
Received February 11, 2022, accepted February 28, 2022, date of publication March 8, 2022, date of current version March 17, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3157821

A Comprehensive Review on Features Extraction
and Features Matching Techniques
for Deception Detection
SINEAD V. FERNANDES , (Member, IEEE), AND
MUHAMMAD SANA ULLAH , (Senior Member, IEEE)
Department of Electrical and Computer Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA

Corresponding author: Muhammad Sana Ullah (mullah@floridapoly.edu)

ABSTRACT Over a few decades, a remarkable amount of research has been conducted in the field of speech
signal processing particularly on deception detection for security applications. In this study, a comprehensive
review on recentmachine learning approaches using verbal and non-verbal features is presented for deception
detection. A brief overview on different feature extraction techniques, the results of recognition rate, and
computational time based on machine learning methods are summarized in a tabular format. In addition,
numerous datasets used as primary sources of deception detection in the review articles are also presented
in this work. Key findings from the reviewed articles are summarized and a few major issues related to
deception detection approaches are examined. A statistical analysis which conducted by extracting the
significant information from the eighty-eight (88) scientific papers over the last thirty (30) years are provided
in this review paper. The results emphasize on the trends of research in deception detection as well as further
research opportunities for researchers as a part of continuous progress.

INDEX TERMS Deception detection, machine learning, non-verbal features, principal component analysis,
verbal features.

I. INTRODUCTION
Detecting human emotion has peaked researcher’s interest
for generations. However, how well humans or machines
ultimately perform the task of deceptive speech remains a
challenging question for a criminal investigation. In the case
of a speaker under stress, increased activation of the sympa-
thetic or the parasympathetic nervous system is observed to
occur when a speaker is angry, fearful, or sad. This increased
activation leads to changes in heart rate, blood pressure, and
muscle activity [3]. Consequently, the articulatory and respi-
ratory movements are affected by speech production [3], [4].
Therefore, it is important to address these issues in a col-
lective way for the experts who works in the fields of law
enforcement, education, health care, government agencies,
border crossings, military screenings, regular job screenings,
telecommunications, informants at embassies and consulates
around the world [3]–[6]. It well known that human speech
has emotion and nonlinguistic information that encoded in
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it where deception is one of them. In fact, deception is
incorporated in everyday interactions, yet it is challenging
for untrained and trained professionals to accurately detect
it without the use of intrusive measures [1], [2].

Nowadays security is a requirement for all systems and
is incorporated in everyday interactions. An increased need
for more efficient artificial intelligence security systems has
arisen to execute larger and more powerful tasks at a higher
productivity rate. So, what is deception? Deception can be
described as intentionally causing an individual to accept
false statements as one(s) that are true. From a psychological
perspective, an individual is being deceptive when subcon-
scious or conscious movements present themselves including
shortened length of speech, a flushed face, changes in the
individual’s voice frequency, avoidant eye contact, changes
in the diameter of the eye pupil, as well as presenting a
more rigid body [4], [5]. Traditional methods have attempted
to take advantage of these deceptive indicators to detect
deception with a relatively high accuracy rate through the
combinatory use of various devices such as the polygraph,
cardiovascular activity monitor governed by the sympathetic
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and parasympathetic nervous systems (i.e., blood pressure),
heartbeat sensors, strain gauges to measure respiratory rate,
and electrodermal activity (i.e., sweatiness of fingertips) [6].
The polygraph measures some human responses like res-
piratory rate, electro-dermal activity, heart rate, and others
through direct contact, which can lead to numerous chal-
lenges and complexities in terms of implementation. Moni-
toring systems of this nature are intrusive, require the subject
to be a cooperative, and experienced interviewer with years
of training to operate and accurately perform the polygraph
examinations.

Over the years, methods to analyze and recognize non-
verbal and verbal feature characteristics have been devel-
oped to detect deception. It is well-known that there is a
natural intuition to pick up on a speaker’s emotions and
purposeful language to detect some form of deception when
listening. When deciding upon whether a speaker is being
deceptive or truthful, most listeners have access to facial
expressions as well as involuntarymuscle movements besides
the voice itself. This paper has significant implications in
the telecommunication field and can be integrated to route
911 and other emergency calls. It can be used to address the
emotional state of the caller in high-stress environments for
telephone response surveys to improve upon the robustness
of the system.

