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ABSTRACT In this work, we investigate the performance of a reconfigurable intelligent surface (RIS)-aided
multi-user simultaneous wireless information and power transfer (SWIPT) network, where a multiple-input
multiple-output (MIMO) base station (BS) servesmultipleMIMO information receivers (IRs) while ensuring
a minimum harvested power at multiple MIMO energy receivers (ERs). In order to improve the energy
efficiency (EE) of the network, we consider a pricing-based performance metric called network utility.
We then establish an optimization framework to jointly optimize the transmit precoding matrix (TPM) and
phase shift matrix (PSM) to maximize the network utility function with constraints on the available transmit
power at BS, minimum harvested power required at each ER, and unit modulus phase shift condition at
RIS. Due to the non-convex nature of this problem, we divide it into two sub-problems where a sub-optimal
solution of TPM and PSM are obtained separately using successive convex approximation and bisection
search-based algorithms. Further, we propose an EE maximization (EEM) algorithm based on the block
coordinate descent method to achieve the optimal solution of the master problem by iteratively obtaining
the sub-optimal TPM, PSM, and network price using their respective algorithms. Moreover, we also prove
that the solution obtained for each problem using their respective algorithm converges to the Karush-Kuhn-
Tucker (KKT) optimum point of that problem. We also show the efficacy of the proposed algorithm using
simulation results. In particular, we highlight the importance of using RIS in a multi-user MIMO SWIPT
network and demonstrate the effect of various parameters on the network’s EE performance.

INDEX TERMS Reconfigurable intelligent surfaces (RIS), multiple-input and multiple-output (MIMO),
multi-user, simultaneous wireless information and power transfer (SWIPT), energy efficiency (EE).

I. INTRODUCTION
The impending deployment of fifth-generation (5G) mobile
communications around the world will be a major factor
in driving productivity and will be the key enabler for
long-envisaged verticals including personalised healthcare,
manufacturing, smart energy grids, smart cities, finance, and
transportation. However, realizing the ever-growing demand
for a better communication network with improved qual-
ity of service (QoS) requirements such as lower power
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consumption, very high energy efficiency (EE), better spec-
tral efficiency (SE), etc., researchers have already started to
explore the evolution of 5G, commonly referred to as 5G and
beyond (5GB) and sixth generation (6G) communications [1].
In this context, to enhance the experience of relaying in wire-
less communication networks, the idea of multiple passive
reflecting surfaces/elements made of meta-materials has been
floated to assist the communication between multiple devices
such as base station (BS), users etc., [2]–[4]. This set of
discrete reflecting elements is termed as reconfigurable intel-
ligent surface (RIS) or intelligent reflecting surface (IRS),
which is neither a part of the transmitter radio nor the receiver
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radio. It is a novel and low-cost/maintenance technique to
control the wireless propagation medium, which until now
had been deemed as uncontrollable. Accordingly, the funda-
mental role of a RIS is to affect the dispersion of wireless
signals transmitted by other devices, without producing its
signals [5]. The phase/reflection angle of each element in a
RIS can be independently controlled or reconfigured through
software. Due to their passive nature, RISs do not impose any
thermal noise as they simply reflect the signals incident upon
them. Therefore, RISs consume less power as compared to
conventional decode-and-forward and amplify-and-forward
relays, thus enhancing the EE of the communication network.
Further, RIS uses smart reflection characteristics to create
a virtual line of sight (LoS) link that helps in eliminating
the fading caused by obstacles between the transmitter and
receiver. In addition to this, RISs also provide multi-path
propagation that leads to improvement in the rank of the
channel along with an increase in the achievable diversity.
Hence, a wireless network‘s performance can be significantly
improved by mere adjustments of the angles of the reflective
elements in a RIS [6], [7], which make it more remunerative
than conventional relays for network operators.

While several key performance indices such as throughput,
coverage, EE, and SE play pivotal roles in the design and
deployment of RISs in a wireless network [8]–[12], this
paper particularly focuses on the EE of the network1 [13].
To achieve this, we not only consider the problem of max-
imizing the EE of the network but also implement simulta-
neous information and power transfer (SWIPT) [14], [15].
Accordingly, certain devices in the network have abilities
to extract either only-power or only-symbol/information or
some amount of power along with the desired symbol from
the received signal using the energy harvesting (EH) tech-
nique. Now, both EE and EH are strictly related to the total
power consumed by a network in the form of static and
dynamic power to attain the desired level of QoS [16]. Static
power consumption is the constant/fixed power required
for non-communication-related tasks such as network sig-
nal processing, hardware maintenance, cooling, etc. On the
other hand, dynamic power is the total transmit power used
by the network to complete an end to end communication
among several devices wirelessly. Due to continuous varia-
tions in wireless channel conditions, the total transmit power
required by the network changes dynamically. Therefore,
judicious selection of transmit power is required to signifi-
cantly improve the network’s performance.

A. RELATED LITERATURE AND MOTIVATION
A RIS-aided multiple-input single-output (MISO) network
was considered in [10] and a two-timescale (TTS) transmis-
sion protocol was proposed to maximize the sum rate of
the network. In particular, the transmit precoding vector was
designed using instantaneous channel state information (CSI)

1EE is evaluated as the ratio of the achievable sum-rate of a network to the
total power consumed.

and optimized phase shift matrix (PSM), which lead to a
significant reduction in training overhead and design com-
plexity. Similarly, in [11], joint optimization of transmitting
precoder and PSM was performed to maximize the received
power for a multiple RIS aided single user wireless net-
work. Specifically, a semi-definite relaxation (SDR)-based
algorithm was proposed to find a sub-optimal solution to the
optimization problem. Next with regards to power efficiency,
in [9], the authors minimized the total dynamic power by
the joint design of active and passive beamformers for a
RIS-aided MISO network. Similarly, joint symbol level pre-
coding and PSM were optimized to minimize the total power
usage in a RIS-aided multi-user network in [17]. In [18], joint
optimization of the transmit power and PSM was performed
to maximize the EE of a RIS-aided multi-user MISO network
for Terahertz communication using covariance matrix adap-
tation evolution strategy and Dinkelbach’s method.

While the works mentioned above are seminal for a
RIS-aided network, the consideration of a MISO network or
a network without EH capabilities or without an emphasis
on EE, might not be ideal considering the requirements and
specifications of future 6G networks. Accordingly, a multi-
user MIMO network with multiple antennas at each node
insinuates a more practical consideration. Similarly, the
consideration of EH is also of paramount importance for
future energy-efficient networks. Only a handful of works
investigate networks with such considerations, where the
communication between devices is assisted by RISs. For
example, in [19] the trade-off between EE and SE was inves-
tigated in a RIS-aided multi-user MIMO uplink network and
the resource efficiency was maximized by jointly optimiz-
ing the transmit precoding and RIS reflective beamforming.
A similar RIS-aided multi-user MIMO uplink network was
investigated in [20], where the passive beamforming and
on-off reflecting modulation based information transfer were
optimized tomaximize the sum-rate. Next with regards to EH,
the authors in [21] investigated the performance of SWIPT in
a RIS-aided wireless multi-user network. Similarly, in [22],
the authors investigated a RIS-assisted SWIPT multi-user
network and maximized its sum rate by jointly optimizing
the active and passive beamforming, albeit considering a
single antenna at each user. However, to the best of the
authors’ knowledge no work to date has investigated the EE
of a RIS-aided SWIPT enabled Multiuser MIMO Networks.
Accordingly, the goal of this paper is to maximize the EE
of a RIS-aided multi-user MIMO SWIPT network by jointly
designing the optimal PSM and optimal precoding matrix.

