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ABSTRACT In biaxial contouring control applications, the inherent structural flexibility of machines
can lead to position discrepancies between the manipulator and actuator, and thus deteriorate the man-
ufacturing performance, especially when the controller is designed without available end-effector side
feedback. In this work, we focus on the end-effector contouring control problem for industrial machines
with position-dependent flexibility to improve the contouring performance while eliminating the effect of
mechanical vibration. A model for the widely used cantilever beam machine is developed to describe the
dynamics of the end-effector by capturing the rotation and coupled dynamics between axes. The proposed
model is validated through experiment and systematically reduced to switched linear time-invariant models
for controller design. By adopting the extended state observer, the proposed control architecture decouples
the dynamics between the X and Y-axis and simplifies the controller design process. The model predictive
control method is utilised for improving the contouring performance while reducing mechanical vibration.
The efficacy of the proposed control framework is demonstrated and validated on the designed high-fidelity
model. Performance comparisons between the proposed approach with benchmark controllers are presented.

INDEX TERMS Manufacturing, contouring control, motion control, vibration and noise control.

I. INTRODUCTION
The planar multiaxial movement is involved in industrial
machines such as laser profile cutting machines or X-Y posi-
tioning systems [1]–[4]. To achieve biaxial manufacturing,
the dual-drives gantry (H-frame) machine and the cantilever
beam (T-frame) machine are widely used [5]. The cantilever
beam machine involves two actuators driving in perpendicu-
lar axes. The one end on the Y-axis supports the other end of
the X-axis to move along the beam. The coordinated motion
of the two axes ensures the moving of the end-effector to
the desired position in two-dimensional space [6]. Structures
of machines were traditionally considered rigid at a time
when structural components were heavy and accuracy was
not highly regarded [7]–[9]. However, the flexible linkages
in machines lead to position discrepancies between actuators
and the end-effector due to their non-rigid characteristics,
thus deteriorating the manufacturing performance [9].

To eliminate the detrimental effect caused by vibration in
machines, methods including structure stiffness enhancement
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and controller design have been investigated by researchers
and engineers in fields including microelectromechanical
systems [10], robotics [11], and space systems [12]. In terms
of stiffness enhancement for contouring applications, the
dual-drives gantry machine is introduced to improve the
rigidity of systems by adding another motor on the par-
allel slides [13]. However, the effect of vibration is only
reduced instead of eliminated by changing the system
structure. Therefore, instead of modifying the structure of
machines, designing advanced control algorithms are essen-
tial in eliminating the mechanical oscillation during the con-
touring process, and establishing an accurate model with the
consideration of structural flexibility becomes the prerequi-
site for a proper controller [14]–[16].

Some efforts have been devoted to the modelling of indus-
trial contouringmachineswith structural flexibility [17]–[19].
Although the varying dynamic resonance was considered for
an XY table in [17], the system model was established based
on the frequency response at different points and an analytical
model is not formed. In [18], the model of end-effector
linked by a flexible beam was proposed and tip tracking con-
trol results were presented. The model of dual-drive gantry
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machine with structural flexibility was investigated in [19]
and the control-oriented model was used for synchronisation
control. However, the position-dependent flexibility was not
considered in [18] and [19], which is not consistent with real
applications.

At the same time, a large number of effort has been
devoted to the development of advanced control algorithms
for the improvement of contouring accuracy [20]–[22].
In [20], the variable-gain cross-coupling controller was
proposed to explicitly reduce the contouring error. The
adaptive robust control method was implemented with mul-
tiple task coordinates on a gantry machine for contour-
ing control in [21]. In [22], the feedforward computed
torque (FFCT) control was investigated for a three-axis
manipulator. It was shown that both the tracking and contour-
ing performance were improved compared to proportional-
integral-derivative (PID) with an observer and conventional
PID control. However, the system constraints including state
and input constraints are not explicitly considered in these
works.

Hence, it is necessary to establish a dynamic model
that can precisely describe the end-effector position, and
advanced control methods that can explicitly ensure the
operating constraints while enhancing the contouring perfor-
mance for machines with structural flexibility are required.
For systems with position-dependent flexibility, the dynam-
ics is coupled that complicates the controller design [12].
To eliminate the unmodelled disturbance or nonlinearities,
methods including the disturbance observer-based meth-
ods were investigated [23], [24]. The related work of
observer-based control can be found in motion control
applications including the motor control [25]–[28], machine
tools [29] and XY tables [30], [31]. The model predictive
control (MPC) serves as an attractive approach for explicitly
taking account of the constraints in themotion control. In [32]
and [33], the MPC-based position and speed control are
designed for the two-mass-drive system. For machines with
structural flexibility, the MPC based error bounded tracking
was proposed in [34].