This paper provides an overview on deception detection
techniques and classification methods specifically Lin-
ear Regression [1], J48 Decision Tree [1], [72], Multi-
Layer Perceptron [1], Gradient Boosting Decision Tree [1],
Levenberg-Marquardt [6], [44], BFGS Quasi-Newton [6],
Long Short Term Memory [6], [39], [41], [58], Support Vec-
tor Machine [1], [13], [15], [39], [41], [45], [46] [58], [79],
GMM [13], RVM [15], ensemble [39], Random Forest
Decision Tree classifier [73], improved dense trajecto-
ries and OpenFace [79] and Ripper rule induction classi-
fier [74]. In addition, non-verbal features like thermal facial
analysis [7], [23], [32], [36], [38] eye movement analy-
sis [8], [22], [26]–[28], visual cues [9], [10], text analysis
with BERT [16], brain activity analysis [21], [33], [35],
multimodal features [24], [29], infrared imaging [31],
and facial expressions [18], [25], [27], [30], [37] have
been used for deception detection research and reported
encouraging results. Similarly, verbal speech features
such as acoustic [11], STE [1], [46], time- difference
energy [6], delta energy [6], energy [39], [40], MFCC
and energy [39], zero crossing rate [40], [45], [46],
entropy of energy [40], spectral centroid [40], spectral
spread [40], spectral entropy [40], spectral flux [40], [75],
spectral roll-off [40], chroma vector [40], chroma devia-
tion [40], significant energy [42], [44], linear prediction
cepstrum coefficients [43], bark energy [44], fundamental
frequency [45], [46], time-difference cepstrum [6], delta
cepstrum [6], acoustic spectral based Mel cepstral features
with energy [13], MFCC [39], [40], [45], [46], [58], log-
energy of MFCC [58], thirteen cepstral coefficients [58]
are reported to reassure results for deception detection.

Furthermore, a breath and in- depth analysis of abovemention
features, generally known as spectral and cepstral features,
are investigated thoroughly in this paper by addressing their
progress, challenges and opportunities for improvement.

The remainder of this paper is organized as follows.
Section II presents the contemporary feature approaches in
deception detection. Within Section II, Subsections 1 and 2
discuss non- verbal and verbal features (i.e., spectral energy
and cepstral features) used for deception detection and how
they are generally developed. Section III discusses the Princi-
pal Component Analysis (PCA) along with previous research
results after it was applied to various data sets to improve
recognition rates. Section IV presents various feature classifi-
cation methods, their respective recognition rate results, and
time duration for both non-verbal and verbal features used
for deception detection. Section V concludes the paper and
discusses potential future research directions.

II. CONTEMPORARY FEATURE APPROACHES IN
DECEPTION DETECTION
In recent years, numerous avenues have been studied to
test the possibility of more accurately detecting deception
in humans using technological aid through the use of vari-
ous non-verbal and verbal features. Researchers have been
studyingmore innovative ways of detecting deception such as
computational methods like artificial intelligence (AI), more
specifically machine learning algorithms using non-verbal
and verbal cues. Figure 1 that shows a systematic approach
of key steps to conduct this deception detection research.

A. EXPERIMENTAL DATABASE
For conduct this comprehensive research, the authors used
the database which is a collection of utterances from
the audio recording of a male suspect under criminal
investigation. The suspect was determined to have given
deceptive statements under questioning during polygraph
testing [3], [4], [6], [12], [14], [86]. Audio recordings of three
sessions of polygraph testing with the same questions by
the investigator and the same responses by the suspect will
be used for analysis and synthesis. For reference, available
two pairs of truthful utterances or ground truth (label as
Q7 and Q9) and deceptive utterances (label as Q4 and Q5)
of the word ‘No’ from each recording will be selected for
preliminary investigation. These utterances are sampled at
the rate of 16,000 samples per second. Figure 2 shows the
graphical view of the signals for all three sessions in the time
domain.