B. CONTRIBUTIONS
In particular, we consider a multi-user MIMO SWIPT
network having a multi-antenna BS serving multiple
multi-antenna information receivers (IRs) while ensuring a
minimum harvested power at multiple multi-antenna energy
receivers (ERs). Unlike previous works, which have only
considered sum rate maximization as a performance metric,
we use a pricing-based approach and adopt a performance
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metric called network utility, which provides a striking bal-
ance between the sum rate and the total dissipated power,
thus indirectly controlling the achievable EE of the network.
We then provide a framework to jointly optimize the transmit
precoding matrix (TPM) and PSM to maximize the network
utility function. The primary distinctions of this work are
summarized below.
• We formulate a network utility function maximization
problem and jointly optimize TPM and PSM consid-
ering three different constraints: 1) maximum available
transmit power available at BS, 2) minimum harvested
power required at each ER, and 3) unit modulus phase
shift at RIS. This problem is non-convex and extremely
difficult to solve due to the involvement of phase and
power constraints.

• We establish an optimization framework and reformu-
late themaster problem into a simpler andmore tractable
form using the mean squared error (MSE) minimization
approach. Then we use the block coordinate descent
method to solve this reformulated problem by dividing
it into two sub-problems and solve them separately.
In particular, first, we optimize TPM for fixed PSM and
then optimize PSM for fixed TPM.

• To solve the TPM optimization problem, we pro-
pose a successive convex approximation (SCA) based
algorithm. It uses the bisection search method to pro-
vide a near-optimal solution that converges at the
Karush-Kuhn-Tucker (KKT) optimum point of this
sub-problem. Similarly, we simplify the PSM opti-
mization problem using the majorization-minimization
method and propose a SCA based algorithm to find a
near-optimal PSM that converges at the KKT optimum
point.

• Further, we propose an EE maximization (EEM) algo-
rithm based on the block coordinate descent method to
achieve the optimal solution of the master problem by
iteratively obtaining the sub-optimal TPM, PSM, and
network price using their respective algorithms.

• Finally, the efficacy of the proposed algorithm is
demonstrated using simulation results. In particular,
we highlight the importance of using RIS in a multi-user
MIMO SWIPT network and demonstrate the effect of
various parameters on the network’s EE performance.

1) ORGANIZATION
The remainder part of the paper is organized as follows:
Section II discusses the considered RIS-aided multiuser wire-
less network in detail and formulated optimization problem.
Sections III and IV present the problem formulation and
its detailed solution, respectively. The simulation results are
discussed in Section VI whereas Section VII concludes the
work.

2) NOTATIONS
X? and X∗ denote the converged solution and conjugate
operator, respectively, of a given matrix X. tr(X), ||X||F and

|X| represent the trace, Frobenius norm and determinant,
respectively. Re{x} denotes the real part of the complex value
x.Ca×b denote a complex vector of size a×b. The expectation
operation is denoted by E{·}. (·) � (·), (·)H and (·)T repre-
sent Hadamard product, Hermitian and transpose operations,
respectively. arg{·} and diag(·) represents extraction of phase
information and diagonalization operation, respectively. (·)†

and (·)−1 denotes the matrix pseudo-inverse and inverse oper-
ations, respectively. I denotes the identity matrix. Ofx(x) is
used for denoting the gradient of f w.r.t. the vector x and
CN (0, σ 2I) denote a random vector with zero mean and σ 2

variance.

II. SYSTEM MODEL
We consider a RIS-aided multi-user MIMO downlink wire-
less communication network which consists of a BS, NI
information receivers (IRs) and NE energy receivers (ERs).
We further assume that the BS is equipped with AB anten-
nas, each IR and ER are fitted with AI and AE antennas,
respectively. With the aid of NR reflective elements of RIS,
BS transmits information to all IRs while providing sufficient
energy to all ERs simultaneously using SWIPT protocol,
as shown in the Fig. 1.

A. INFORMATION AND ENERGY TRANSFER
As mentioned earlier, BS is fitted with AB antennas to aid the
signal transmission and it need to have channel state informa-
tion (CSI) for applying transmit beamforming. Thus, for sim-
plicity, we assume BS has perfect CSI using some standard
estimation method2 Therefore, using this CSI, BS designs an
appropriate TPM and combines the symbols of all user to
form a superimposed symbol given by

s =
NI∑
n=1

Tnan, (1)

where an ∈ Cc×1 represents the unit energy data symbol
vector of the nth IR with c ∈ min(AB,AI ), AI represents the
number of antennas at each IR. Tn ∈ CAB×c denotes the
linear TPM corresponding to nth IR with ||Tn||2F = Pn and∑NI

n=1 Pn ≤ Pmax. Pmax is the maximum transmission power
available at BS. Next, BS transmits this superimposed symbol
to all users simultaneously. Thus, the signal received at the nth

IR can be expressed as

bI ,n = (Ln,B + Ln,R8PR,B)s+ dI ,n, (2)

where 8 = diag{φ1, φ2, . . . , φNR} is the phase shift
matrix (PSM) with φi = ejθ i and θi ∈ [0, 2π ] denoting the
phase shift of the ith reflective element of the RIS, Ln,B ∈
CAI×AB and Ln,R ∈ CAI×NR represent the channel gain from

2CSI estimation in RIS-aided networks can be performed using some
standard algorithms such as parallel factor decomposition (PARAFAC)
[23]–[25]. However, similar to [26], [27], we assume perfect CSI in this
paper for simplicity and analytical tractability. Moreover, on the reviewers
suggestion and for better insights, we highlight the impact of CSI estimation
error on the performance of the considered network in Fig. 11.
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FIGURE 1. A RIS-assisted multi-user MIMO SWIPT-enabled wireless network.

BS and IRs, respectively, to the nth IR, PR,B ∈ CNR×AB

represents the channel gain for the link between BS and RIS,
and dI ,n ∼ CN (0, σ 2

I IAI ) is the additive white Gaussian
noise (AWGN). Substituting s from (1) into (2), bI ,n can be
expressed as:

bI ,n = L̄nTnan +
NI∑

i=1,6=n

L̄nTiai + dI ,n, (3)

where L̄n
1
= Ln,B + Ln,R8PR,B. The corresponding achiev-

able data rate of the nth IR is given by

Rn = log|I+ L̄nTnTH
n L̄

H
nK
−1
n |, (4)

where Kn is interference plus-noise covariance matrix given
as Kn =

∑NI
f=1,f 6=n L̄nTf T

H
f L̄

H
n + σ 2

I I [28]. Further, the
sum rate (SR) can be expressed as

R =
NI∑
n=1

Rn. (5)

As mentioned earlier, this network also consists of low
power ERs/sensor nodes which require certain amount of
power (very low) to complete their designated task without
any interruption. Therefore, considering this requirement,
BS designs the beamforming/TPM so that alongwith satisfy-
ing the desired performance at each IRs, these ERs can also

harvest sufficient power from received signal using SWIPT
based EH [29]. Thus, using (1), the received signal at the jth

ER can be expressed as

bE,j = (Mj,B +Mj,R8PR,B)s+ dE,j, (6)

where Mj,B ∈ CAE×AB and Mj,R ∈ CAE×NR are the channel

gain from BS and RIS to the jth ER, respectively, and dE,j ∼
CN (0, σ 2

EIAE ) is the AWGN. Each ER applies EH protocol
to harvest power from the received signal [14]. The total
harvested power by the jth ER can be expressed as

Hj = κjtr

( NI∑
n=1

M̄jTnTH
n M̄

H
j

)
, (7)

where M̄j
1
= Mj,B + Mj,R8PR,B, 0 < κj ≤

1,∀j ∈ {1, 2, · · · ,NE } denotes the EH efficiency.3 The
weighted sum of the power harvested by all the ERs is given
by

H =
NE∑
j=1

δjHj =
NI∑
n=1

tr
(
TH
nMTn

)
, (8)

3Note that the EH efficiency depends on the harvesting circuit used at
each user. Thus, considering the fact that efficiency is independent of these
constraints and randomness of the channel, we have assumed this efficiency
to be constant at each user, which is a common practice in MIMO-aided
EH [30]–[32].
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where M =
∑NE

j=1 δjκjM̄
H
j M̄j, δj is the energy weighting

factor for the jth ER.