Considering the cantilever beam machine is still widely
adopted since it has fewer parts and lower cost compared
to a gantry machine, in this work, the dynamic modelling
and contouring control for the cantilever beam machine is
investigated. We focus on the end-effector contouring control
problem for industrial machines with position-dependent
flexibility to improve the contouring performance while elim-
inating the effect of mechanical vibration. The contribution
of this work involves two parts. The first part is the system
modelling:

1) A high-fidelity model is proposed for the cantilever
beam machine system to capture the dynamics of
end-effector with rotation and coupled dynamics
between axes.

2) The proposed model is not only a theoretical out-
come but also is validated based on experiment
results.

FIGURE 1. Schematic diagram of torsional spring based vibration model.

3) The proposed model can be easily extended to other
biaxial systems with the consideration of fundamental
vibration mode.

The second part of contributions is the designed contouring
control framework:

1) The proposed control architecture decouples the
dynamics between axes and simplifies the controller
design process based on the extended state observer
(ESO).

2) The model predictive control method is adopted to
improve the contouring performance while eliminating
the effect of vibration in the optimisation problem.

3) The proposed control framework for solving the con-
touring problem using the switched linear-time invari-
ant (LTI) model can be applied to other systems with
coupled dynamics.

Notation: R is the set of real integer numbers. Z[m,n] is
the set of integers range from m to n with m, n included.
Consider a ∈ Rna , b ∈ Rnb , the stacked vector is represented
as (a, b) , [aT , bT ]T ∈ Rna+nb .

II. SYSTEM MODELLING AND MODEL VALIDATION
A. STRUCTURAL CONFIGURATION
In motion control, the closed-loop bandwidth of systems is
limited by the first few vibration modes [18]. To achieve a
trade-off between the accuracy and complexity of modelling,
a torsional spring-based model is proposed to describe the
position of the end-effector in a cantilever beammachine with
the consideration of fundamental vibration resonance.

The schematic diagram of the model is given in Fig. 1
where the dashed line depicts the machine in steady-state and
the solid line shows the machine in moving conditions. The
structural flexibility of the system is represented by a virtual
torsional spring that links the slide and flexible beam, and
the change of vibration frequency is captured when the end-
effector moves. The torsional spring with stiffness coefficient
kt introduces another degree of freedom for the rotation
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dynamics. In Fig. 1, the notations xm, ym are the positions
of X and Y-axis motors respectively, which are measurable;
xe, ye are the position components of the end-effector, which
are not measurable, θ is the angle formed due to deforma-
tion. The discrepancy errors on X and Y-axis are denoted by
1xe = |xm − xe| and 1ye = |ym − ye|.

B. LAGRANGIAN-BASED SYSTEM MODELLING
To derive the equations of motion for this cantilever beam
model, the Lagrangian based modelling is conducted [22].
The Lagrange equation is:

d
dt

(
∂L
∂q̇

)
−
∂L
∂q
= W , (1)

where L = K−P is a Lagrangian,W is a vector of generalised
force (or moments) acting in the direction of generalising the
coordinate q. For the proposed torsional spring based model,
the generalising coordinate is q = [xm, ym, θ]T .
The kinetic and potential energies of the investigated sys-

tem are given by the sum of energies from its components
including the X and Y-axis motors and torsional spring with
the beam as:

K = K1 + K2 + K3, (2)

P = P1 + P2 + P3, (3)

where K and P are the kinetic and potential energy of the
system, K1, P1 are the kinetic and potential energies of the
X-axis motor; K2, P2 are the kinetic and potential energies of
the Y-axis motor;K3, P3 are the kinetic and potential energies
of the cantilever beam and spring. Explicitly,

K1 =
1
2
Mx

(
ẋ2e + ẏ

2
e

)
, (4)

K2 =
1
2
Myẏ2m, (5)

K3 =
1
2
Mb

(
ẋ2b + ẏ

2
b

)
+

1
2
Ibθ̇2, (6)

P1 = 0, P2 = 0, P3 =
1
2
ktθ2, (7)

where Mx and My are the mass of the X and Y-axis motors
respectively, Mb is the mass of the beam, xb, yb are the
position projections from the centre of mass of the beam onto
the X and Y-axis respectively, Ib is the moment of inertia of
the beam calculated at the centre of the mass of the beam.

