energy storage (BEES) units. The optimal control strategy will be determined by the home energy
management system (HEMS), benefiting from the meteorological and electricity market data stream during
the operation horizon. In this case, the optimal scheduling of home appliances is managed using the shrinking
horizon MPC (SH-MPC) and the main objective is to minimize the electricity cost. To this end, the HEMS
is augmented by the SH-MPC, while maintaining the desired operation time slots of controllable loads
for each day. The HEMS is cast as a standard mixed-integer linear programming (MILP) model that is
incorporated into the SH-MPC framework. The functionality of the proposed method is investigated under
different scenarios applied to a benchmark system while both time-of-use (TOU) and real-time pricing (RTP)
mechanisms have been adopted in this study. The problem is solved using six case studies. In this regard, the
impact of the TOU tariff was assessed in Scenarios 1-3 while Scenarios 4-6 evaluate the problem with the RTP
mechanism. By adopting the TOU tariff and without any load shifting program, the cost is $1.2274 while
by using the load shifting program without the PV and BEES system, the cost would reduce to $0.87009.
Furthermore, by using the SH-MPC model, PV system and the BEES system, the cost would reduce to
$-0.282713 with the TOU tariff. This issue shows that the prosumer would be able to make a profit.
By adopting the RTP tariff and without any load shifting program, the cost would be $1.22093 without
any PV and BEES systems. By using the SH-MPC model, the cost would reduce to $1.08383. Besides,
by adopting the SH-MPC, and the PV and BEES systems, the cost would reduce to $0.05251 with the RTP
tariff, showing the significant role of load shifting programs, local power generation, and storage systems.

INDEX TERMS Demand response programs, electrical energy storage, home energy management system,
smart homes, shrinking horizon model predictive control.

NOMENCLATURE Ny Number of fixed loads.

Indices/Sets T/  Scheduling time for the shrinking horizon.
i Index for home appliances. T  Day-ahead time index.
t Index for the time intervals of scheduling horizon.
N. Number of controllable loads. Variables:

B;; Binary variable representing the

The associate editor coordinating the review of this manuscript and baseline utilization time of the appliance
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Pfs’ bis. Discharging power of the BESS at time interval
t (kW).

po—H Injected power from grid to home at time

interval ¢ (KW).

P ~0  Injected power from home to grid at time
interval ¢ (kW).

PPV Power generated by photovoltaic panel at
time ¢ (KW).

Sit Binary variable representing the shifted
utilization time of the appliance i at time
interval ¢.

Parameters:

B, The lower bound of the appliance i for the
baseline operation.

Bi, b The upper bound of the appliance i for the
baseline operation.

CiON Turn-on cost of the controllable appliance i ($).

C iOF F Turn-off cost of the controllable appliance i ($).

EES Minimum stored energy in the BESS (kWh).

EES Maximum stored energy in the BESS (kWh).

PN Maximum power that can be transacted between
home and grid (kW).

PPV Maximum power that can be generated by
the photovoltaic panel (kW).

PES:Ch- Maximum charging power of the BESS (kW).

PES.Dis- Maximum discharging power of the
BESS (kW).

Sib The lower bound of allowable utilization
of controllable appliance i.

Sib The upper bound of allowable utilization
of controllable appliance i.

T; Total plugging time of appliance i.

At Operation time interval.

Discomfort index regarding usage of the
appliance i after the scheduled time (h).
Discomfort index regarding usage of the
appliance i before the scheduled time (h).
Energy stored in the BESS at time

interval r (KkWh).

Charging status of the BESS at time interval 7.
Discharging status of the BESS at time

interval 7.

Grid to home power direction at time interval ¢.
Home to grid power direction at time interval ¢.
Binary variables, specifying the turn-on of
appliance i at time .

Binary variables, specifying the turn-off of
appliance i at time ¢.

Controllable load power at time ¢ (KkW).

Fixed load power at time ¢ (KkW).

Fixed load i power (kW).

Charging power of the BESS at time
interval £ (KW).
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nES:Ch- Charging efficiency of the BESS.

nES:Dis- Discharging efficiency of the BESS.

Pi Discomfort index ($/h).

qu ~G  The hourly price of energy sold to the grid by
home at time interval ¢ ($/kWh).

AIG”H The hourly price of energy sold to home by the

grid at time interval 7 ($/kWh).

I. INTRODUCTION

A. MOTIVATION

The increasing rate of renewable power generation at low-
voltage levels has increased the flexibility of end-users
to actively participate in maintaining some share of their
demand in a green way and meanwhile with reduced costs.
In this way, rooftop photovoltaic (PV) panels are popular
resources that have been installed by prosumers at low-
voltage levels. However, such resources are only able to
produce energy during daylight hours while a considerable
share of energy consumption of residential consumers is
during nighttime. To reduce the impacts of uncertain power
generation and in relation with the consumption pattern,
the installation of battery electrical energy storage (BEES)
units has been recommended. In this regard, the optimal
combination of BEES devices and PV panels considering
the techno-economic aspects can improve the functionality
of local energy systems for the active prosumers [1]. This
paper proposes an integrated model for smart homes aug-
mented by a home energy management system (HEMS) to
reduce electricity costs based on user demand, while opti-
mally scheduling controllable electrical loads and operation
of the BEES unit. As residential consumers are categorized
as price-taker participants, their consumption patterns can
be effectively changed by price signals and other incentives
extensively introduced in demand response programs [2].
Recent advances in communication systems and internet-
of-things (IoT) have provided the required infrastructure to
implement smart homes being capable of self-scheduling
home appliances. This feature is available through a con-
troller that is optimally programmed, which enables the con-
sumer to change their role in the electric power system.
In this respect, the consumers can effectively control their
energy consumption and the corresponding costs by utiliz-
ing smart controllers and meters. Furthermore, by purchas-
ing an BEES system with joint operation with other smart
devices, along with the optimal self-scheduling of assets,
the consumer could benefit from various demand response
programs offered by the utility. Smart homes are typically
equipped with considerably high-consumption assets such as
spin dryers, electric vehicles (e.g., charging stations), and
washing machines. Optimal scheduling the operation times of
such devices would result in significant decline in the energy
costs of the consumer. It should be noted that the BEES
system operation is associated with intertemporal constraints.
Furthermore, end-users have their daily patterns of electricity
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consumption that may vary from day to day. This introduces
the need for a shrinking horizon model for the self-scheduling
of home appliances in a specific day, considering the expected
PV power generation and other activities related to meteoro-
logical data. This paper addresses the mentioned issues and
proposes an integrated SH-MPC for HEMS application in
the presence of PV and BEES units to minimize daily elec-
tricity costs. Accordingly, a mixed-integer linear program-
ming (MILP) model is developed for the HEMS application
while the objective is to minimize the electricity bill of the
consumer on the given day. In this regard, the consumer is
equipped with local power generation through the solar PV
systems operated jointly with the BEES system, while the
impacts of the real-time pricing (RTP) mechanism and time-
of-use (TOU) tariff have been investigated in relation to the
aforementioned optimization problem.