III. NETWORK UTILITY FUNCTION AND
PROBLEM FORMULATION
Let us consider that BS consumes a fixed static power of
PSB for performing non-communication task such as network
signal processing, hardware maintenance, cooling, etc. Sim-
ilarly, the static power consumed at the RIS is assumed to
be PSI . Thus, total static power consumed by the considered
network is given by

Pstat = PSB + P
S
I . (9)

Further, the total dynamic power consumed by the network is
equal to the total transmit power used by BS. Therefore, from
(1), the dynamic power can be evaluated as

Pdyna =
NI∑
n=1

Pn =
NI∑
n=1

tr
(
TnTH

n

)
. (10)

From (9) and (10), the total power consumed by the network
is obtained as

Ptot (T) = Pdyna + Pstat ,

=

NI∑
n=1

tr
(
TnTH

n

)
+ PSB + P

S
I . (11)

A. NETWORK UTILITY FUNCTION
In this paper, we study the network’s performance by inves-
tigating a pricing based EE maximization problem. Using
(5) and (11), we define a new performance metric termed as
network utility function (NUF) and expressed as

Uq(T,8) = R(T,8)− qPtot(T),

=

NI∑
n=1

Rn(T,8)−q

( NI∑
n=1

tr
(
TnTH

n

)
+PSB + P

S
I

)
,

(12)

where q ≥ 0 denotes the network price. Note that the power
allocation problem will be equivalent to sum rate maximiza-
tion problem when q→ 0 and the power resource utilization
cost becomes negligible. However, with increase in q, the
optimal design of TPM and PSM becomes very important.

B. PROBLEM FORMULATION
As evident from (12), TPM T and PSM 8 play a vital role
in obtaining a desired performance. Therefore, it is extremely
important to jointly optimize and design these parameters and
maximizeNUF. Thus, using (10), (8) and (12), we formulate a
joint TPM and PSM optimization based NUF maximization
problem considering the constraints of maximum available
transmit at BS alongwith minimum power requirement of
ERs and unit modulus of phase shift of RIS elements given
by

max
T,8

(
Uq(T,8)

)
(13a)

s.t.
NI∑
n=1

tr
(
TnTH

n

)
≤ Pmax, (13b)

tr

( NI∑
n=1

TH
nMTn

)
≥ H̄ , (13c)

|φi| = 1, i ∈ {1, 2, . . . ,NR}, (13d)

where H̄ is the minimum power required by each ER. Clearly,
due to coupling of variables T and8, and involvement of EH
constraint, this problem becomes non-convex in nature. Thus,
it is extremely difficult to find its solution using standard
methods.

IV. BLOCK COORDINATE DESCENT BASED ALGORITHM
As discussed above, problem (13) is extremely difficult
to solve. Therefore, using minimum mean square error
(MMSE) [33], problem (13) is simplified to a much simpler
and tractable form. Thus, using (3) and approach similar
to [33], the estimated signal vector at nth IR can be evaluated
as

ân = JHn bI ,n, (14)

where Jn ∈ CAI×c represents the decoding matrix. The mean
square error (MSE) corresponding to (14) can be expressed as

On = E
[(
ân − an

) (
ân − an

)H]
,

=

(
JHn L̄nTn − I

) (
JHn L̄nTn − I

)H
+

NI∑
f=1,f 6=n

JHn L̄nTf T
H
f L̄

H
n Jn + σ

2JHn Jn. (15)

Using (4), (12) and (15), problem (13) can be reformulated as

max
V,J,T,8

( NI∑
n=1

ln (V, J,T,8)

−q

( NI∑
n=1

tr
(
TnTH

n

)
+ PSB + P

S
I

))
(16)

s.t. (13b), (13c), (13d)

where V is the set of auxiliary matrices that denotes V =
{Vn ≥ 0,∀n ∈ NI } and J is the set of Jn for all IRs, and

ln (V, J,T,8) = log |Vn| − Tr (VnOn)+ c. (17)

To find optimal J, we take first order partial derivative of
ln (V, J,T,8) w.r.t. Jn and equate it to zero. Thus, the
optimal value of Jn can be expressed as

J?n =
(
Kn + L̄nTnTH

n L̄
H
n

)−1
L̄nTn. (18)

Similarly, the optimal value of Vn can be expressed as

V?n=

Ic − TH
n L̄

H
n

 NI∑
f=1

L̄nTf TH
f L̄

H
n + σ

2
I I

−1L̄nTn

−1

.

(19)
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After obtaining optimal decoding matrix Jn and auxiliary
matrix Vn, we use these values to find sub-optimal TPM
and PSM in next subsections. In particular, we use block
coordinate descent (BCD) method to solve problem (16)
and divide it into two sub problems where one problem will
find sub-optimal TPM where as the other problem provides
sub-optimal PSM.

A. SUB-OPTIMAL TPM
This section presents the optimization of TPM for fixed value
of other variables (J, V and 8). Using (15) and neglecting
the constant terms, the maximization problem (16) can be
reformulated in a minimization problem w.r.t T give as

min
T

NI∑
n=1

tr
(
TH
n DTn

)
−

NI∑
n=1

tr
(
VnJHn L̄nTn

)

−

NI∑
n=1

tr
(
VnTH

n L̄
H
n Jn

)
+ q

NI∑
n=1

tr
(
TH
n Tn

)
s.t. (13b), (13c), (20)

where D=
∑NI

f=1 L̄
H
f JfVf JHf L̄f . Note that similar to previous

problems, problem (20) is also non-convex. However, unlike
previous problem, it is equivalent to a difference of convex
(d.c.) program. Therefore, we can use successive convex
approximation (SCA) method to solve problem (20) [34].
In particular, using first-order Taylor series expansion and
Jensen’ inequality, similar to [35], we obtain:

tr

( NI∑
n=1

TH
nMTn

)
≥ −tr

( NI∑
n=1

T(i)H
n MT(i)

n

)

+ 2Re

[
tr

( NI∑
n=1

T(i)H
n MTn

)]
, (21)

where T(i)
n is the previous value. After some algebra,

we obtain

2Re

[
tr

( NI∑
n=1

T(i)H
n MTn

)]
≥ H̄+tr

( NI∑
n=1

T(i)H
n MT(i)

n

)
. (22)

Using (22), we reformulate the problem (20) as

min
T

NI∑
n=1

tr
(
TH
n DTn

)
−

NI∑
n=1

tr
(
VnJHn L̄nTn

)

−

NI∑
n=1

tr
(
VnTH

n L̄
H
n Jn

)
+ q

NI∑
n=1

tr
(
TH
n Tn

)
(23a)

s.t. (13b),

2Re

[
tr

( NI∑
n=1

T(i)H
n MTn

)]
≥ H̃ , (23b)

where H̃ = H̄+ tr(
∑NI

n=1 T
(i)H
n MT(i)

n ). Clearly, the OF in (23)
is convex and it can be solved using standard optimization
tool such as CVX [36]. However, the computational com-
plexity of the CVX tool is very high. So, we further simply

this problem and propose an algorithm using Lagrangian dual
decomposition method that provides a near-optimal solution
withmuch lower complexity [37]. Owing to the fact that it sat-
isfies Slater’s condition, we use the dual problem approach to
find the solution as its dual gap is zero. The partial Lagrangian
function of problem (23) can be expressed as

L (T, λ) =
NI∑
n=1

tr
(
TH
n DTn

)
−

NI∑
n=1

tr
(
VnJHn L̄nTn

)

−

NI∑
n=1

tr
(
VnTH

n L̄
H
n Jn

)
+ q

NI∑
n=1

tr(TH
n Tn)