Considering the material of the beam is equally distributed,
the position (xb, yb) and moment of inertia at the centre of
mass of the beam Ib are calculated as,

xb =
Lb
2

cos θ, (8)

yb = ym +
Lb
2

sin θ, (9)

Ib =
MbL2b
12

, (10)

where Lb is the length of the flexible beam. The Lagrange of
the system is given by

L = K1 + K2 + K3 − P1 − P2 − P3. (11)

According to Eq. (1), we have the Lagrange equations by
differentiating the Lagrange with respect to q̇ and q as:

d
dt

(
∂L
∂ ẋm

)
−
∂L
∂xm
= kx ix , (12)

d
dt

(
∂L
∂ ẏm

)
−
∂L
∂ym
= kyiy, (13)

d
dt

(
∂L

∂θ̇

)
−
∂L
∂θ
= −ct θ̇ , (14)

Or explicitly,

Mx

(
ẍm + ÿm sin θ − θ̇2xm

)
= kx ix , (15)

Mt ÿm +
MbLb
2

(θ̈ cos θ − θ̇2 sin θ )+Mx(ẍm sin θ

+2ẋmθ̇ cos θ + xmθ̈ cos θ − xmθ̇2 sin θ ) = kyiy, (16)

MbL2b
3

θ̈ +
MbLb
2

ÿm cos θ +Mx

(
x2mθ̈ + 2xmẋmθ̇

+xmÿm cos θ
)
+ ktθ = −ct θ̇ , (17)

where Mt , Mx + My + Mb is the total mass; kx , ky are
the force constants of X and Y-axis motors; ix and iy are the
currents generated by X and Y-axis motors respectively; ct is
the damping coefficient of the torsional spring.

The position of the end-effector is calculated in the form
of coordinate q as:

xe = xm cos θ, (18)

ye = ym + xm sin θ. (19)

In this work, the investigated contouring problem is design-
ing a control law u = (ix , iy) for systems with dynamics
Eq. (15), Eq. (16) and Eq. (17) such that the system states
xe → xm = x∗e , ye → ym = y∗e and θ → 0, where x∗e and y∗e
are the desired positions of end-effector on X and Y-axis.

III. CONTROLLER DESIGN
In this section, the proposed high-fidelity model is utilised
for the model-based contouring control design. The deriva-
tion of control-oriented modelling and the proposed control
framework are presented.

A. CONTROL ORIENTED MODELLING
The dynamic equation Eq. (15) can be reformulated as
Eq. (20) by lumping all the terms involving ym, θ as distur-
bance term:

Mx ẍm = kx ix + Fdx , (20)

where Fdx = −Mx
(
ÿm sin θ − θ̇2xm

)
. The idea of merging

the term including ym and θ is to decouple the axes controller
and simplify the controller design process based on the fact
the magnitude of this nonlinear term is bounded and con-
verges to zero as θ → 0 and θ̇ → 0 during the control
process. The design of ESO later estimates this nonlinear part
and cancels the effect by introducing the correction term at the
current loop level.
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The Eq. (16) and Eq. (17) are approximated at different
operating points x̄m to cancel the dependence of xm dynamics,
and the equations are organised with a small angle approxi-
mation as:(
Mx +My +Mb

)
ÿm + (

MbLb
2
+Mx x̄m)θ̈ = kyiy + Fd1,

(21)

(
MbLb
2
+Mx x̄m)ÿm + (

MbL2b
3
+Mx x̄2m)θ̈ + ct θ̇ + ktθ = Fd2,

(22)

where the lumped terms include the nonlinear coupling
between states as Fd1 =

MbLb
2 θ̇2θ−Mx(ẍmθ+2ẋmθ̇− x̄mθ̇2θ )

and Fd2 = −2Mx x̄mẋmθ̇ .
For the Y-axis motor control, the discrete-time state space

model is derived from Eq. (21) and Eq. (22) with given
sampling time Ts as:

ξ (k + 1) = A(x̄m)ξ (k)+ B(x̄m)iy(k)+ E(x̄m)Fdy(k) (23)

where ξ (k) , [ym(k), ẏm(k), θ(k), θ̇ (k)]T denotes the state;
Fdy(k) , [Fd1(k),Fd2(k)]T is the vector of lumped nonlinear
couplings. The coefficient matrices A(x̄m), B(x̄m) and E(x̄m)
are position-dependent and can be inferred from Eq. (21) and
Eq. (22). The detailed structure of the coefficient matrices
are given in the appendix. It has to be noticed that Eq. (23)
is linearised at different x̄m point. With larger numbers of
chosen x̄m, the model mismatch between the linearised model
Eq. (23) and its nonlinear form is smaller, but it comes with
the cost at more frequent controller switching and higher
computation load.