B. LITERATURE REVIEW

There are some initiatives and incentives to promote renew-
able and clean energy harvestings introduced in the research
projects in the world to increase the penetration rates of
renewable energy sources. In between, residential end-users
can also benefit from a fully automated energy system
installed and equipped with PV panels and BEES units at
their local sites. The main task of the HEMS is defined
as enhancing the consumption of homes that needs some
particular equipment. For example, the residential assets are
required to have interaction through specific communication
links to enable control and monitoring. Furthermore, the
house is supposed to have bidirectional communication with
the utility grid to receive the signals of demand response
programs. Some data processing tools are also required in
this framework. The HEMS would provide the consumer with
operation patterns with respect to the energy consumption
data of the home, the target of the scheduling, the preferences
of the consumer, and also the energy price. It is noteworthy
that cyber security issues should also be addressed in such
systems [3], [4]. HEMSs have been discussed throughout
the literature. Ref. [S] presented an MILP model for the
optimal scheduling of home appliances, taking into consid-
eration electric vehicles (EVs) and static BEES systems.
In this respect, a holistic model has been developed address-
ing the operational preferences of homeowners. Accordingly,
the lowest electricity bill and the highest possible comfort
level would be ensured by using the mentioned framework.
A dynamic stochastic optimization model has been developed
in Ref. [6] to address the energy management problem of
a smart home that is equipped with a plug-in EV (PEV).
The presented framework can minimize the ratepayer cost
while meeting the operational requirements of the home and
the PEV. Ref. [7] presented a three-level energy manage-
ment system for a smart home with solar power generation
through a rooftop PV panel. In the first level, solar power
generation is forecasted. In the second level, the day-ahead
scheduling problem is solved for minimizing the operating
cost of the home; and in the third stage, the operation of the
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home assets would be corrected by applying an MPC-based
operational decision. A deep reinforcement learning frame-
work has been proposed in [8] for the HEMS operation
with both thermal model and input parameters’ uncertain-
ties. This framework would overcome the difficulties with
the necessity of knowing the uncertain parameters and the
precise model for the thermal system. Besides, the application
of artificial intelligence to the HEMS scheduling problem
has been studied in [9]. An energy management system has
been proposed in [10] for a smart home equipped with a
PEV, solar PV panel, and BEES while employing demand
response programs. The objective function of the problem
is to minimize the cost while investigating the performance
of various demand response programs. An end-user comfort-
oriented smart HEMS has been designed in [11] for the sake
of minimizing the daily electricity bill of the end-user while
taking into account local renewable power generation. The
optimal operation of the heating, ventilation, and air condi-
tioning (HVAC) system in the HEMS has been addressed
in [12], [13] while using the TOU tariff and addressing the
user’s discomfort index. The operational orders of home
appliances within the HEMS scheduling problem have been
investigated in [14] by using the value of loss of load of
each device. A bidding strategy model was suggested in [15]
providing the end-user with an efficient tool to decide on
the optimal operation of home appliances, local storage, and
generation assets while transacting power with the utility
grid. A MILP framework was developed in [16] to investi-
gate the end-user comfort-oriented HEMS scheduling prob-
lem with different demand response programs. Moreover,
the self-scheduling problem of HEMS taking into considera-
tion the end-user comfort and operational preferences while
addressing price-based demand response programs has been
studied in [17]. A controller has been designed in [18] for
the HEMS to minimize the amount of the daily electricity
bill of a residential end-user with various load types by
using dynamic price signals. A HEMS has been designed
in [19] for the day-ahead scheduling of home appliances
and a PEV within a predictive stochastic optimization frame-
work. The internet of things and big data methods have been
deployed in [20] for the scheduling of home appliances each
equipped with a data acquisition module. A comparative
study has been carried out in [21] to address the stochas-
tic models used for the HEMS scheduling problem in the
presence of solar PV systems, PEVs, home appliances, and
heat pumps. Ref. [22] has developed a decentralized day-
ahead scheduling framework for interconnected HEMSs so
as to minimize the daily energy costs of end-users. In this
respect, the energy sharing among HEMSs has been studied
while dynamic pricing has been deployed. The Q-learning
and fuzzy reasoning has been utilized in [23] as a model-
free approach to solve the HEMS scheduling problem in the
presence of solar PV panel and BEES system. The real-time
operation of a HEMS has been investigated in [24] by using
an IoT-based self-learning model. The alternating direction
method of multipliers (ADMM) as a distributed optimization
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technique was employed in [25] for the coordinated operation
of interconnected neighborhood HEMSs, aiming at minimiz-
ing the daily electricity bill of end-users. A straightforward-
structure HEMS was designed in [26] with the capability
to implement demand response programs. The impacts of
HEMS on the electrical energy consumption and also the con-
sumption pattern of the end-user have been studied in [27].
A tri-level optimization model has been developed in [28]
for the coordinated operation of a HEMS and the Volt/VAR
optimization in low-voltage and medium-voltage distribu-
tion systems, respectively. Ref. [29] studied the resilience
of a HEMS equipped with a BEES system facing extreme
weather conditions. A four-stage HEMS operation frame-
work has been designed in [30] in the presence of solar
power generation and BEES system. A stochastic mixed-
integer non-linear programming model has been introduced
in [31] for the day-ahead scheduling of a HEMS in the
presence of BEES and solar PV systems and electric water
heaters. As mentioned previously, the HEMS scheduling
problem is associated with parameter uncertainty. In this
respect, more precise modeling of the impact of uncertainties
would be achieved provided that the correlation between
the uncertain parameters is considered as in [32] using the
Copula. A smart HEMS was proposed in [33], addressing
the impacts of different scenarios of power costs on the
daily electricity bill of the consumer. Furthermore, the par-
ticle swarm optimization (PSO) algorithm and the binary
PSO (BPSO) have been introduced in [34] for the multi-
objective day-ahead scheduling of a renewable energy-based
grid-supported smart home to simultaneously optimize the
daily energy cost of the consumer and the peak-to-average
ratio as well. An efficient energy management system has
been proposed in [35] for interconnected microgrids with
smart homes by using a multi-objective optimization model.
Ref. [36] addressed the HEMS problem within a network
of microgrids and Ref. [37] presented an energy manage-
ment system based on a MILP model for microgrids. A tri-
objective optimization framework has been presented in [38]
to simultaneously optimize the energy cost, peak-to-average,
and the residential users’ comfort, where the home was
equipped with a BEES and renewable power generation
and automated demand response programs’ impacts have
been investigated. Also, A bi-objective MILP model has
been presented in [39] for the optimal day-ahead HEMS
scheduling.