+ λ

NI∑
n=1

tr
(
TH
n Tn

)
− λPmax, (24)

where λ denotes the Lagrange multiplier. Next, using (24),
we solve the following problem

g (λ)
1
= min

T
L(T, λ) s.t. (22). (25)

The Lagrangian function of problem (25) can be expressed as

L (T, ρ) =
NI∑
n=1

tr
(
TH
n (D+ (q+ λ)I)Tn

)

−

NI∑
n=1

tr
(
VnJHn L̄nTn

)

−

NI∑
n=1

tr
(
VnTH

n L̄
H
n Jn

)
+ ρH̃

− 2ρRe

[
tr

( NI∑
n=1

T(i)H
n MTn

)]
− λPmax, (26)

where ρ ≥ 0 denotes the dual variable. Differentiating
L(T, ρ) w.r.t. Tn and solving it for zero, we obtain

Tn(λ, ρ) = (D+ (q+ λ)I)†
(
L̄H
n JnVn + ρMT(i)

n

)
. (27)

Further, considering the complementary slackness condition
of constraint (22), we obtain

2Re

[
tr

( NI∑
n=1

T(i)H
n MTn(λi, 0)

)]
≥ H̃ , (28)

where λi is the previous value of λ. Note that if inequality (28)
hold true, then Tn(λi, 0) is the solution to the problem (25).
On the other hand, if inequality (28) does not satisfy, then the
solution is given by Tn(λi, ρo) with

ρo=
H̃−2Re

[
tr
(∑NI

n=1T
(i)H
n M(D+(q+λi)I)−1L̄H

n JnVn

)]
2tr
(∑NI

n=1 T
(i)H
n M(D+(q+λi)I)−1MT(i)

n

) .

(29)

Now, the dual problem is corresponding to g (λ) can be
evaluated as

max
λ

g (λ) s.t. λ ≥ 0. (30)
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Now, considering the complementary slackness condition of
constraint (13b), we obtain

tr

( NI∑
n=1

TH
n (0, ρo)Tn(0, ρo)

)
≤ Pmax. (31)

If the inequality (31) holds true, thenTn (0, ρo) is the solution
to the problem (25). However, if inequality (31) does not
satisfy, then the solution is given by Tn (λ, ρo) [38], where
λ is obtained by solving

P(λ) 1= tr

( NI∑
n=1

TH
n (λ, ρo)Tn(λ, ρo)

)
= Pmax (32)

Due to involvement of ρo in (29), obtaining a closed form
solution of (32) is extremely difficult. So, in order to solve
(32), we first obtain the behavior of P(λ) w.r.t. λ in the
following lemma.
Lemma 1: P(λ) decreases monotonically w.r.t. λ.
Proof: Refer to Appendix A.

Further considering the nature of P(λ), we propose Algo-
rithm 1 that uses bisection search method to solve (23). Next
using Algorithm 1 and SCAmethod, we propose Algorithm 2
to solve problem (20).
Theorem 1: Algorithm 2 provides a solution that con-

verges at the KKT optimum point of (20).
Proof: Proof is similar to [39], so for paucity of space

we have omitted the proof.

1) COMPUTATIONAL COMPLEXITY
The calculation ofT in (27) requires approximatelyO

(
NIA3

)
computations with A = max(AB,AI , c). Considering
the fact that Algorithm 1 converges at approximately
log2

(
λfi−λin
ε

)
iterations, the complexity of Algorithm 1 to

solve the problem (23) is given byOlog2
((

λfi−λin
ε

) (
NIA3

))
.

Thus, Algorithm 2 solves the (20) with a complexity of
O
(
imaxlog2

(
λfi−λin
ε

)
NIA3

)
.

B. SUB-OPTIMAL PSM 8

This section presents the optimization of PSM for fixed value
of other variables (J, V and T). Using (15) and neglecting
the constant terms, the maximization problem (16) can be
reformulated in a minimization problem w.r.t 8 given as

min
8

NI∑
n=1

tr
(
VnJHn L̄nT̃L̄

H
n Jn

)
−

NI∑
n=1

tr
(
VnJHn L̄nTn

)

−

NI∑
n=1

tr
(
VnTH

n L̄
H
n Jn

)
(33)

s.t. (13c), (13d),

where T̃ =
NI∑
f=1

Tf TH
f . From (3), we can write

tr
(
VnJHn L̄nT̃L̄

H
n Jn

)
= tr

(
8HYn8U

)
+ tr

(
8HWH

n

)
+ tr (8Wn)+ C1, (34)

Algorithm 1 Sub-Optimal Solution to Problem (23)
1: Initialize Pmax, ε, λin, λfi.
2: repeat
3: λ = (λin + λfi)/2;
4: Evaluate {Tn(λ, 0),∀n ∈ {1, 2 . . . ,NI }} using (27)
5: if 2Re

[
tr
(∑NI

n=1 T
(i)H
n MTn(λi, 0)

)]
≥ H̃ (i) then,

6: ρo = 0.
7: else
8: Evaluate ρo using (29).
9: end if
10: Evaluate {Tn(λ, ρo),∀n ∈ {1, 2 . . . ,NI }} using (27)
11: Evaluate P(λ) using (32)
12: if P(λ) ≥ Pmax then
13: λin = λ.
14: else
15: λfi = λ.
16: end if.
17: until |λin − λfi| ≤ ε
18: Tn(i+1) = {Tn(λ, ρo),∀n ∈ {1, 2 . . . ,NI }} using (27)

Algorithm 2 Sub-Optimal TPM

1: Initialize ε, T(1), i = 0, imax
2: repeat
3: i← i+ 1
4: Evaluate z(T(i)) using (20)
5: Calculate H̃ (i)

= H̄ + tr(
∑NI

n=1 Tn
(i)H);

6: Obtain {Tn(i+1),∀n ∈ {1, 2 . . . ,NI }} using Algo-
rithm 1;

7: Evaluate z(T(i+1)) using (23)
8: until i ≥ imax or |z(T(i+1))− z(T(i))|/|z(T(i+1))| ≤ ε

where Yn
1
= LH

n,RJnVnJHn Ln,R, U
1
= PR,BT̃PH

R,B, and Wn
1
=

PR,BT̃HLH
n,BJnVnJHn Ln,R.C1 is summation of entities that are

independent of 8. Similarly, we obtain

tr
(
VnJHn L̄nTn

)
= tr (8Bn)+ C2, (35)

where Bn
1
= PR,BTnVnJHn Ln,R and C2 constitutes to the

entities independent of8. Further, using (8), constraint (13c)
can be improvised as

tr
(
8HMR8U

)
+ tr

(
8HMH

BR

)
+ tr (8MBR)+ tr

(
MBT̃

)
≥ H̄ , (36)

where MB
1
=

NE∑
j=1
δjκjMH

j,BMj,B, MR
1
=

NE∑
j=1
δjκjMH

j,RMj,R, and

MBR
1
= PR,BT̃

NE∑
j=1
δjκjMH

j,BMj,R. Substituting (34) and (35)

in (33), we simplify the problem as

min
8

tr
(
8HY8U

)
+ tr

(
8HXH

)
+ tr (8X)

s.t. (13d), (36), (37)
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withY =
∑NI

n=1Yn andX =
∑NI

n=1Wn−
∑NI

n=1 Bn. Note that
C1 and C2 are constant and have no impact on analysis, so we
have neglected these terms. Using the identity from [40],
we can write

tr
(
8HY8U

)
= φH

(
Y� UT

)
φ, (38)

tr
(
8HMR8U

)
= φH

(
MR � UT

)
φ, (39)

where φ = [φ1, . . . , φNR ]
T . Similarly, we have

tr (8X) = xTφ, tr
(
8HXH

)
= φHx∗, (40)

tr (8MBR) = mTφ, tr
(
8HMH

BR

)
= φHm∗, (41)

where x = [[X]1,1, . . . , [X]NR,NR ]
T andm = [[MBR]1,1, . . . ,

[MBR]NR,NR ]
T. Further, from (36), we obtain

φHϒφ + 2Re
{
φHm∗

}
≥
_

H , (42)

where
_

H= H̄ − Tr(MBT̃) and ϒ = MR � UT is a semidef-
inite matrix, as MR and UT are non-negative semidefinite
matrices [40]. From (36) and (42), (37) is reformulated as

min
φ

φH4φ + 2Re
{
φHx∗

}
(43)

s.t. (13d), (42),

where 4 = Y � UT. Similar to ϒ, 4 is also a non-negative
semidefinite matrix. Due to (42), problem (43) is a non-
convex problem. Therefore, similar to (20), we use SCA
method to solve problem (43). Considering the fact that φϒφ
is a convex function of φ, we have