B. NON-VERBAL FEATURE
Researchers have been learning about the multitude of ways
in which humans present their deceptive ruses and how to
detect them without the use of intrusive measures. Pavlidis
and Levine studied thermal facial analysis [7]. Nugroho,
Nasrun, and Setianingsih studied detecting deception using
pupil dilation and eye blink analysis with a database consist-
ing of 30 subjects [8]. Yap, Rajoub, Ugail, and Zwiggelaar
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FIGURE 1. A systematic approach and a general process of deception detection research.

TABLE 1. Non-Verbal features used for detecting deception.

studied various visual cues of facial behavior to detect decep-
tion [9]. Tsechpenakis et al. studied HMM-based visual cue

analysis to detect deception [10]. Prosodic and nonlinear
linear dynamic features were studied by Zhou, Zhao, Pan,
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FIGURE 2. Reference speech signals.

and Shang to distinguish deception [15]. Barsever et al. stud-
ied detecting deception using text analysis with BERT [16].
Amir, Ahmed, and Chowdhry used interrogation data to study
the brain waves and see how it performs when tasked with
detecting deception [21]. Singh, Rajiv, and Chandra col-
lected data from five (5) subjects and studied how various
eyeblink patterns can be utilized to detect deception [22].
Using facial thermal analysis, Jain et al. used a database
with data from 16 subjects to study detecting deception [23].
Thannoon, Ali, and Hashim studied the facial expressions
in [25]. George, Pai, Pai, and Praharaj studied eye blink
count and eye blink duration using an intra - gender database
consisting of 15male subjects and 15 female subjects to study
how it can be utilized to detect deception [26].

Azhan, Zaman, and Bhuiyan studied 324 video clips of
guilty suspects and studied various facial expressions like
eye blink count, eyebrow motion, wrinkle occurrence, and
mouth motion [27]. Eye-tracking for deception detection
was studied by Lakkapragada [28]. Su, Levine, Owayjan,
Kashour, Al Haddad, Fadel, Al Souki, Bailey, Demyanov,
Ramamohanarao, and Leckie all studied facial analysis tech-
niques for deception detection [18], [30], [37]. Thermal
imaging was studied by both Bedoya-Echeverry et al. and
Dcosta et al. [36], [38]. [34] used head movement analysis to
study how it could be used to detect deception. Aswell as psy-
chological and physiological evaluations on human percep-
tion [2], [13], [17]–[20] and studies on other facial, linguistic,
gestural, thermal, and biometric indications. Table 1 shows
the non-verbal deception detection research work previously
published along with the databases used in some studies.

C. VERBAL FEATURES
As listeners, it is well-known that there is a natural intu-
ition to pick up on a speaker’s emotions and purposeful

language to detect some form of deception. When deciding
upon whether a speaker is being deceptive or truthful, most
listeners have access to facial expressions as well as involun-
tary muscle movements to consider besides the voice itself.
Using speech to analyze deception provides a non-intrusive
experience, especially without needing to attach sensors on
a body to chart and read blood pressure, respiration, and
pulse. Additionally, speech-based analysis systems can be
used to analyze pre- recorded speech signals at any point
in time, are inexpensive to produce, can be operated effort-
lessly, and can be designed to be portable devices. Over the
years, researchers have been studying methods to analyze
and recognize speech signal features and characteristics to
detect deception. Spectral energy features and cepstral fea-
tures being two types of speech signal features used to detect
deception.

1) SPECTRAL ENERGY FEATURES
Spectral energy features were developed using the psychoa-
coustic masking property of human speech perception [47].
The psychoacoustic masking property of human speech per-
ception is utilized to extract the spectral energy speech fea-
tures, where the ‘‘irrelevant’’ speech signal information that
typically goes undetected by the human ear is identified [47].
By modeling the non-linear perceptions of the human hearing
sensation, the process of extracting spectral information can
improve greatly [49]. Psychoacoustic principles including the
absolute threshold of hearing, critical band frequency analy-
sis, simultaneous masking, temporal masking, and the spread
of masking along the basilar membrane were incorporated
during the speech signal analysis process [47].