e Accordingly, the research gaps to cover are as follows:

e Assessing that how optimal scheduling varies with
respect to the variations of PV power generation during
the day.

e The need for developing a shrinking-horizon model
predictive control model to meet the total energy
demand by the end of the scheduling period and ini-
tialize conditions for the next day.

e The need to enhance flexibility as one of the services
by dedicated prosumers in demand response programs.
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e Application of the battery in the uninterrupted opera-
tion of assets when necessary.

e Developing a fast and efficient mixed-integer linear
programming addressing the prosumer’s comfort.

C. CONTRIBUTIONS
The main contributions of this paper are as follows:
e Providing the optimal scheduling of PV and BEES in
HEMS using an efficient MILP model.
e Investigating demand response programs for smart
homes with controllable loads.
e Presenting a user’s comfort-oriented self-scheduling
model.
e Developing SH-MPC for the HEMS application utiliz-
ing meteorological data.

D. PAPER ORGANIZATION

The organization of the paper is as follows. Section II
provides the key concepts of the HEMS, while the
self-scheduling model of the HEMS with local power genera-
tion in the house is presented in Section III. The mathematical
formulation of the proposed model is presented in Section IV.
Section V proposes the simulation results. Finally, relevant
conclusions and future recommendations for research are
summarized in Section VI.

Il. HOME ENERGY MANAGEMENT SYSTEM

This section provides the main principles of the HEMS.
Different home appliances can be effectively controlled and
scheduled by end-users or even by an automated energy man-
agement system. The performance of the energy management
system would increasingly improve by an adaptive strategy,
whose implementation is the main target of this paper. In the
automated energy management system, home appliances can
be controlled in an effective way to fulfill the end-user’s
preferences while impressively reducing the electricity bills.
In the HEMSs, there are some controllable loads as well as
other fixed and interruptible ones. However, the main focus of
the current study is on shifting the controllable loads, which
are the most dominant part of the end-users’ demand that can
be changed or shifted to minimize the electricity bill.

Figure 1 illustrates the main concept of the HEMS and
controllable loads in a typical smart home. In this paper, the
optimal control strategy for the least-cost self-scheduling of
controllable home appliances is proposed. It should be noted
that both local PV generation capability and energy storage
possibility have been studied in this framework.

The ‘plugging time’ for each application and device varies
depending on the user and their lifestyle preferences. In this
case, the base time and possible time interval for each asset
should be determined before the self-scheduling is organized
by HEMS. Moreover, the plugging-in sequence of some
appliances should be properly met. For example, the spin
dryer should be operated after accomplishing the washing
machine task. In this structure, the end-user has the option
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FIGURE 1. Conceptual model of HEMS and controllable appliances in
smart homes.

of charging and discharging the BEES according to different
electrical energy tariffs. In addition, the consumer benefits
from the installed PV panel to minimize the electricity bill.
It should be noted that some expenses for installing such
assets as well as their corresponding maintenance and oper-
ation costs are imposed on active consumers. Therefore, the
consumer should assess the total saving of the electricity bill
incorporating the costs of HEMS, PV, and BEES to determine
the optimal configuration of the energy storage and PV panel
size, which is beyond the scope of the current study. One of
the permissible goals of introducing HEMS is to provide an
efficient energy management system at the low-voltage level
for residential loads. A sustainable energy system including
PV and BEES can increase the flexibility of the distribu-
tion networks by load factor enhancement and active power
injections at the consumption nodes of the grid. Furthermore,
increasing the penetration rate of electric vehicles introduces
new challenges to both end-users and distribution grid opera-
tors to fulfill the technical constraints, and power and energy
needs of such new electrical loads (and also suppliers in the
vehicle to grid technology). However, the HEMS can provide
a flexible and controllable strategy for charging at home.
All in all, the HEMS can provide the following benefits for
end-users:

29720

Efficient and reliable energy management system for the
end-users.

o Energy consumption monitoring to improve the load
factor.

Effectively activating demand response programs and
energy consumption enhancement.

Introducing some flexibility to the distribution net-
work operator and active participation in local energy
communities.

In the case of installing PV panels and BEES devices, the
flexibility provided by the active end-users will effectively
increase and the prosumer can benefit from energy and flex-
ibility provided in the market through consumption profile
modifications. This, in turn, can introduce more flexibility
to the grid during peak hours as well as contingent events in
which the network operator needs fast resources to serve the
critical loads.

The concept of smart homes usually requires some infras-
tructure such as sensors and actuators to control electri-
cal and mechanical assets. Modern home appliances are
equipped with smart controllers coordinated with the cen-
tral control system of the HEMS to perform different tasks.
This paper considers that the home owner is able to run the
self-scheduling of the home appliances with respect to their
operational preferences. Accordingly, a developed frame-
work would be used by a central agent through IoT platform
to facilitate the communication between the home appliances
and the central coordinator.