B. PROPOSED CONTROL STRUCTURE
The diagram of the entire control architecture and plant is
demonstrated in Fig. 2. To eliminate the effect caused by
nonlinear coupling Fdx in Eq. (20), the ESO is introduced
with conventional cascaded architecture for the X-axis motor
control. The MPC based approach is designed based on the
switched linear time-invariant model Eq. (23) to control the
movement of the Y-axis motor while reducing the oscillation
during the process.

For X-axis motion control, we define the state of the ESO
as x̂ = [x̂m, v̂m, ζ̂m]T , where x̂m is the estimate of X-axis
position, v̂m is the estimate of X-axis velocity and ζ̂m is the
estimate of the lumped nonlinear part Fdx . The dynamics of
ESO is designed as:

˙̂xm = v̂m +
3
δ

(
xm − x̂m

)
+ δ8

(
xm − x̂m
δ2

)
˙̂vm =

kx
Mx

ix +
3
δ2

(
xm − x̂m

)
+ ζ̂m

˙̂
ζm =

1
δ3

(
xm − x̂m

)
(24)

where ζ̂m , F̂dx
Mx

induces an estimate of Fdx , δ is the only
tuning parameter of the ESO. The nonliear function 8 is

chosen as the same function in [35], as:

8(r) =


−
1
4
, r ∈

(
−∞,−

π

2

]
,

1
4
sinr, r ∈

(
−
π

2
,
π

2

]
,

1
4
, r ∈

(π
2
,+∞

)
.

(25)

The designed ESO follows the general structure of the
nonlinear extended state observer in [35] to ensure the conver-
gence of the designed ESO. The convergence rate is presented
by the limit superior of the estimation error sequence as
limt→∞ sup |Fdx(t)/Mx − ζ̂m(t)| ≤ O(δ).

By introducing −Mx
kx
ζ̂m term into the current reference

for X-axis motor, the effect of nonlinear coupling Fdx is
cancelled. With the given position reference x∗e and sys-
tem feedback including xm, ẋm and ix , the control law for
the X-axis is:

ix = f (x∗e , xm, ẋm, ix)

= kpvev +
kpv
Tiv

∫
evdt −

Mx

kx
ζ̂m, (26)

where ev = kpp(x∗e − xm)− ẋm is the velocity error, kpp is the
gain of proportional controller in the position loop, kpv is the
proportional gain and Tiv is the integral time constant of PI
controller in the speed loop.

In industrial manufacturing, the time-stamped reference
is generally provided. The reference for Y-axis controller
is r(k) =

[
y∗m(k), ẏ

∗
m(k), θ

∗(k), θ̇∗(k)
]T , where θ∗(k) =

θ̇∗(k) = 0 is for oscillation reduction in this applica-
tion. With N steps pre-known reference trajectory γ N (k) =
(r(k), · · · , r(k + N − 1)), the Y-axis control input is com-
puted by solving the following optimisation problem at each
time instant:

U∗(k) = argmin
U (k)

N−1∑
i=0

(
‖r(k + i)− ξ (i)‖2Q + Ri

2
y(k)

)
+‖r(k + N )− ξ (N )‖2P

s.t. ξ (i+ 1) = A(x̄m)ξ (i)+ B(x̄m)iy(i),

iy(i) ∈ U , ∀i ∈ Z[0,N−1],

ξ (0) = ξ (k) (27)

where U (k) =
(
iy(0), · · · , iy(N − 1)

)
; ‖x‖2Q , xTQx; Q and

R are the weighting coefficients which emphasise the tracking
performance and control effort respectively. The compact
set U describes the constraint of the control input. The first
component ofU∗(k) is applied to the plant at each time instant
as the Y-axis control law, i.e. iy(k) = i∗y (0). The inclusion of
the terminal cost in the Eq. (27) ensures the stability of the
controller. The value of coefficient P is computed based on
the discrete-time algebraic Riccati equation with the chosen
values of Q, R and nominal system model [36].