The absolute threshold of hearing can be described as the
smallest level of a pure tone that can be detected by a listener
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TABLE 2. Spectral energy verbal features used for detecting deception.

in a noiseless environment [47]. An example being a listener
hearing the ticking sound of a clock in an empty room.

Typically, the absolute threshold of hearing is calculated in
terms of sound pressure level (SPL) in decibels (dB) [47]. The
absolute (quiet) threshold, Tq(f ) is approximated [47], [50] by
the non-linear function that is shown in (1).

Tq (f) = 3.64
(

f
1000

)−0.8
− 6.5e

−0.6
(

f
1000−3.3

)2

+10−3
(

f
1000

)4

(dB SPL) (1)

This equation is the representation of a listener with acute
hearing where f is the frequency in Hz. The absolute thresh-
old of hearing is also related to another acoustical metric
known as the dB sensation level (dB SL) [47]. Relative to
a listener’s individual unmasked detection threshold for the
stimulus, the intensity level difference is denoted by the
SL [47], [51]. The SL is used because it quantifies listener-
specific audibility instead of an absolute level [47].

Simultaneous masking is a type of auditory masking that
occurs in the frequency domain when two sounds occur at
the same duration, one of which is unwanted and one of
which is wanted but inaudible [47], [52]. Auditory masking
is when a louder sound becomes undetectable to the human
ear due to a weaker but audible sound [52]–[54]. Masking
is a process where one sound is virtually inaudible due to
the presence of another sound [47]. From the perspective of
the frequency domain, phase relationships between stimuli
as well as the relative shapes of masker and the maskee

magnitude spectra are used to establish to what extent the
presence of particular spectral energy will mask the presence
of other spectral energy [47]. An alternative way to explain
this concept is to understand how the stronger noise (tone
masker) effectively blocks the detection of the weaker signal
at the critical band location by creating an excitation with an
adequate strength on the basilar membrane [47].

Non-simultaneousmasking or temporal masking is another
type of auditory masking that occurs when a sound is made
inaudible by another sound, that either immediately precedes
or immediately follows the original sound [52], [55]. Pre-
masking is one type of temporal masking that immediately
precedes the presence of a masker [52]. Post-masking is
another type of temporal masking that immediately follows
the masker and obscures sound [52]. With the purpose of
perceptual coding, a listener will neglect to perceive sig-
nals below the elevated audibility thresholds produced by a
masker when unexpected audio signal transients generate pre-
masking and post-masking regions in time [47].

Using the absolute threshold of hearing, a modified version
known as the detection threshold is used for spectrally com-
plex quantization noise [47]. Its shape fluctuating at any given
time based on the stimuli present, thus the detection threshold
being a time-varying function of the input signal [47]. Based
on how the human ear naturally performs spectral analysis,
the threshold estimation is calculated [47].

First, along the basilar membrane in the cochlea or inner
ear, a frequency-to-place transformation occurs [47], [56].
When a frequency-to-place transformation transpires,
an acoustic stimulus produces a sound wave that moves the
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ossicular bones and the eardrum attached to it [47]. The
mechanical vibrations at the oval window, are then transferred
to the cochlea which is a fluid-filled, spiral-shaped structure
that happens to hold the coiled basilar membrane [47]. Along
the length of the basilar membrane, the cochlear structure
produces travel waves that were previously excited by the
mechanical vibrations [47]. At frequency-specific membrane
positions, these travel waves generate peak responses that
‘‘tune’’ various neural receptors, connected along the length
of the basilar membrane, to various frequency bands depend-
ing on their locations [47]. From the oval window, the
traveling wave on the basilar membrane then propagates
until the traveling waves approach the area with a resonant
frequency near that of the stimulus frequency for sinusoidal
stimuli [47]. After the traveling wave slows down and the
magnitude increases to a peak, the traveling wave then decays
rapidly beyond the peak [47]. For the stimulus frequency,
the location of the peak is known as the ‘‘best place’’ and
the frequency that best excites a particular place is known
as the ‘‘best frequency’’ [47]. With that, the frequency-
to-place transformation occurs. From a signal-processing
perspective, the cochlea can be viewed as a band of highly
overlapping bandpass filters due to the frequency-to-place
transformation [47]. The magnitude responses are nonlin-
ear and asymmetric [47]. The bandwidth of the cochlear
filter passbands is nonuniform and increases along with the
increasing frequency [47]. Additionally, the cochlear filter
passbands are quantified by the ‘‘critical bandwidth’’ that is
a function of frequency [47]. Critical bandwidth is when the
perceived intensity of sound remains constant at a constant
SPL for a narrow-band noise source [47]. It remains constant
when the noise bandwidth is increased up to the critical
bandwidth, although when the loudness begins to increase for
any SPL beyond the critical bandwidth [47]. Essentially, the
loudness level remains constant as long as the noise energy
stays within a singular cochlear critical bandwidth and it
increases when the noise energy is forced into the adjacent
cochlear critical bandwidth [47].