Ill. SH-MPC AND HEMS INTEFACE
This section provides the conceptual model of the problem

studied in this paper. The model includes two main parts.
In the first part, the SH-MPC model is established while in the
second part, the self-scheduling problem of HEMS is devel-
oped. In SH-MPC, the meteorological data and other input
data are fed as well as the main observed decision variables
of the inner loop, i.e., HEMS. For the next predictions, HEMS
needs the ongoing tasks to be continued as well as access to
the updated meteorological data. It should also be noted that
for each controllable asset, it is necessary to accomplish the
task and no interruption is allowed for the running assets if
they have already started their task (until the accomplishment
of their task). In such case, the shrinking horizon can provide
a new operating horizon for each asset that is operating.
It means that for the running appliances, the associated binary
decision variables representing the operation of the asset are
considered fixed parameters for the subsequent time intervals
and the HEMS should respect the required operation time
to be maintained. The main output results which will be
used in the SH-MPC are the state of charge (SoC) of the
BEES and the status of the running assets, including the start
time and the remaining time slots for the next predictions.
As Fig. 2 illustrates, in the SH-MPC and HEMS model,
the daily operation strategy will be determined. Therefore,
the shrinking horizon strategy is developed for this specific
problem.
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As can be observed in Fig. 2, the self-scheduling problem
is solved for each prediction time slot continuously and the
solving time would reduce in proportion with each observa-
tion slot being realized. This means that the self-scheduling
problem is solved for 24 hours at the beginning of the day
and after passing each time slot, the problem would be solved
only for the subsequent time slots. As a result, the number
of decision variables and also their variation ranges would
follow a descending trend by passing time. It is worth noting
that this is due to the shrinking horizon enabling the consumer
to cover all scheduled activities during the day. As can be
observed in Fig. 2, the self-scheduling problem is solved
for each prediction time slot continuously and the solving
time would reduce in proportion with each observation slot
being realized. This means that the self-scheduling problem
is solved for 24 hours at the beginning of the day and after
passing each time slot, the problem would be solved only for
the subsequent time slots. As a result, the number of deci-
sion variables and also their variation ranges would follow a
descending trend by passing time. It is worth noting that this
is due to the shrinking horizon enabling the consumer to cover
all scheduled activities during the day.

IV. PROBLEM FORMULATION
This section presents the self-scheduling problem of the

HEMS for electrical energy management in the presence of
local generation and storage assets. The problem mainly aims
at minimizing the electricity bill of the customer. Thus, the
cost caused by transacting energy with the grid should be
included in the objective function. As a result, the objective
function of the self-scheduling problem would be defined as
minimizing the following function:

The objective function comprises three parts. The first term
relates to the energy transaction cost including the cost due
to purchasing energy from the grid and selling the surplus
energy to the grid. The purchase price can be defined through
TOU tariff and RTP mechanism while the selling price would
be in accordance with the tariff determined by the distribution
company (1), as shown at the bottom of the page.

Note that in the transaction cost term, the operation time of
assets has been multiplied to the whole term to calculate the
energy and energy cost. The second term in (1) corresponds
to the discomfort cost caused by the customer’s discomfort
due to shifting controllable loads. As seen, the discomfort
cost is formulated through a linear coefficient of the shifting
time. In fact, this cost is inserted into the objective function

= Sge = —= == P do= Tl Shy ey es TSR s e B = B
| 4\8‘11—.\11’(‘ HEMS |GAMS| |

FIGURE 2. The solution process of the self-scheduling problem using the
proposed SH-MPC technique.

as a penalty that relates to using appliances before or after the
desired time intervals of the consumer and it is considered as
a fixed penalty for each asset and time slot. As a result, the
further the shifting time, the higher the penalty applied to the
objective function. Lastly, the third term represents the cost
due to interrupting controllable loads. It is obvious that assets’
turning on/off is permitted only once and any further on/off
would impose a significant penalty applied to the objective
function. This paper takes into account a substantial penalty
factor (last term of the objective function with negative sign)
to avoid undesired on/off of assets. Furthermore, the con-
straints of the self-scheduling problem are as follows:

A. POWER BALANCE CONSTRAINT
PtG~>H+P;DV +PIES’DIIS‘ — P{{*)G +PIES’Ch‘ +P§: +PIC (2)

Equation (2) shows the power balance constraint for each
time interval of the self-scheduling model. The left-hand side
of this equation includes the power purchased from the grid,
the PV power generation, and also the discharging power of
the battery. The right-hand side of the equation comprises the
power sold to the grid, the charging power of the battery, and
also the load including fixed and shiftable loads.

B. POWER TRANSACTION CONSTRAINT

Generally, any consumer connected to the grid is under a
contract with the distribution network in terms of the power
or ampere, mainly impacting the coincidence factor of con-
sumers at each time slot. Indeed, the more the load demand,
the higher fixed cost the consumer is supposed to pay to the
distribution company. Besides, the consumer would not be

Min )" (AIG_’HPtG_’H — kf{_)GPf{_>6> At+ > pi[DF + D]

teT] i€N,
Transaction Cost Discomfort Cost
+ 33 [N €OV + OFF, O | = 3 [e + e ] 0
i€N teT, iEN,

Interruption Cost

VOLUME 10, 2022

29721



IEEE Access

A. Esmaeel Nezhad et al.: Shrinking Horizon Model Predictive Controller

able to shift the entire load demand to off-peak time slots.
In case the consumer faces any surplus power generation,
it would affect the selling power to the grid. It should also be
noted that the consumer cannot buy and sell power from/to
the grid at a specific time slot. Hence, the power transaction
constraints with the grid would be stated as per (3)-(5):

0 < PtG—>H < }_)NItG_)H (3)
0<I17H 4170 <1 ®

The BEES system is usually operated jointly with the solar
PV system to store the surplus solar power generation when
there is no demand. This storage system would help sta-
bilize the solar power generation during the hours with
zero/negligible generation and also during peak-load hours
with a shortage in power generation. The BEES system is
imposing different constraints on the problem associated with
the charging and discharging modes as well as the amount
of energy stored in the system. Constraints (6) and (7) show
the charging and discharging limitations in each time slot.
It is noteworthy that the corresponding variables have been
assigned to the model as positive variables. In order to elimi-
nate the conflicting states in the BEES operation, two binary
variables have been considered in the model ensuring that
the BEES operates in either charging/discharging/idle mode
as depicted in (8). Equation (9) represents the hourly energy
status of the storage system taking into account charging
and discharging efficiencies. Constraint (10) states that the
amount of energy stored in the storage system at the begin-
ning and the end of the self-scheduling period should be
identical. The limitation on the amount of energy available
in the storage system is presented in (11). The lower and
upper bounds on the amount of energy stored in the system
are usually determined by the manufacture to guarantee the
battery health throughout the lifetime.