φHϒφ ≥ −φ(n)Hϒφ(n) + 2Re
[
φHϒφ(n)

]
, (44)

where φ(n) is the previous value. From (42) and (44),
we obtain

2Re
[
φH

(
m∗ +ϒφ(n)

)]
≥
_

H +φ(n)Hϒφ(n). (45)

Thus using (45), the problem (43) can be transformed as

min
φ

φH4φ + 2Re
{
φHx∗

}
(46a)

s.t. (13d),

2Re
[
φH

(
m∗ +ϒφ(n)

)]
≥ Ĥ , (46b)

where Ĥ ,
_

H +φ(n)Hϒφ(n). We use the majorization-
minimization algorithm to solve the problem (46) by subdi-
viding it into simple and tractable sub-problems [41]. First
we obtain the upper bound (ξ (φ|φ(n))) of OF (χ (φ)) in (46)
that satisfies the following conditions:

ξ (φ(n)|φ(n)) = χ (φ(n)), (47)

∇φ∗ξ (φ|φ
(n))
∣∣∣
φ=φ(n)

= ∇φ∗χ (φ)
∣∣
φ=φ(n)

, (48)

ξ (φ|φ(n)) ≥ χ (φ). (49)

We formulate a new sub-problem considering ξ (φ|φ(n)) as
the new OF which can be obtained using the following
inequality [42]

φH4φ ≤ φHZφ − 2Re
{
φH (Z4)φ(n)

}
+

(
φ(n)

)H
(Z−4)φ(n), (50)

where Z = λmaxINR and λmax denotes the maximum eigen
value of with 4. After some simplification, we obtain

ξ (φ|φ(n)) = y(φ|φ(n))+ 2Re
{
φHx∗

}
, (51)

where y(φ|φ(n)) = φHZφ − 2Re
{
φH (Z4)φ(n)

}
+(

φ(n)
)H
(Z−4)φ(n), Using (51), problem (46) is reformu-

lated as

min
φ

ξ (φ|φ(n)), s.t. (13d), (45). (52)

Since, φHφ = NR, thus φHZφ = NRλmax. Therefore, remov-
ing constant terms from (52), it is converted to amaximization
problem given by

max
φ

2Re
{
φHw(n)

}
s.t. (13d), (45), (53)

where w(n)
= (λmaxINR − 4)φ(n) − x∗. Due to involvement

of constraint (13d), problem (53) becomes a non-convex
optimization problem. Also, unlike problem (23), its dual gap
is not zero. Therefore, we use pricing based approach and
reformulate the problem (53) as

max
φ

2Re
{
φHw(n)

}
+ 2pRe

[
φH

(
m∗ +ϒφ(n)

)]
,

s.t. (13d), (54)

where p ≥ 0 denotes the price factor. The solution of this
problem can be obtained as

φ(p) = ej arg
(
w(n)
+p
(
m∗+ϒφ(n)

))
. (55)

Considering the complementary slackness condition p(
K (p)− Ĥ

)
= 0 of (45) with

K (p) = 2Re[φ(p)H(m∗ +ϒφ(n))]. (56)

If (45) is satisfied, then p = 0 provide the optimal solution as
φ(0). If (45) is not satisfied, then we need to find p for which
the (55) gives the optimal solution. Therefore, using approach
similar to (32), we propose Algorithm 3 that provides the
optimal solution to problem (53).
Theorem 2: Algorithm 3 finds the optimal solution of

problem (53) and problem (52).
Proof: For the proof refer to Appendix B.

Using Algorithm 3, we propose Algorithm 4 that uses SCA
method to solve the Problem (46).
Theorem 3: Algorithm 4 provides a solution that con-

verges at the KKT optimum point of (33).
Proof: Refer to Appendix C
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Algorithm 3 Sub-Optimal Solution to Problem (53)
1: Initialize the ε, pj and pρ
2: Evaluate K (0) using (56)
3: if K (0) ≥ Ĥ (n) then
4: repeat
5: p = (pj + pρ)/2;
6: Evaluate φ(p) using (55)
7: Evaluate K (p) using (56)
8: if K (p) ≥ Ĥ (n) then
9: pρ = p.
10: else
11: pj = p.
12: end if
13: until |pj − pρ | ≤ ε
14: Evaluate φ(n+1) = φ(p) using (55)
15: else
16: Evaluate φ(n+1) = φ(0) using (55)
17: end if

1) COMPUTATIONAL COMPLEXITY
Similar to Algorithm 2, the computational complexity of

Algorithm 4 is approximately O
(
nmaxlog2

(
pρ−pj
ε

)
N 3
R

)
.

C. OPTIMAL NETWORK PRICE (q?) FOR OPTIMAL EE
Using (5) and (11), the EE of the considered network can be
expressed as

ηEE (T,8) =

∑NI
n=1 log|I+ L̄nTnTH

n L̄
H
n K̄
−1
n |∑NI

n=1 tr
(
TnTH

n
)
+ PSB + P

S
I

=

∑NI
n=1 Rn(T,8)
Ptot (T)

. (57)

The optimal price q? that gives the maximum EE is obtained
using following theorem.
Theorem 4: The price q? is the optimal price, if and only if

the optimal precoder (T?) and optimal phase (8?) in problem
(13) with respect to q? satisfies the balance equation given by:

R(T?,8?)− q?Ptot (T?) = 0. (58)

Proof: Refer to Appendix D.
Similar to [13], we use local maximizer of the problem (13)

to obtain the local optimum value of q in the (i+1)th iteration
as

q(i+1) =

∑NI
n=1 Rn(T

?(i),8?(i))

Ptot (T?(i))
, (59)

where i is the previous iteration. Using (59), we find the
optimal price q? that can be obtained using iterative method.
The proposed EEM algorithm is summarized in Algorithm 5.

D. SOLUTION TO PROBLEM (13)
Using above discussion, we propose an iterative Algorithm 5
to solve (13). It uses Algorithm 2 andAlgorithm 4 to find sub-
optimalT and8, respectively, iteratively until convergence is
achieved.

Algorithm 4 Sub-Optimal PSM

1: Initialize ε, φ(1), n = 0, nmax
2: repeat
3: n← n+ 1
4: Evaluate f (φ(n)) using (45)
5: Ĥ (n)

=
_

H +φ(n)Hϒφ(n);
6: w(n)

= (λmaxINR −4)φ(n) − x∗;
7: Obtain φ(n+1) using Algorithm 3
8: until n ≥ nmax or

|f (φ(n+1))−f (φ(n))|
f (φ(n+1))

≤ ε

Theorem 5: Algorithm 5 provides a solution that con-
verges at the KKT optimum point of (13).

Proof: Refer to Appendix E.

1) COMPUTATIONAL COMPLEXITY
Algorithm 5 uses Algorithm 2 and Algorithm 4 in step (5)
and step (8), respectively. Therefore, these steps consumes the
major portion of the computations with complexity discussed
earlier in their respective section. Thus, the computational
complexity of Algorithm 5 is given by

O
(
n5max

(
nmax
1 log2

(
λρ − λj

ε

)
NIA3B

+ nmax
2 log2

(
pρ − pj
ε

)
N 3
R

))
.