To enumerate the cochlear filter passbands, the critical
bandwidth is calculated as a function of frequency [47]. The
critical bandwidth, BWc(f ) is calculated approximately using
the non-linear function shown in (2) where frequency, f is
in Hz.

BWc(f ) = 25+ 75

[
1+ 1.4

(
f

1000

)2
]0.69

(Hz) (2)

Frequency in Hz is converted to the Bark scale, z(f ) for
analysis purposes using (3) where one critical band distance
is referred to as ‘‘one Bark’’ [47].

z(f ) = 13tan−1(0.00076f )+ 3.5tan−1
[(

f
7500

)2
]
(Bark)

(3)

The first critical band started with the resolution fre-
quency (DF) to exclude DC. Critical bandwidth tends to

remain constant from about 100 Hz up to 500 Hz and
increases to approximately 20 percent of the center frequency
above 500 Hz [44], [48]. Additionally, the non-simultaneous
and simultaneous masking phenomena are induced by the
auditory time-frequency analysis in the critical band filter
bank to shape the coding distortion spectrum [47]. The per-
ceptual models allocate bits for signal components so that the
quantization noise is shaped to exploit the detection thresh-
olds that are determined by the energy within a critical band,
for a complex sound [47].

Fan et al. studied detecting deception using speech signals
by extracting the short-time energy (STE) feature among
others, from the Chinese Deception Detection corpus [1].
Fernandes et al. used a criminal interrogation data set to
extract the time-difference energy feature and the delta energy
feature to detect deception [6]. Xue et al. using the CSC
corpus extracted MFCC and energy features to study how
using the features singularly and combinatory effect the
deception detection recognition rate [39]. Desai et al. used
the Columbia- SRI-Colorado (CSC) corpus as their database
to research detecting deception using combinations of sev-
eral different spectral energy features including zero-crossing
rate, energy, the entropy of energy, spectral flux, spectral
roll-off, chroma vector, and chroma deviation [40]. Cosetl
and Lopez used a criminal interrogation database to extract
significant energy feature and use it to distinguish between
deceptive and non- deceptive speech [42]. Ullah and Gopalan
extracted the Bark energy and significant energy features
from stressed speech signals to detect deception from a
criminal interrogation database [44]. Srivastava and Dubey
collected speech signal data from an interview they conducted
in an isolated environment to study detecting deception using
the fundamental frequency, zero-crossing rate, and energy
features [45]. Tao et al. used the fundamental frequency, zero-
crossing rate, and energy features to study how it affects
deception detection while using the Swiss Research Institute
IDIAPWOLF data set [46]. Table 2 shows the spectral energy
features and the databases used in previous research work for
deception detection.

2) CEPSTRAL FEATURES
In general, cepstral features are developed based on the
MFCC feature. MFCCs are computed by summing up the
weighted log energy magnitudes in a band around a center
frequency as shown in (4), where n= 1, 2, . . .K is the number
of cepstral coefficients, K is equal to the number of band
index and Sk represents the Hamming window function.

MFCCn =
K∑
k=1

log10 (Sk) cos
[
n
(
k −

1
2

)
π

K

]
(4)

Deception detection based on extracted cepstrum fea-
tures was studied to understand how speech features can
be used to detect human emotion and deception. Cepstral
representation of an utterance provides a depiction of the
local spectral properties of the signal [2], [7], [22]. When

28238 VOLUME 10, 2022



S. V. Fernandes, M. S. Ullah: Comprehensive Review on Features Extraction and Features Matching Techniques

TABLE 3. Cepstral verbal features used for detecting deception.

analyzing deceptive speech using cepstral speech character-
istics, it exhibits an increased amplitude, decreased speech
duration, and increased fundamental frequency [4].