0< PfS’Ch' SI,ES’Ch'PES’Ch' (6)
0 < PfS’DiS' SI,ES’DiS'PES’DiS' (7)
0 < IIES,ChA +ItES,Dzs. S1 (8)

1 .
E,ES — EIE_S1 + nES,Ch.PFS,Ch.At i mPtES,Du.At (9)
EtE:Sl = EtE=ST 10)
EES < EtES SEES (11)

C. PV POWER GENERATION CONSTRAINT

The amount of solar power generation directly depends
upon the capacity of the solar system, the amount of solar
irradiance, and also ambient parameters. However, the net
solar power generation is assumed to be independent of the
number of cells, the configuration, and also the efficiency.
In this regard, a parameter is estimated and delivered to the
consumer. The amount of solar power generation would be
available by using the defined API. Accordingly, solar power
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generation would be assigned to the model as a parameter:

0<pP <ptV (12)

D. FIXED AND CONTROLLABLE LOADS CONSTRAINTS
Demands of the customers are divided into fixed and con-
trollable loads. It is not possible to change or shift the
fixed loads like the refrigerator, freezer, and lighting sys-
tem. The corresponding costs would constantly appear in the
electricity bill. As a result, fixed loads would not impact
the objective function of the self-scheduling problem in the
absence of local power generation and ESSs. It is noteworthy
that local power generation and storage systems increase
the prosumers’ flexibility to supply these loads such thatno
energy purchase from the grid is required during some hours.
Thus, fixed loads have been assigned to the model as an
input parameter. On the contrary, the controllable loads of
the customer can be shifted to other time slots before and
after the base load time intervals. It should be noted that
shifting the load demand causes customer discomfort which
has been already taken into account in the objective function.
In fact, the customer would tend to shift the load demand
in case the benefit obtained by cost reduction is more than
the amount of discomfort cost. Controllable and fixed loads
can be modeled as a string of binary variables and parameters
such that the value of the binary variable/parameter would be
“1” provided that the asset is running. Fixed loads have been
characterized by utilizing equations (13) through (15). The
binary variable corresponds to the operation of fixed loads
which would be equal to “1” for the permitted operation
interval; otherwise, it would be “0”’. Note that fixed loads
have been assigned to the model as a variablewhose value
would be exactly equal to the fixed parameter of the permitted
operation interval. The permitted operation interval of the i-th
fixed load is defined by Ti.

0 1<B;,
Bi=11 1_9,‘,17 <t=< Bi,h Bi; €{0,1} (13)
0 t> Bi,b
> B, =T, VieN (14)
teT]
> BiP =P vieT] (15)

ieNy

Likewise, controllable loads can be modeled by using the
above-mentioned strategy while the binary variable would
select the best slot of the operation interval. Note that the
permitted operation interval of controllable assets is greater
than the desired operation interval and the consumer must
necessarily decide on the interval 7; out of the operation inter-
val of the asset. Relationships (16)-(18) are used to model the
controllable loads.

0 <S5,
Sit <31 Sip<t=<S8ip Si,€{0,1} (16)
0 > S',',b
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> S =TVieN. (17)
teT
> S =PVteT] (18)
ieN,

As mentioned before, controllable loads must be operated
for a given interval in a continuous way. No interruption is
allowed during their operation; otherwise, it leads to degrada-
tion or even severe damages to the load. Thus, shut-down and
start-up costs have been considered in the objective function
to avoid any interruption in their operation. It should be noted
that only and only one startup and shutdown is allowed for
each asset as assigned to the objective function,meaning that
any further startups and shutdowns would result in increasing
the costs. Since the corresponding operational variables are
binary, any change in the status from “0” to “1” shows
startup, and any change from “1” to “0” indicates the
shutdown. For the refrigerator and freezer as fixed loads,
no startup/shutdown is permitted over the self-scheduling
period.

ONi,[ — OFFi’l = Si»[ — Si,l*l Vie Nc, t>1 (19)

It is worth noting that the startup and shutdown constraint
within the operation interval is only intended for controllable
loads as the operation time of fixed loads is specified within
the permitted operation interval,which is not needed to to be
mathematicallly modeled.

E. LOAD SHIFTING

A linear penalty factor has been used in this paper to charac-
terize the discomfort index. The cumulative rolling mapping
method has been utilized to determine the shifted intervals.
Thus, equations (20) and (21)are used to calculate the dis-
comfort index as a result of changing the operation slots to
the time intervals other than the baseline slots. In this respect,
and denote positive variables as depicted in (22) and (23),
respectively. Hence, for any state that the right-hand sides of
inequalities (20) and (21) become negative, any contradictory
state between the two variables would be omitted.

B 1
Dz 4 D rxBi =Y xS (20)
| teT] tel] i
1
Dt > T ZIXS,'J—ZZ‘XBM 1)
= = |
D=0 22)

V. SIMULATION RESULTS

The developed self-scheduling model for the HEMS has been
simulated and evaluated for a smart home consisting of a set
of home appliances with fixed and controllable load demands,
besides a PEV. The load data as well as baseline and permitted
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operation intervals for each appliance are from a benchmark.
The problem is investigated for both TOU and RTP tariffs
through several scenarios (see Table 1). The data of the BEES
system, the solar PV panel, and its net power generation are
given in Table 2. Furthermore, it is assumed that the electrical
energy storage system starts the scheduling period with the
SOC=50% and it is supposed to end the scheduling period
with the same amount of energy. Also, the operating cost
of the battery is assumed negligible and excluded from the
model. Fig. 3 depicts the day-ahead solar power generation
with 30-min intervals along with the online prediction for
the ahead intervals up to the end of the day. It is noted that
since there are 96 more figures and it is not possible to add
them in the figure, only real and forecasted ones have been
provided with triangle and square marks and the others are
marked with circle marks. Moreover, the exact amount of
solar power generation at each time slot and the predicted
solar PV generation at the beginning of the day have been
illustrated. It is noted that the values are reported in p.u. and
the installed capacity of the solar panel is 5 kW.