V. FEASIBILITY CHECK FOR PROBLEM (13)
We formulate the following optimization problem to check
the feasibility constraints (13b) and (13d) as follows:

max
T,8

tr

( NI∑
n=1

TH
nMTn

)
s.t. (13b), (13d). (60)

Problem (13) is feasible if and only if maximum OF of the
above problem value is larger than H̄ . Due to coupling of
TPM and PSM, obtaining an exact solution to the above prob-
lem is extremely difficult. Therefore, we obtain sub-optimal
TPM and PSM by optimizing them alternately. Thus, first we
obtain a sub-optimal TPM by solving following optimization
problem

max
T

tr

( NI∑
n=1

TH
nMTn

)
s.t. (13b). (61)

The optimal solution to the above problem is obtained as

Tn =[
√
pny,0AB×(c−1)], ∀n = 1, . . . ,NI , where

NI∑
n=1

pn =

Pmax , χ and y denote the maximum eigenvalue and the
corresponding eigenvector of M. Further assuming pi =
Pmax/NI ,∀ i ∈ {1, 2 . . . ,NI }, we have maximum value of
OF in above problem as χPmax, which represents the optimal
energy beamforming [43].
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Algorithm 5 EEM Algorithm

1: Initialize n = 0, nmax, T(1),φ(1), ε, q(1)

2: repeat
3: n← n+ 1
4: Evaluate R(n) using (5)
5: Evaluate J(n) and V(n) using (18) and (19),

respectively
6: Obtain T(n+1) using Algorithm 2
7: Obtain φ(n+1) using Algorithm 4 with J(n),V(n)

and T(n+1)

8: Evaluate J(n+1) using (18) and V(n+1) using (19)
9: Evaluate R(T(n+1),φ(n+1)) using (5)

10: Evaluate q(n+1) using (59)
11: ε̂ = |q(n+1) − q(n)|/q(n+1)

12: until n ≥ nmax or ε̂ < ε,

Next, sub optimal PSM for a given TPM can be obtained
by solving the following problem

max
φ

φHϒφ + 2Re
{
φHm∗

}
s.t. (13d), (62)

Note that OF of the above problem is convex w.r.t φ. There-
fore, after applying first order Taylor expansion, it can be
solved using SCAmethod. Finally, problem (61) and (62) are
solved alternatively until the OF of the problem (60) becomes
greater than H̄ .

VI. RESULTS AND DISCUSSION
In this section, the performance of the proposed algorithms
and optimization framework are verified using exhaustive
numerical simulations. Since ERs are energy constrained low
power sensor nodes, thus, they are assumed to be placed in
LoS of the BS and RIS. So, small scale fading of the link
between RIS and ERs follows Rician distribution which is a
combination of LoS and non-LoS (NLoS) components given
by

M̃j,R =

√
αriser

αriser + 1
M̃

LoS
j,R +

√
1

αriser + 1
M̃

NLoS
j,R , (63)

where Mj,R ∈ CAE×NR , j ∈ {1, 2, . . . ,NE }, αriser
denotes the Rician factor, and M̃

NLoS
j,R denote the NLoS

component which follows Rayleigh distribution. M̃
LoS
j,R =

µAE

(
ϑAoAriser,j

)
µHNR

(
ϑAoDriser,j

)
represents the LoS component of

the link with

µAE

(
ϑAoAriser,j

)
=

[
1, ej

2πd
γ

sinϑAoAriser,j , · · · , ej
2πd
γ

(AE−1) sinϑAoAriser,j
]T
, (64)

and

µNR

(
ϑAoDriser,j

)
=

[
1, ej

2πd
γ

sinϑAoDriser,j , · · · , ej
2πd
γ

(NR−1) sinϑAoDriser,j
]T
, (65)

where ϑAoDriser,j ∈ [0, 2π ] denotes the angle of departure and
ϑAoAriser,j ∈ [0, 2π ] denotes the angle of arrival. γ and d
represents the wavelength and antenna separation, respec-
tively. Similar to (63), the link between BS to ERs and BS
to RIS also follows Rician fading and are represented by
Mj,B ∈ CAE×AB ,∀j ∈ {1, 2, . . . ,NE} and PR,B ∈ CNR×AB ,
respectively. Further, the link between BS to IRs and RIS
to IRs are denoted by Ln,B ∈ CAI×AB and Ln,R ∈ CAI×NR ,
respectively, for all n ∈ {1, 2, . . . ,NI }, and follow Rayleigh
fading. Further, we consider a common large scale-path loss
model for each link given by

PL = PL0

(
D0

Dj

)δj
, (66)

where PL0 denotes the path loss at a reference distance D0
andDj ,∀j ∈ {BSRIS,RISER,RISIR,BSIR,BSER} denotes
the length for the links BS-RIS, RIS-ER, RIS-IR, BS-IR and
BS-ER. δj denotes the path loss exponent of the jth link. Also,
(κj,∀j ∈ {1, 2, · · · ,NE } = κ). Unless stated otherwise, the
considered parameter values used for simulations are given
in Table 1. Note that we consider without-RIS scenario (i.e.,
direct link only) as the benchmark to compare the proposed
EEM algorithm.

Fig. 2 represents the convergence behavior of the
Algorithm 5 obtained for different number of RIS elements
NR with Pmax = 10dBm. It can be observed that EE increases
with increase in NR, which is evident from the fact that sum
rate is directly proportional toNR (see (5)). Also, the obtained
solution converges after a fixed number of iterations, which
verifies Theorem 5. Also, it can be seen that the change
in performance is around 150 − 200% for initial iterations.
However, this change is around 0 − 2%, which is negligible
compared to earlier change. This verifies the convergence of
the algorithm graphically.

Fig. 3 depicts the plot of average EE w.r.t. number of RIS
elements NR obtained for three different cases: 1) Optimal
PSM using Algorithm 5, 2) Random PSM, and 3) without
RIS (wo-RIS, NR = 0). It can be seen that the performance
is very low and constant when NR = 0. The main reason for
this behavior is that with NR = 0, only direct link is used to
decode information. Further, one can observe that there is a
significant improvement in performance when NR increases.
However, the achievable EE obtained using EEM algorithm
is higher as compared to random PSM case. This highlights
the importance of the resource optimization in the considered
network in order to achieve maximum performance.

In Fig. 4, we plot the average EE versus the minimum
harvested power H̄ for the three different cases with Pmax =

10dBm.As expected, the achievable EE reduceswith increase
in H̄ . The reason for this behavior is that major portion of
Pmax is used by ERs to achieve higher H̄ . Therefore, net
power received at each IR and hence the performance reduces
with increase in H̄ . It can also be seen that among three
cases, EE is maximum for the optimal TPM and PSM case.
For better understanding, we highlight the impact of energy
harvesting efficiency (κ) on the EE of the considered network.
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TABLE 1. Simulation parameters.

FIGURE 2. Convergence behavior of the EEM algorithm.

FIGURE 3. Average EE versus number of phase shifters.

We plot average EE versus minimum harvested power at
each ER (H̄ ) in Fig. 5 for different values of harvesting
efficiency at each user (KE = 4). In particular, we compare
different/random efficiency (κ1 = 0.3, κ2 = 0.4, κ3 =
0.5, κ4 = 0.6) with equal efficiency (κ1 = κ2 = κ3 = κ4 =
κ) at each user. As expected, performance increases with
increase in efficiency because of increase in net harvested
power.

All the above figures are obtained for fixed pathloss expo-
nent of each link. However, depending on the environmen-
tal disturbances/obstacles such as buildings, trees, etc., the
value of these parameters may change drastically. Therefore,
to understand the impact of these pathloss exponent, we plot

FIGURE 4. Average EE versus minimum harvested power at each ER (H̄).