Detecting deception using cepstral features has limited
research. The delta cepstrum features added to the static
MFCC features strongly improves speech recognition [59].
Wang et al. studied speech features including MFCC and
energy features using the CSC corpus [41]. Ullah et al.
presented the results of detecting deception through the pro-
cess of analyzing human speech signals and their extracted
cepstrum features [4], [6]. Chowdhury et al. studied the
MFCCs and other speech features in their research work [14].
Chowdhury et al. studied the effects of using characteristics
of speech to detect deception and noted an increased duration
of speech, fundamental frequency, and amplitude when a
person was being deceptive [14]. Graciarena et al. studied
the results of detecting deceptive and non-deceptive speech
based on prosodic, lexical, and acoustic features using the
CSC corpus [13]. P. Benson in [57] obtained and analyzed
an audiotape of a pilot’s speech during a serious aircraft
malfunction, engine failure of the single-engine F-16. This
investigation revealed that speech under stress is shorter and
simpler than that of normal speech. Gopalan and Wenndt
in [12] studied the initial results of analysis of speech fea-
tures for speech under stress and for detecting deception
from speech utterances of a criminal suspect using Ben-
son’s research as a steppingstone. Using the CSC corpus,
Desai et al. extracted the MFCC speech feature among other
features and used it for detecting deception [40]. In [45],
Srivastava et al. extracted the MFCC speech features from
their deception detection database that they created using the
data from interviews they conducted in an isolated environ-
ment. Tao et al. studied speech deception detection using
MFCC features and the Swiss Research Institute data set.
In [58], Venkatesh et al. studied one hundred and twenty-one
real-life trial videos to extract and examine the MFCC, Log-
Energy of MFCC, and thirteen cepstral coefficient speech
features to detect deception. Table 3 highlights previous
research work for deception detection using various cepstral
features.

III. PRINCIPAL COMPONENT ANALYSIS
While working on data deception, it was observed that large
datasets oftenmake it challenging to interpret the results more
accurately [6]. The incorporation of the principal component
analysis (PCA) provided a solution by reducing the data
dimensions while increasing the interpretability of the data
andminimizing the loss of information [6]. The PCA is a type
of reduction method that takes into consideration the original
dataset as rows representing elements in high dimensional
space [60]. The rows are arranged to directions that character-
ize the optimal set of features [60]. By constructing a group
of new latent variables, the PCA is then able to reduce the
original data dimensions [6]. From the new mapping space,
the main variation information is then extracted along with
the statistical features [6]. The original data can then construct
the new solution of the spatial features [6]. To reduce the
dimensions of the projection space, the variables in the new
mapping space are composed of linear combinations of the
original dataset [6]. The correlation between variables is then
eliminated and the complexity of the principal characteristic
analysis is simplified due to the statistical eigenvectors in the
projection space being orthogonal to each other [61].

Fernandes and Ullah proposed using the PCA to improve
their speech-based deception detection recognition rate
results using various speech features [6]. Using the time -
difference energy speech feature, they achieved an 8.34%
increase in recognition rate, and while using the time- dif-
ference cepstrum feature, they achieved an 8.33% increase in
recognition rate [6]. While using the delta energy speech fea-
ture, they achieved a 12.5% increase in recognition rate and a
29.17% increase using the delta cepstrum speech feature [6].
Roopa and Asha proposed using the principal component
analysis (PCA) to improve their diabetes disease prediction
approach and achieved a 6.03% increase [60]. For their under-
water image recognition study, Bi and Du proposed using the
PCA to improve their image recognition rate and achieved
a 20.3% increase after applying the PCA to their data [62].
To solve the irregular packing problem, Gua et al. proposed
a packing algorithm based on the PCA methodology which
resulted in an increased filling rate, decreased packing time,
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TABLE 4. Principal component analysis based previous research.

and increased packing number as compared to the MGA
method [63]. Zheng et al. proposed a PCA-based support vec-
tor classifier and noted an increased identification rate in their
heart and adult data sets, as compared to the conventional
support vector classifier [64]. Table 4 shows the previous
research work conducted using the PCA and how it affected
the recognition rate results. Overall, applying the PCA does
show an increased rate in recognition results.