It is assumed that the energy purchase price and selling
price are identical justifying the performance of the BEES
system in modifying the load profile of the system even
without any demand response programs and charge received
from the solar PV panel. Moreover, the penalty for shifting
the prosumer’s load demand has been neglected to achieve
the best result in reducing the electricity bill of the consumer
through shifting the load demand. Table 3 shows the hourly
TOU tariff and RTP mechanism.

As mentioned before, prosumers have both fixed and
controllable loads whose effects are studied in this paper.
Tables 4 and 5 represent the data of the consumption time
and power of each fixed and controllable load. Note that
the consumption power of the fixed loads varies over the
scheduling period and accordingly, the 24-hour load pattern
has been used. Besides, the superscript “**” refers to the opti-
mal start and end time of using the assets. This issue for fixed
loads has been addressed by defining the permitted operation

TABLE 1. Studied scenarios for HEMS.

Scenario TOU RTP PV-BEES SH-MPC
S1 X - -
S2 X - - X
S3 X - X X
S4 X -
S5 X - X
S6 X X X

TABLE 2. Technical parameters of the BEES system.

EES EES PESCh. PESDis. nﬁs,m. n ES.Dis. E =E,

(kWh) (kWh) (kW) (kW) % % (kWh)

400 0200 0200 _ 0.200 100 100 2
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FIGURE 3. Day-ahead solar power generation along with a 24-hour
prediction for the ahead time slots.

status. In other words, fixed loads have been modeled as
parameters. The duration of one time slot is considered to
be 30 minutes in this paper. It should be noted that different
capacity and time slots are assigned to the lighting system
model according to the prosumer’s priorities and by taking
into consideration the conditions before and after the sunrise
and sunset, respectively.

A. SELF-SCHEDULING BASED ON TOU

Scenarios 1-3 relate to studying the problem by using the
TOU tariff. Hence, the electricity price would be pre-given
to the customer which is based on the time tariffs. As a
result, the end-user would be able to appropriately manage
the energy consumption with respect to the tariffs. In this
section, three scenarios are studied. In the first scenario, the
TOU tariff is only considered and the customer would be
a user. In the second scenario, the SH-MPC model is used
together with the TOU mechanism. From the optimization
and MPC point of view, scenarios 1 and 2 should result in
the same solution in the absence of the BEES system and PV
power generation that add flexibility and uncertainty to the
system, respectively. The MPC would be able to optimally

TABLE 3. Daily tariffs for different price-based demand response
programs.

Hour TOU RTP Hour TOU RTP
00:00-01:00  0.01  0.014 12:00-13:00 0.04 0.034
01:00-02:00  0.01  0.015 13:00-14:00 0.04 0.033
02:00-03:00 0.01 0.015 14:00-15:00 0.04 0.040
03:00-04:00 0.01  0.013 15:00-16:00 0.04 0.047
04:00-05:00 0.01  0.010 16:00-17:00 0.04  0.047
05:00-06:00 0.01 0.014 17:00-18:00 0.04 0.047
06:00-07:00  0.01  0.017
07:00-08:00  0.02  0.019
08:00-09:00 0.02  0.024
09:00-10:00  0.04  0.024
10:00-11:00  0.04  0.025
11:00-12:00  0.04 0.037

18:00-19:00 0.04  0.043
19:00-20:00 0.04  0.034
20:00-21:00  0.02  0.038
21:00-22:00  0.02  0.037
22:00-23:00  0.01 0.024
23:00-00:00 (.01 0.018
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TABLE 4. Fixed loads data.

o

Appliance  P'(kW) T, B, B, B, B,
Refrigerator 0.350 48 1 48 1 48
TV 0.100 12 35 46 35 46
Lighting 1 0.150 11 12 11 12

2
Lighting 2 0.100 2
Lighting 3 0.050 2 15 16 15 16
Lighting 4 0.050 2 37 38 37 38
Lighting 5 0.100 2 39 40 39 40
Lighting 6 0.150 2 41 42 41 42
Lighting 7 0.180 4 43 46 43 46

TABLE 5. Controllable loads data.

Appliance P(kW) L S, S, S, A§,-_b
Dishwasher 2.5 4 19 22 15 33
Washing Machine 3.0 3 19 21 16 23
Spin Dryer 2.5 2 27 28 25 35
Cooker Hob 3.0 1 17 17 16 17
Cooker Oven 5.0 1 37 37 36 37
Microwave oven 1.7 1 17 17 16 17
Laptop 0.1 4 37 40 33 47
Bzf:l‘;i‘t’er 0.3 6 37 42 31 47
Vacuum Cleaner 1.2 1 19 19 18 33
Electric Vehicle 3.5 6 37 42 31 47

determine the operating point of the system for the ahead
time intervals based on the uncertainties. As a result, if the
variation ranges are specified in the HEMS self-scheduling
problem, the results of scenarios 1 and 2 would be identical
in terms of the operating cost. It is worth mentioning that there
are multiple optima with identical values of the cost for the
HEMS self-scheduling problem while the schedules may be
different. The performance of the SH-MPC has been studied
in scenario 3. To this end, the solar PV power generation,
which is updated every 30 minutes for the subsequent time
slots, has been used. Furthermore, the amount of energy
stored in the BEES system would be determined with respect
to the optimal selling/purchasing strategy to/from the grid
and also, the optimal storage strategy. It is noted that the
amount of energy available in the battery should meet 50% of
the capacity of the storage system at the end of the schedul-
ing period. For the running appliances, they should operate
until the end of the time required for accomplishing their
operation; otherwise, a penalty is applied to the cost due to
the startup/shutdown costs. The simulation results of each
scenario have been discussed in the following:

1) SCENARIO 1
This scenario studies the self-scheduling problem of the
HEMS with fixed and controllable loads. For the case with
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the TOU tariff, the electrical energy cost for the studied day
without any load shifting is $1.2874 while the contributions
of fixed and controllable loads are $0.2484 and $1.039,
respectively. The total energy consumption of the consumer
is 39.01 kWh while the contributions of the fixed and control-
lable loads are 9.96 kWh and 29.05 kWh, respectively. It is
noteworthy that the BEES system and solar power generation
have been neglected in this scenario and accordingly, the
entire load demand of the consumer must be supplied by the
utility grid. In this case, the electricity bill of the consumer
reduces to $0.8709 while the PEV has the largest share in the
cost reduction by $0.1925 with the demand-side management
program. It should be also noted that shifting the load demand
of some appliances like the spin dryer, cooker hob, cooker
oven, and microwave oven would not affect the electricity
bill of the customer. Fig. 4 depicts the contributions of each
load in the cost of the consumer before and after the self-
scheduling. The simulation results show that in the base case
and with the TOU tariff in the absence of the BEES system
and PV panel, the cost of the consumer before and after the
self-scheduling would be exactly the same as these values
reported in [16].