For dealing with the nonlinearities in the system, the fol-
lowing remark is given:
Remark 1: With the explicit expression of Fdx , Fd1 and

Fd2 in Eq. (20), Eq. (21) and Eq. (22), all the nonlinearities
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FIGURE 2. Schematic diagram of the proposed control architecture and system.

FIGURE 3. Cantilever beam machine used for model validation.

are assumed within bounded disturbance sets considering the
states of the system are bounded. The fast convergence of
the designed ESO provides the estimation F̂dx for decoupling
the controller design between axes. For the nonlinearities
in Eq. (23), the values of Fd1 and Fd2 converge to zeros
considering θ̇ → 0 and θ → 0. During the contouring
process, the bounded disturbances Fd1 and Fd2 are handled
by the MPC-based feedback control.

IV. RESULTS
To validate the proposedmodel, we conduct themodel valida-
tion on an industrial laser cuttingmachine. The efficacy of the
designed control architecture is presented by the simulated
contouring control on the high-fidelity model.

A. MODEL VALIDATION
The industrial machine investigated is a laser cutting machine
in the cantilever beam frame as shown in Fig. 3. Two rotary
permanent magnet synchronous motors with rack and pinion
transmission parts are mounted on the slide and beam with
mass 70 kg and 180 kg respectively. The length of the beam is
2.5m. Two encoders are installed on the feed drives to provide
the position feedback for the servo drive.

Since there is no direct feedback from the end-effector,
the model validation is conducted by comparing the contour
generated by the high-fidelity model with the practical laser

FIGURE 4. Reference path for the model validation of biaxial laser cutting
machine.

cutting workpiece. The conventional cascaded control archi-
tecture is utilised here for the model validation purpose.

The cantilever beam machine is required to track a desired
path as shown in Fig. 4 with a maximum acceleration at
2 m/s2 and maximum velocity at 2 m/s. The amplitude and
frequency of the reference are carefully chosen to fully excite
the system. The end-effector starts moving from (xe, ye) =
(1, 0) instead of (xe, ye) = (0, 0) since the oscillation is
more obvious when the end-effector is moving away from the
Y-axis.

The contouring path generated by the proposed high-
fidelity model is given in Fig. 5 and the corresponding laser
cutting result is shown in Fig. 6. From Fig. 5, it can be seen
that both the motor and end-effector positions follow the
given reference while obvious oscillation occurs at the end-
effector side. By comparing the highlighted part in Fig. 5
with the cutting result in Fig. 6, we can see that the vibra-
tion observed in the experiment is precisely captured by the
proposed model.

The trajectories of the motor and end-effector on X and
Y-axis are given in Fig. 7a and Fig. 7b respectively. The
results show that the error discrepancy1ye on Y-axis is larger
than the error 1xe on X-axis. This is due to the fact that
1xe = |xm(1 − cos θ )| → 0 and 1ye = |xm sin θ | → |xmθ |
when the rotation angle θ is small. The error discrepancy1ye
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FIGURE 5. Contouring path generated by the proposed model.

FIGURE 6. Contour of laser cutting workpiece.

leads to a large tracking error on the Y-axis, resulting the
contouring error that can be seen in Fig. 5 and Fig. 6.

B. CONTOURING CONTROL BASED ON THE PROPOSED
CONTROL METHOD
In practical contouring control, the desired contour is gen-
erally a combination of circular and straight lines. To val-
idate the effectiveness of our proposed control framework,
we require the end-effector to follow a contour consisting
of a circular path with a 0.05 m radius and straight lines
for acceleration and deceleration. The maximum velocity of
reference is 0.5 m/s and the maximum acceleration is 5 m/s2.
The whole contouring control simulation is conducted based
on the verified high-fidelity model with the consideration of
discretisation. The desired trajectories on the X and Y-axis as
well as the desired path are shown in Fig. 8.
For the tuning of X-axis control law Eq. (26), the propor-

tional gain in the position loop is chosen as kpp = 200 1/s.
The proportional gain and integral time constant in the veloc-
ity loop are kpv = 154 As/m and Tiv = 5 s. The observer
gain in ESO is chosen as δ = 0.001 to ensure the fast
convergence of disturbance estimation while avoiding the
potential sharp spike. Since the design of the current loop
is not the focus of this work, the detail is not covered. The
values of the proportional gain and integral time constant in
the current loop are given here for the reader’s convenience
as kpc = 7 V/A and Tic = 0.52 ms. The tuning of the current
loop ensures the time scale separation between the electrical
and mechanical subsystems.