IV. FEATURE CLASSIFICATION METHODS USED IN
DECEPTION DETECTION
In many speech processing tasks, deep neural net-
works have been successfully used in speaker verifica-
tion [65], [66], speech enhancement [67], [68], and speech
recognition [69]–[71], deception detection [4], [44], and
emotion recognition [14]. Fan et al. constructed and used a
Chinese corpus consisting of 15 male and 15 female record-
ings [1]. They extracted four kinds of speech features from
the database including STE, pitch, format, and duration for
male and female subjects [1]. Using logic regression (LR),
J48 decision tree, multi-layer perceptron (MLP), SVM, and
gradient boosting decision tree (GBDT) to test the effective-
ness of using a combination of the features for deception
detection [1]. The highest rate for both genders was achieved
using the GBDT classification method with recognition rates
ranging between 82% and 85% [1]. The time-difference
spectral energy feature achieved a 79.16% recognition rate
before applying the PCA, and 100% after applying the PCA
using the Levenberg-Marquardt feature matching technique.

Using the LSTM feature matching technique, the feature
achieved a 91.66% recognition rate before applying the PCA
and 100% after applying the PCA. Using the BFGS Quasi-
Newton feature matching technique, the feature achieved a
75% recognition rate before applying the PCA and 100%
after applying the PCA. The delta spectral energy feature
achieved a 75% recognition rate before applying the PCA,
and 87.5% after applying the PCA using the Levenberg-
Marquardt feature matching technique. Using the LSTM
feature matching technique, the feature achieved a 58.3%
recognition rate before applying the PCA and 83.33% after
applying the PCA. Using the BFGS Quasi-Newton feature
matching technique, the feature achieved a 50% recognition

rate before applying the PCA and 87.5% after applying
the PCA. The time-difference cepstrum feature achieved
an 83.33% recognition rate before applying the PCA,
and 79.16% after applying the PCA using the Levenberg-
Marquardt feature matching technique. Using the LSTM
feature matching technique, the feature achieved a 91.66%
recognition rate before applying the PCA and 100% after
applying the PCA. Using the BFGS Quasi-Newton feature
matching technique, the feature achieved an 87.50% recogni-
tion rate before applying the PCA and 100% after applying
the PCA. The delta cepstrum feature achieved a 79.16%
recognition rate before applying the PCA, and 91.66% after
applying the PCA using the Levenberg-Marquardt feature
matching technique. Using the LSTM feature matching tech-
nique, the feature achieved a 50% recognition rate before
applying the PCA and 75% after applying the PCA. Using the
BFGS Quasi-Newton feature matching technique, the feature
achieved a 70.83% recognition rate before applying the PCA
and 100% after applying the PCA.

Graciarena et al. reported on distinguishing deceptive
speech from non-deceptive speech using the CSC corpus
and various classification models and features [13]. They
computed 215 prosodic features including pitch, energy, and
duration, 20 lexical features including filled pause counts,
dialog act labels, and syntax-based features, as well as acous-
tic features including spectral-based Mel cepstral features
with energy, simple delta features, double delta features,
and triple delta features [13]. Graciarena et al. achieved the
highest recognition rate using a combination of the acoustic
and prosodic features as input into the GMM/SVM mod-
els with a recognition rate of 64.4% [13]. Using relevance
vector machine (RVM) and non-linear dynamic features,
Zhou et al. proposed an intra-gender deception detection
approach [15]. With a combination of the prosodic and non-
linear linear dynamic features of a male and female subject,
they were able to achieve the top recognition rate of 70.3%
and 70.15%, respectively, using the RVM as compared to
SVM or the radial basis function neural network (RBFNN)
models [15]. Venkatesh et al. proposed the extraction of
MFCC, cepstral coefficients, and log-energy of MFCC to
detect deception using various classification methods includ-
ing SVM and LSTM [58]. Using SVM, they achieved the
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TABLE 5. Features and classification methods based comparison results.
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TABLE 5. (Continued.) Features and classification methods based comparison results.
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TABLE 5. (Continued.) Features and classification methods based comparison results.