2) SCENARIO 2

This scenario has been designed to compare the results
obtained from the self-scheduling by using the SH-MPC
model with those obtained in Scenario 1. Indeed, Scenario 1
corresponds to self-scheduling with deterministic energy
price and load demand. As there is no uncertainty, the results
obtained for the day-ahead scheduling with the TOU tariff
marked as “DA-TOU” model in scenario 1 is expected to
be the same as the ones derived for the SH-MPC model
with the TOU tariff marked as “SH-MPC-TOU” model in
terms of the cost. As mentioned before, the presented self-
scheduling problem has been modeled as an MILP problem
with multiple global optima. The simulation results obtained
in this scenario would also verify this issue. Fig. 5 illustrates
the schedules of controllable loads for the DA-TOU and
SH-MPC-TOU cases. It is noteworthy that the operating costs
of the two scenarios are the same and equal to $0.8709. As can
be observed, the microwave oven is used at time slots 16 and
17 in the SH-MPC-TOU and DA-TOU cases, respectively,
with the energy price of 0.02 $/kWh. Moreover, the results
show that the best time slot to use the cooker oven is time
slot 37 in the DA-TOU case while for the SH-MPC case, it is
time slot 36. The electricity prices at time slots 36 and 37
are the same and equal to 0.04 $/kWh. The best time slots to
use the spin dryer in the DA-TOU scenario are slots 26 and 27
while for the SH-MPC-TOU case, the best time slots are slots
25-26. The energy price during slots 25-27 is 0.04 $/kWh.
Consequently, there is no difference in the costs of the cus-
tomer in the mentioned scenarios.

3) SCENARIO 3
The SH-MPC model has been used in this scenario to
enhance the self-scheduling of the residential consumer in the
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presence of the BEES system and PV panel. This scenario
considers the TOU tariff and the only uncertain parameter
of the problem is the solar power generation which its data
are updated every 30 minutes for the whole day. The total
energy generated by the solar PV panel is 31.479 kWh which
is substantial compared to the total energy consumption of the
consumer which is 39.01 kWh. Moreover, the BEES system is
available to absorb the surplus solar power generation, charge
during off-peak hours, and inject power into the system dur-
ing peak hours. The simulation results indicate that in this
case, the consumer not only does not purchase energy from
the distribution company, but also gets profit by selling the
surplus energy to the grid. The value of the objective function,
in this case, is $-0.282713 showing the profit of the consumer
by $0.282713. Fig. 6 illustrates the hourly amount of energy
stored in the BEES system managed by the HEMS. The
dotted line shows the real power stored in the BEES system.
The scheduling of the appliances and the amount of energy
stored in the BEES system are updated for the ahead time
slots due to the variations of the solar power generation data
updated every 30 minutes. It is noted that that the battery is
charged at the maximum charging capacity during the final
slots of the scheduling period to achieve the target value of
energy available in the system at the end of the day while the
amount of solar power generation is zero.

As expected, the battery injects power into the system and
sells the surplus solar power generation to the grid during
peak-load time slots to provide the consumer with a consid-
erable profit. The results obtained for the power consumption
in the base case, the case with load shifting, and also, the case
with load shifting and the presence of the BEES system and
PV panel are demonstrated in Fig. 7. As shown, load demands
have successfully been shifted to off-peak time slots. It is
worth mentioning that the net cost of fixed and controllable
loads in this scenario is $0.8709 which is the same as those
of scenarios 1 and 2.

B. SELF-SCHEDULING BASED ON RTP

In this section, three scenarios are considered to investigate
the self-scheduling problem for all fixed and controllable
loads while applying the RTP tariffs.

1) SCENARIO 4

This scenario investigates the self-scheduling problem for
all fixed and controllable loads considering the RTP tariff.
For the case without any load shifting, the cost of energy
of the studied day is equal to $1.22093. The contributions
of the fixed and controllable loads to the daily energy cost
are $0.28343 and $0.9375, respectively. The total energy con-
sumption of the prosumer is 39.01 kWh, similar to Scenario 1.
The shares of the fixed and controllable loads are 9.96 kWh
and 29.05 kWh, respectively. Applying this scenario, the
electricity bill of the prosumer has declined to $1.08383. It is
noteworthy that shifting the load demand of some appliances
like the spin dryer, cooker oven, and vacuum cleaner would
not impact the energy cost of the consumer. Fig. 8 depicts
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FIGURE 4. The contribution of each load in the cost with TOU Tariff;
a) The base case; b) By implementing the self-scheduling.

the contribution of each load to the energy cost of the con-
sumer before and after implementing the self-scheduling. The
results obtained in this case also show that the energy costs of
the consumer in the base case and with the RTP mechanism
in the absence of the BEES system and solar PV panel before
and after the demand-side management are just the same as
the values reported in [ 16].

2) SCENARIO 5

In Scenario 5 similarly to Scenario 2, the self-scheduling
problem is solved in a deterministic way with the RTP mech-
anism. As expected, the simulation results for this scenario
show that the energy cost in this scenario is the same as
Scenario 4. Fig. 9 illustrates the schedules of the control-
lable loads in the day ahead scheduling and RTP mechanism
marked as “DA-RTP”’ case and the SH-MPC model with RTP
mechanism marked as “SH-MPC-RTP” case.