FIGURE 5. Average EE versus minimum harvested power (H̄).

average EE versus δRIS in Fig. 6 considering δRIS , δBSRIS =

δRISER = δRISIR. It can be observed that because of the
reduction in the strength of the reflected signal from RIS,
the average EE for optimal and random case decreases with
increase with δRIS . Additionally, the performance is worst for
the wo-RIS case as compared to other cases. However, for
δRIS ≈ 3, the performance of all the case are approximately
same. Thus, using RIS in such scenarios has no significant
impact on the network performance.

Fig. 7 compares the average EE obtained after considering
only direct link and only RIS links. Here, δBSIR = δBSER =

δD. As expected, the EE increases for each link with decrease
in pathloss exponent. In addition to this, it can be seen that,
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FIGURE 6. Average EE versus RIS-related path loss exponent (δRIS ).

FIGURE 7. Average EE versus the phase shifters for RIS link and direct
link.

depending on δD and δRIS , the performance of RIS dominates
the performance of direct link after a certainNR. For example,
EE for RIS link is greater than that of the direct link when
δD = 3.6, δRIS = 2 with NR > 100, and δRIS = 2.1 with
NR > 140. Similarly, EE for RIS link is greater than that
of the direct link when δD = 3.7, δRIS = 2 ∀ NR, δRIS =
2.1 ∀ NR, and δRIS = 2.2 with NR > 100. Thus, however,
increase in number of RIS elements can over come the double
fading effect and provide better performance.

Fig. 8 presents the variation of obtained EE w.r.t. location
of ER (xER) with Pmax = 10dBm and BS at the origin.
Similar to pathloss exponent, the performance for each case
decreases with increase in distance between BS and ER.
The main reason for this behavior is the reduction in effec-
tive power/strength of the received signal due to increase
in distance. Further, there is a significant improvement in
EE obtained using EEM algorithm as compared to other
two cases. It can also seen that for high value of xER, the
performance of optimal and random cases are similar but still
better than wo-RIS case. Therefore, in such case RIS provide
a significant improvement over wo-RIS case.

FIGURE 8. Average EE versus location of the ER (xER ).

FIGURE 9. Average EE versus location of the IR circle center (x IR ).

In similar context, we show the impact of location of the
IRs (xIR) on the EE performance of all cases and plot average
EE versus xIR in Fig. 9. Similar to Fig. 8, the performance for
each case decreases with increase in distance between BS and
IR, and optimal case provides the best performance. However,
one can observe that the difference between the performance
of optimal and random case is very low.

In Fig. 10, we study the impact of maximum transmit
power (Pmax) available at BS and observe the average EE gain
for each scheme. It is obtained for three different values of
number of elements at RIS NR. As expected, the average EE
gain increases with increase in maximum transmit power for
each NR. Also, NR = 50 provides much better performance
thanNR = 20 andNR = 10.Moreover, it can also be seen that
after certain Pmax, there is no significant improvement in the
achievable EE. Thus, one can choose Pmax carefully to avoid
the wastage of power. Moreover, for better insights, we high-
light the impact of CSI estimation error on the performance of
the considered network in Fig. 11. It can be seen that average
EE decreases due to increase in CSI estimation error.

Next, in Fig. 12, we plot the average EE versus number
of antennas at BS (AB) with Pmax = 10dBm and compare
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FIGURE 10. Average EE versus maximum transmit power.

FIGURE 11. Average EE versus perfection and imperfection CSI scenarios.

FIGURE 12. Average EE versus number of antennas at BS.

the performance obtained using three cases discussed earlier.
It can be observed that with increase in AB there a significant
improvement in achievable EE. This improvement is obtained
because of the increase in diversity of systemwhich increases
linearly with increase in AB. In addition to this, one can also

FIGURE 13. Average EE versus number of energy receivers.

FIGURE 14. Average EE versus number of information receivers.

observe that the difference between RIS-aided and wo-RIS
cases is very high. Thus, using RIS in a multi antenna net-
works significantly improves the network performance.

Finally, we demonstrate the impact of the number of ERs
(NE ) and IRs (NI ) on the network performance. Thus, we plot
EE versusNE and EE versusNI in Fig. 13 and Fig. 14, respec-
tively, for each case. It can be observed that the achievable
EE increases with increase in the number of users in both
the figures. However, observing both the graphs carefully for
NE = NI , one can see that the EE obtained in Fig. 13 is lower
than that of Fig. 14. The reason behind this difference is the
minimum power requirement (EH limit) of ERs considered
in this work. As the number of ER increases, their EH limit
also increases. On the other hand, IR has no minimum power
requirement.

VII. CONCLUSION
We investigated the performance of a RIS-adied multi-user
MIMO SWIPT downlink network where a BS served infor-
mation to multiple information receivers while ensuring
a minimum harvested power at multiple energy receivers.
A joint optimization of transmit precodingmatrices and phase
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shift matrices was formulated for maximizing the network
utility function considering constraints related to available
transmit power available at BS, minimum harvested power
required at each ER, and unit modulus phase shift condi-
tion at RIS. Due to non-convex nature of this problem, we
divided it into two sub-problems and solve them separately.
In particular, we optimized TPM and PSM separately using
successive convex approximation and bisection search based
algorithms. Further, we proposed an EEM algorithm based on
block coordinate descent method that provided the optimal
solution of the main problem by iteratively obtaining sub-
optimal TPM, PSM, and network price using their respective
algorithms. Furthermore, we demonstrated the convergence
behavior of the proposed algorithm using simulation results.
Additionally, we also highlighted the impact of RIS in mul-
tiuser MIMO SWIPT networks. The importance of use of
multiple antennas was also highlighted. Moreover, in order
to avoid the wastage of power, the importance of judicious
choice of available transmit power was also discussed.

APPENDIX A
PROOF OF LEMMA 1
From (24), we can write

L[T(λ1), λ1] ≤ L[T(λ2), λ1]. (67)

where T(λ1) and T(λ2) are the solutions to the problem (25)
corresponding to λ1 and λ2, respectively, with λ1 > λ2.
Similarly, we obtain

L[T(λ2), λ2] ≤ L[T(λ1), λ2]. (68)

Adding (67) and (68), and after some algebra, we obtain

P (λ1) ≤ P (λ2) . (69)

APPENDIX B
PROOF OF THEOREM 2
Suppose φ? represents the global optimum solution of (53)
and φ(p?) is the global optimum solution of (54). Now,
assuming φ? 6= φ(p?), we obtain

2Re
{
φ(p?)Hw(n)

}
< 2Re

{
φ?Hw(n)

}
. (70)

However, φ(p?) is also the global optimum. Thus, we obtain

2Re
{
φ(p?)Hw(n)

}
+ 2p?Re

[
φ(p?)H

(
m∗ +ϒφ(n)

)]
≥ 2Re

{
φ?Hw(n)

}
+ 2p?Re

[
φ?H

(
m∗ +ϒφ(n)

)]
.

(71)

According to [37], φ? and φ(p?) should satisfy(
2Re

[
φ̂H

(
m∗ +ϒφ(n)

)]
− Ĥ

)
= 0, (72)

where φ̂ ∈ {φ?,φ(p?)}. Therefore, substituting (72) in (71),
we obtain

2Re
{
φ(p?)Hw(n)

}
≥ 2Re

{
φ?Hw(n)

}
. (73)

Contradiction between (73) and (70) falsify our assumption.
Hence, φ? = φ(p?). This proves the Theorem 2.