For the Y-axis controller, the switching LTI model Eq. (23)
is linearised at x̄m = {0.025, 0.075} m points to achieve a
trade-off between the accuracy of the control-oriented model
and numbers of controller switching. The weighting matrix
Q in the MPC formulation Eq. (27) is chosen as diagonal
matrix with entries as {1000, 1000, 100, 0} and R = 0.001 is

FIGURE 7. Trajectory of laser cutting machine for model validation:
(a) X axis, (b) Y axis.

selected. The value of the P matrix is computed by the
corresponding discrete-time algebraic Riccati equation. The
prediction and control horizon are chosen as the same value
N = 6. The sampling rate of the MPC is 1 ms.
The designed ESO is used to estimate the lumped nonlinear

term Fdx to decouple the system dynamics. The observation
accuracy directly influences the tracking result on the X-axis
and the ultimate contouring performance. With the explicit
form of the lumped term Fdx , the actual value of Fdx in the
simulation and the estimated value F̂dx from the ESO are
demonstrated in the Fig. 9. It can be seen that obvious noise
exists in Fdx during 0.3 to 0.4 s and 0.5 to 0.7 s. This is due
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FIGURE 8. Desired reference: (a) time-dependent trajectory on X and Y
axes; (b) contour.

FIGURE 9. Performance of the designed ESO.

to the double derivative term ÿm in the Fdx when ym changes
fast during that period. The noise in Fdx hinders the use of
methods such as feedback linearisation. The observation F̂dx
from the designed ESO precisely capture the actual value
of this lumped disturbance. This estimated value is used in
the current reference as shown in Eq. (26) to decouple the
dynamics between axes.

The tracking errors of the end-effector on X and Y-axis,
i.e., (x∗e − xe) and (y

∗
e − ye), are shown in Fig. 10. Since only

straight lines and a circle are included in the desired path, the

FIGURE 10. Tracking error during the contouring process: (a) X axis;
(b) Y axis.

contouring error can be explicitly calculated and is illustrated
in Fig. 11. On the first straight line segment from 0 to 0.15 s,
the non-zero tracking error on Y-axis leads to a zero contour-
ing error. This is due to the fact that the end-effector starts
on the contour and there is no displacement on the X-axis.
On the circular path, the tracking error on X-axis fluctuates
when the reference accelerates and decelerates correspond-
ingly, leading to a tracking error in sinusoidal form due to
the reactive characteristics of the PI controller. Although the
tracking errors on the X and Y-axis increase from 0.2 to
0.3 s, the mapped contour is projected and it results in a
local minimum around 0.3 s. This pattern continues for the
rest of the circular contour. After around 0.77 s, the straight
line becomes the desired contour and the tracking error on the
X-axis maps directly to the contouring error. The maximum
contouring error is around 1.33 mm, which is only 2.8% of
the circular radius.

Considering the conventional cascaded control is still the
most widely adopted control algorithm in practical motion
control field [37], it is selected as one of the benchmark
controllers for performance comparison in this study. The
cascaded controller is utilised in the two axes for the trajec-
tory tracking and the values of tuning parameters are chosen
as the same numbers used in the proposedX-axis PI controller
for a fair comparison.

The linear quadratic regulator (LQR) controller is used as
another benchmark controller to investigate the performance
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FIGURE 11. Contouring error during the whole process based on the
proposed control architecture.

of optimal controller in contouring control for system with
operating constraint and structural flexibility. The LQR con-
troller is designed based on the assumption that the system
structure is solid and the rotation dynamics is ignored. The
quadratic cost function for the X and Y-axis is Jj = ξTj Qjξj+
Rji2j with j = {x, y}, where ξx , (xm, ẋm) and ξy , (ym, ẏm).
The tuning parameters Qx and Qy are chosen as diagonal
matrices with entries as {30, 30} and Rx = Ry = 0.1 are
selected to achieve an acceptable contouring performance.