highest recognition rate of 72%with the log-energy ofMFCC
feature whereas while using the LSTM, they achieve the
highest recognition rate of 58% with the cepstral coeffi-
cients feature [58]. Ullah and Gopalan proposed extracting
the Bark energy and significant energy features to detect
deception [44]. Using the significant energy feature, they
achieved a 66.67% recognition rate with the Levenberg-
Marquardt classification method [44]. Using the Bark energy
feature, they achieved a higher recognition rate at 83.33%
with the Levenberg- Marquardt classification method [44].
Using the LSTM classification method, Desai et al. achieved
recognition rates of 81.03% using the LexRNN features,
84.11% using the HybridRNN features, and 62.59% using
the AudioRNN features [40]. Using the SVM classification
method and MFCC speech feature, Wang et al. were able
to achieve a 51.8% recognition rate whereas when using the
LSTM classification method and the same feature, they were
able to achieve a 54.6% recognition rate [41].

When using the energy speech feature and the SVM clas-
sification method, Wang et al. were able to achieve a 50.2%
recognition rate whereas when using the LSTM classifica-
tion method and the same speech feature, they were able to
achieve a 47% rate of recognition [41]. Enos et al. proposed
detecting deception through the use of critical ‘‘hot spot’’
segments in the speech where they achieved a recognition
rate of 68.6% using a combination of bagging, AdaBoost, and
J48 [72]. Using various lexical and speech features, Warnita
and Lestari were able to achieve a 50.45% recognition rate
using the random forest decision tree (RFDT) classifier [73].
Tao et al. achieved an 82.47% recognition rate using an
SVM classifier and a combination of various speech features

including fundamental frequency, STE, zero-crossing rate,
and MFCC as inputs [46]. Kumar, Kim, and Stern achieved a
recognition rate of 100% using SVMand using a combination
of the fundamental frequency, zero-crossing rate, MFCC,
frames function, and energy [45]. They were also able to
achieve a recognition rate of 93.33% using an artificial neural
network (ANN) for the same set of features [45]. Xue et al.
proposed using MFCC, pitch, and energy features to detect
deception using various classification methods [39]. Using
SVM, Xue et al. were able to achieve a 51.8% recognition
rate using the MFCC feature. They were also able to achieve
a 54.6% recognition rate using LSTM and the MFCC fea-
ture [39]. Although while using the ensemble classification
method, they were able to achieve the highest recognition rate
of 55.8% using the MFCC and energy features [39]. Using
the Ripper rule induction classifier, Hirschberg et al. were
able to achieve a recognition rate of 66.4% using a combina-
tion of acoustic/prosodic, lexical, and speaker-dependent fea-
tures [74]. Table 5 presents the previous deception detection
studies along with what database and classification methods
were used in the studies as well as their recognition rate
results.

V. CONCLUSION
This study presented a comprehensive review of various ver-
bal and non-verbal features extracted for deception detection
as well as the recognition rate results of the various fea-
ture matching techniques used. Overall, the time-difference
energy feature extracted and developed by Fernandes and
Ullah in [6] showed the highest recognition rate of 100%
after applying the PCA using three unique feature matching
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techniques. Thus, the time-difference energy feature could
be a potential feature for speech-based deception detection.
The authors suggested further research using more speech
utterances from a multitude of speakers, which was hard
to obtain, can confirm the results of the proposed feature
classification methods in detecting deception [6].

The limitations recognized in the previous research work
include the size of the database and the type of the database.
A large intragender deception database was one recom-
mended solution. Another limitation highlighted was limiting
the analysis of the data to single-word utterances as compared
to analyzing full sentences in certain studies.

Studying the use of a field-programmable gate array
(FPGA) with the post PCA data is an implementation method
where the results in this comprehensive review could be used
to expand as further research direction to create a product
based on a software-hardware device with improved accuracy
for real-life applications.
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