APPENDIX C
PROOF OF THEOREM 3
For the case of exposition, we define

ξ̂ (φ) 1= φHϒφ + 2Re
{
φHm∗

}
+ tr

(
MbT̃

)
, (74)

ξ̄ (φ|φ(n)) 1= −φ(n)
H
ϒφ(n)

+ 2Re
[
φH

(
m∗ +ϒφ(n)

)]
+tr

(
MbT̃

)
, (75)

with ξ̂ (φ(n)) = ξ̄ (φ(n)|φ(n)). Since, from (53), φ(n+1) sat-
isfies (44) and ξ̄ (φ(n+1)|φ(n)) ≥ H̄ . Also, ξ̂ (φ(n+1)) ≥
ξ̄ (φ(n+1)|φ(n). So, ξ̂ (φ(n+1)) ≥ H̄ . Therefore φ(n+1) satisfies
(13c). Hence {φ(n), n = 1, 2 . . .} is a feasible solution of
(33). Further, From (47), ξ

(
φ(n+1)|φ(n)

)
= χ (φ(n+1)). Also,

ξ
(
φ(n+1)|φ(n)

)
≤ ξ

(
φ(n)|φ(n)

)
. Thus, ξ

(
φ(n+1)|φ(n)

)
≤

χ (φ(n)). Similarly, from (47), ξ
(
φ(n+1)|φ(n)

)
≥ χ (φ(n+1)).

Therefore, χ (φ(n)) ≥ χ (φ(n+1)). Hence, sequences
{χ (φ(n+1)), n = 1, 2, · · · } is monotonically decreasing and
converges after certain n.

Using KKT condition, the Lagrange function of problem
(52) can be expressed as

L(φ, ν, τ ) = ξ (φ|φ?)+ ν
(
Ĥ − 2Re

[
φH

(
m∗ +ϒφ?

)])
+

NR∑
i=1

τi (|φi| − 1), (76)

where {φ?} denotes global optimum solution, ν and τ =
{τ1, · · · , τm} denotes the dual variables. These variables must
satisfy the following conditions

∇φ∗L(φ, ν, τ )|φ=φ?=∇φ∗ξ (φ|φ?)|φ=φ?−ν?
(
m∗+ϒφ?

)
+

NR∑
i=1

τ ?i
(
∇φ∗

∣∣φi∣∣) |φ=φ?=0, (77)

ν?
(
Ĥ − 2Re

[
φ?

H (m∗ +ϒφ?)]) = 0, (78)

τ ?i
(∣∣φ?i ∣∣− 1

)
= 0, ∀i. (79)

From (47), we obtain

∇φ∗ξ (φ|φ
?)|φ=φ? = ∇φ∗χ (φ)|φ=φ? . (80)

Further, ∇φ∗χ (φ)|φ=φ? = ∇φ∗ϕ(φ)|φ=φ? , where ϕ(φ)
denotes the OF of problem (33). From (80),∇φ∗g(φ|φ

?)|φ=φ?
= ∇φ∗ϕ(φ)|φ=φ? . Substituting this into (78), we have

∇φ∗ϕ(φ)|φ=φ? − ν
?
(
m∗ +ϒφ?

)
+

NR∑
i=1

τ ?i
(
∇φ∗ |φi|

)
|φ=φ? = 0. (81)

(78), (79) and (81) satisfies the KKT conditions.

APPENDIX D
PROOF OF THEOREM 4
Sufficiency Part: Let Since T? is the optimal precoder with
respect to the optimal price q?, it implies that

q̃ ,
R
(
T(n)? ,8(n)?

)
Ptot

(
T(n)?

)
VOLUME 10, 2022 29145



V. Sharma et al.: Pricing-Based Approach for EEM in RIS-Aided Multi-User MIMO SWIPT-Enabled Wireless Networks

≥
R
(
T(n),8(n))
Ptot

(
T(n)

) , ∀
(
T(n),8(n)

)
∈ S ∩ B, (82)

where S depicts the feasible set of the problem (13) and B
represents the norm ball set centered at

(
T(n)? ,8(n)?

)
with

the radius r > 0. Thus,
(
T(n)? ,8(n)?

)
is the local maximizer

for the price q̃ in the problem (13) because

R
(
T(n),8(n)

)
− q̃Ptot

(
T(n)

)
≤ 0

= R
(
T(n)? ,8(n)?

)
− q̃Ptot

(
T(n)?

)
. (83)

From (82) and (83), it can be concluded that q̃ is the opti-
mal price such that the obtained solution

(
T(n)? ,8(n)?

)
can

achieve the local maximum of the EE, and the balance equa-

tion is given as R
(
T(n)? ,8(n)?

)
− q̃Ptot

(
T(n)?

)
= 0.

Necessity Part: Using the balance equation, we have

R
(
T(n),8(n)

)
− q?Ptot

(
T(n)

)
≤ R

(
T(n)? ,8(n)?

)
−q?Ptot

(
T(n)?

)
= 0. (84)

In other words, we can write

R
(
T(n),8(n))
Ptot

(
T(n)

) ≤ q? = R
(
T(n)? ,8(n)?

)
Ptot

(
T(n)?

) . (85)

APPENDIX E
PROOF OF THEOREM 5
Firstly, the monotonic property of Algorithm 5 can be proved
similar to [28]. Next, using KKT conditions corresponding to
problem (20), its Lagrange function can be expressed as

L(T, λ, ρ) = z(T,8?)+ λ

( NI∑
n=1

‖Tn‖2F − PB

)

+ ρ

(
H̄− tr

( NI∑
n=1

TH
nMTn

))
. (86)

Similar to (76), dual variables λ and ρ must satisfy follow-
ing conditions

∇T∗nL(T, λ, ρ)
∣∣
Tn=T?n

= ∇T∗nz(T,8
?)
∣∣
Tn=T?n

+ λ?T?n − ρ
?MT?n = 0, (87)

λ?

( NI∑
n=1

∥∥T?n∥∥2F − PB
)
= 0, (88)

ρ?

(
H̄ − tr

( NI∑
n=1

T?Hn MT?n

))
= 0. (89)

Also, we have

∇T∗n l
(
V?, J?,T,8?

)∣∣
Tn=T?n

,= ∇T∗nz(T,8
?)
∣∣
Tn=T?n

, (90)

where n ∈ NI and l (V, J,T,8) 1
=
∑NI

n=1 ln (V, J,T,8).
Further, we use following inequalities

∇T∗n ln
(
V?, J?,T,8?

)∣∣
Tn=T?n

(91)

= −tr
(
V?n
(
∇T∗nOn

(
J?,T,8?

)∣∣
Tn=T?n

))
(92)

= −tr


(
∇T∗nOn (J?,T,8?)

∣∣
Tn=T?n

)
(
On
(
J?,T?,8?

))
 (93)

=
(
∇T∗n log

∣∣(On
(
J?,T,8?

))∣∣)∣∣
Tn=T?n

(94)

= ∇T∗nRn(T,8
?)
∣∣
Tn=T?n

. (95)

Here (92) corresponds to the chain rule and (95) is obtained
after simplifying (19) using Woodbury matrix identity.

From (95) and (90), we obtain

∇T∗nz(T,8
?)
∣∣
Tn=T?n

= ∇T∗nRn(T,8
?)
∣∣
Tn=T?n

. (96)

Similarly, from (96) and (90), we have

∇T∗nRn(T,8
?)
∣∣
Tn=T?n

+ λ?T?n − µ
?MT?n = 0, (97)

where n ∈ {1, 2, . . . ,NI }. Further, we can write

∇φ∗ l
(
V?, J?,T?,8

)
|φ=φ? = ∇φ∗ϕ(φ)|φ=φ? . (98)

Similar to (91)-(95), we have

∇φ∗ l
(
V?, J?,T?,8

)
|φ=φ? = ∇φ∗Rn(φ,T

?)
∣∣
φ=φ?

. (99)

Also, we can write

∇φ∗ϕ(φ)|φ=φ? = ∇φ∗Rn(φ,T
?)
∣∣
φ=φ?

. (100)

Using (100) into (81), we obtain

∇φ∗Rn(φ,T
?)
∣∣
φ=φ?
− ν?

(
m∗ +ϒφ?

)
+

NR∑
i=1

τ ?i
(
∇φ∗ |φi|

)
|φ=φ? = 0. (101)

Hence, (97), (88), (89) and (101) satisfies the KKT
conditions.
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