For the proposed control framework, the PI controller can
be replaced by any other advanced control methods with the
designed extended state observer for X-axis movement con-
trol. Similarly, the general MPC for Y-axis movement can be
replaced by algorithms such as robust MPC or adaptive MPC
if robustness or parameter uncertainties are the concerns. The
comparison presented here is for showing the efficacy of the
proposed control framework in dealing with systems with
coupled and rotation dynamics in contouring applications.

The tracking errors |x∗e − xm|, |y∗e − ym| indicate the typ-
ical errors that are available for feedback control while the
tracking errors from the end-effector side indicate the man-
ufacturing performance. The contouring error quantitatively
determines the final manufacturing accuracy for the biaxial
contouring applications. The control efforts of controllers can
be represented by integrating the absolute value of the current
inputs during the process. These metrics are summarised in
Table 1 to provide an insight of performance comparison
between the benchmark controllers and the proposed control
framework.

From Table 1, we can see that there are larger tracking
error differences between the actuator side and end-effector
side on Y-axis than the X-axis for all three control methods.
This is due to the large position discrepancy1ye on Y-axis as
discussed in the model validation section. The LQR achieves
the smallest X-axis tracking errors on both actuator and end-
effector sides, however, this is at the cost of the highest control
effort among the three methods with 15.2701 A. The LQR
computes the optimal control input without the considera-
tion of the input constraints, resulting in a control input in

TABLE 1. Contouring performance comparison.

characteristics similar to bang-bang control for the investi-
gated system with input saturation. This frequent changing
control input of LQR enlarges the tracking error on the Y-axis
as 2.698 mm and 1.909 mm for the end-effector and actuator
side, leading to the largest contouring error 2.596 mm among
the three methods.

The proposed controller achieves smaller tracking errors
on X-axis for both the actuator and end-effector sides com-
pared to the conventional cascaded controller. This reduced
tracking error is achieved by the introduced ESO structure
with slightly higher control input for the proposed control
method with 3.9268 A compared to the cascaded controller
with 2.717 A. A more obvious improvement can be seen
from the tracking errors on Y-axis by comparing the proposed
approach with benchmark controllers. The smallest tracking
errors as 0.0505 mm on the actuator side and 0.8596 mm on
the end-effector side are achieved by the proposed method
with the lowest control effort 7.4425 A, which demonstrates
the effectiveness of the MPC based controller. Although the
largest tracking errors on X-axis is formed by the cascaded
controller, it produces the average contouring error based on
the moderate control inputs.

In summary, the LQR based method uses the aggressive
control effort but the resulting oscillation on the Y-axis dete-
riorates the final contouring performance. The proposed con-
trol framework achieves a promising contouring performance
by explicitly considering the operating constraints as well as
the coupled and rotation dynamics.

V. CONCLUSION
In this work, the modelling and contouring control for an
industrial biaxial machine in a cantilever beam structure is
investigated. The derivation of the proposed physics-based
model serves as a good example for modelling systems
with dominant fundamental vibration frequency, and the
modelling process can be easily extended for other biaxial
machines such as dual-drive machines. The proposed control
architecture based on ESO and MPC offers a framework
for dealing with states coupling systems in the contouring
control field. The results show that the proposed model-based
approach outperforms the conventional cascaded control and
LQR control in both contouring accuracy and vibration
reduction. Future work may involve the development of the
end-effector position measurement and exploration of exper-
iments on the industrial machine.
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A(x̄m) =


1 Ts 0 0

0 1
6kt (2Mx x̄m +MbLb)Ts

Λ

6ct (2Mx x̄m +MbLb)Ts
Λ

0 0 1 Ts

0 0
−12kt (Mx +My +Mb)Ts

Λ
1+
−12cs(Mx +My +Mb)Ts

Λ

 ,

B(x̄m) =


0(

4MbL2b + 12Mx x̄2m
)
Ts

Λ
0

(−12Mx x̄m − 6MbLb)Ts
Λ

 , E(x̄m) =


0 0(

4MbL2b + 12Mx x̄2m
)
Ts

Λ

(−12Mx x̄m − 6MbLb)Ts
Λ

0 0
(−12Mx x̄m − 6MbLb)Ts

Λ

12(Mx +My +Mb)Ts
Λ

 ,

APPENDIX A
COEFFICIENT OF MATRICES IN CONTROL-ORIENTED
MODEL
The explicit form of the coefficient matrix in Eq. (23) is given
at the top of the page, whereΛ , M2

bL
2
b+4MbL2b (Mx+My)+

12Mx x̄m(Mbx̄m +Myx̄m −MbLb).
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