The appliances with different schedules from that of
Scenario 4 are the spin dryer, cooker oven, cooker hob, and
vacuum cleaner. As Fig. 9 depicts, the vacuum cleaner is used
at time slots 19 and 18 in the DA-RTP and SH-MPC-RTP
cases, respectively. The energy tariffs at these two slots are
the same and equal to 0.024 $/kWh. For the other three
appliances, the usage times and the corresponding tariffs are
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FIGURE 6. The energy stored in the BEES system in Scenario 3 for the
SH-MPC case.

different. However, the electricity bills of the customer in the
two scenarios are identical. Table 6 represents the schedules
and costs of the mentioned appliances. As Table 6 indicates,
the spin dryer, cooker hob, and cooker oven are different in
terms of the schedules and RTP tariffs in Scenarios 4 and 5.
However, the energy costs for all assets are the same, which
in turn shows that this problem is associated with multiple
global optima where the operating points are different for the
studied scenarios. Fig. 9 depicts the scheduling of appliances.
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FIGURE 7. Power consumption data for (a) base case, (b) Shifted loads
only, and (c) The case with load shifting in the presence of BEES system
and PV panel.
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FIGURE 8. The contribution of each load to the energy cost with the RTP
mechanism before and after the self-scheduling.

TABLE 6. Costs and schedules in scenarios 4 and 5.

' DA-RTP (S4) SH-MPC-RTP (S5) |\ ot
Appliance | — - - -
Time | Price | Cost |Time| Price Cost )
Slot |($/AWh) ($) | Slot | ($/kWh)| ($)
Spin Dryer |27-28] 0.033 [0.0825[25-26] 0.034 [0.0850 | +0.0025
Cooker Hob| 16 | 0.019 [0.0285] 17 | 0.024 [0.0360]| +0.0075
Cooker | 361 0047 [0.1175] 37 | 0.043 |0.1075| -0.0100
Oven
Vacuum |16 1 004 10.0144| 18 | 0.024 |0.0144| 0.0000
Cleaner

3) SCENARIO 6
Similar to scenario 3, the self-scheduling problem is solved
in the presence of the BEES and PV systems. The differ-
ence between scenarios 5 and 3 is the RTP mechanism used
in Scenario 6 instead of the TOU mechanism. The fore-
casting data of the solar power generation are the same as
those of scenario 3. In other words, the forecast is updated
every 30 minutes and the SH-MPC model modifies the self-
scheduling for the ahead time slots. It is noteworthy that
the constraints relating to the permitted operating interval
and interrupted operation of controllable loads have all been
satisfied in this scenario. The total cost in this scenario is
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FIGURE 9. The scheduling of controllable assets for: a) The DA-RTP case;
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FIGURE 10. The energy stored in the bees system together with the
operating points in the SH-MPC model.

equal to $0.050251, which is significantly reduced through
efficiently utilizing 31.479 kWh solar power generation. It is
worth noting that the primary cost of the consumer for this
tariff has been $1.22093 while shifting the controllable loads
has led to reducing the cost to $1.08383.

Fig. 10 depicts the amount of energy stored in the BEES
system which is managed by the HEMS. The performance
of the BEES system at each time slot has also been shown
while the dotted line indicates the real energy stored in the
BEES system. As expected, the BEES system delivers power
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FIGURE 11. Power consumption data for (a) base case, (b) Shifted loads
only, and (c) Shifted loads with PV and EES contributions.

to the system and sells surplus solar energy, and the stored
energy during peak time intervals to give some benefits to
the consumer. It is noteworthy that the constraint on the final
value of the energy stored in the BEES system has been
satisfied in this scenario as well.

Fig. 11 indicates power consumption data for the base case,
load shifting case, and also the case with load shifting with
the BEES and PV systems. As can be observed, shifting the
load demand to off-peak time slots has successfully been done
to mitigate the cost. The net cost of controllable and fixed
loads in this scenario is $1.08383 which is identical to those
of scenarios 3 and 4.

VI. CONCLUSION

This paper presented a self-scheduling model for a HEMS,
aimed at minimizing the electricity bill of a residential pro-
sumer. The optimal operational decisions for using the con-
trollable home appliances were updated using the SH-MPC
model. The SH-MPC framework was developed to optimally
operate the prosumer’s assets over the day, which aimed at
minimizing the daily electricity bill and optimizing energy
use. To evaluate the effectiveness of the proposed algo-
rithm, a number of scenarios were considered. The simulation
results indicated that for the scenarios with deterministic load
demand, the total cost was similar to the SH-MPC-based case.
The performance of the proposed technique was also evalu-
ated for the case with an uncertain solar irradiance forecast.
As the MPC updates the scheduling according to the forecast
of the uncertain parameter, i.e., solar power generation in this
study, to minimize the daily electricity bill of the prosumer.
Through the use of the presented framework, the running
assets and fixed loads do not face any interruptions. The com-
putational complexity of the problem was also alleviated by
using an efficient MILP model. The presented problem was
simulated using six scenarios where the first three scenarios
addressed the TOU tariff and the remaining scenarios were
devoted to the cases with the RTP mechanism. The electricity
bill of the consumer without any load shifting, PV system,
and BEES systems, would be $1.2874. The obtained results
showed that for the first scenario investigating the day-ahead
self-scheduling problem with the TOU tariff and without the
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PV and BEES systems, the total daily cost of the consumer
was $0.8709. By using the SH-MPC model the electricity
cost would be the same as the scenario 1 since there were
no PV and BEES systems. This means that load shifting
would help mitigate the daily cost of the prosumer by %32.
The third scenario considered both the PV and BEES system
in the self-scheduling problem using the SH-MPC model.
As a result, the total operating cost would be $-0.282713,
showing that the prosumer would be able to make a profit
by selling power to the utility grid. For the RTP case without
any load shifting program, the daily cost of the prosumer
was $1.22093. Scenario 4 addressed the day-ahead schedul-
ing problem with the RTP tariff without the PV and BEES
systems. In this regard, the total daily operating cost without
any load shifting program would be $1.08383. For Scenario 5
with the RTP mechanism and SH-MPC model without the PV
and BEES systems, the result was the same as Scenario 4.
The obtained results indicated that for the RTP case, the
load shifting program could successfully mitigate the cost by
11%. In Scenario 6, the self-scheduling problem was solved
using the RTP and SH-MPC model taking into account the
PV and BEES systems. In this regard, the electricity cost
reduced to $0.050251, showing 96% reduction in the cost
in this case. The framework presented in this paper offers a
potential strategy for prosumers to reduce operating costs and
optimize electricity usage. Future research work will look at
implementation condition monitoring strategies, such as long
short term memories (LSTMs) and estimation theory, to pre-
dict prosumer electricity usage based on past performance
and meteorological data.
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