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ABSTRACT Parallelism is the key to enhancing the throughput of computing structures. However, it is
well established that the presence of data-flow dependencies adversely impacts the exploitation of such
parallelism. This paper presents a case for a new computing paradigm namely subscalar digital arithmetic
which is aimed at mitigating this issue. It proposes to break up atomic data and atomic operations thereon into
sub-atomic data fragments and sub-atomic partial operations. Such a break-up exposes hitherto unexploited
levels of parallelism by way of allowing overlap of operations even if data-dependent. Surprisingly this
enhanced exploitation of latent parallelism comes with a favorable impact on the area-power characteristics
of corresponding computing structures which is contrary to common sense. The paper also proposes a
novel micro cell library with logic primitives at corresponding subscalar levels. The synthesized circuits
for several sequential benchmarks show an order of magnitude improvement in their area-throughput

figure-of-merit (FOM).

INDEX TERMS Bit-level parallelism, digital arithmetic, pipelining.

I. INTRODUCTION

Performance of digital systems cannot be arbitrarily
enhanced solely by way of exploiting parallelism at
data-word boundaries in presence of data-flow dependencies.
This phenomenon is nicely captured by one of the cardinal
principles of industrial engineering as:

“Unless something is produced, it cannot be consumed.”

A deeper inspection of the architectures of arithmetic com-
puting structures, however, reveals that not all the bits of
the result are produced simultaneously nor do all the bits
of operands are consumed simultaneously in a given oper-
ation. Thus it is possible to partially overlap the execution
of sequences of operations, even if data-dependent, thereby
exposing opportunities for exploitation of sub-word and sub-
instruction level parallelism. In this context, a relaxed but still
logically correct version of the above quote could be:

“Unless something is fully produced, it cannot be fully
consumed; but if something is partially produced it
can be partially consumed.”

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu

Keeping the above principle in perspective, this paper
proposes a new methodology for designing computing struc-
tures for applications in the field of Very Large Scale Inte-
grated (VLSI) circuits. Data level parallelism, per se, is not
a new concept in computer architecture. It has been a topic
of academic research [1] as well as it has been applied in
many successful industrial implementations [2]-[4]. These
efforts are largely targeted at packing similar operations on
multiple sets of operands having lesser precision in a single
instruction. Our approach, however, does not propose to pro-
cess lesser precision data in a packed larger atomic operation.
We propose to process full precision data by way of some
novel sequences of sub-atomic operations. The fields of com-
puter architecture and digital VLSI architecture are intricately
interwoven and many common techniques like pipelining and
parallelism have been extensively applied in both. However,
there is nothing analogous to Single Instruction Multiple
Data (SIMD) architectures in digital VLSI. Proponents of
SIMD architectures are driven by the desire to pack multiple
smaller precision data on wider register files and to pack
operations on them in single instructions. In the case of digital
VLSI, there is no concept of “instruction” and the circuits
are always “‘application-specific”’. Moreover, one may note
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that the operands and results, even if smaller than the size of
registers wherein they are densely packed are still atomic.

Operating on sub-atomic data fragments is, however, non-
trivial. Though, bit-wise logical operations can be trivially
performed in parallel at any sub-atomic data boundary, yet,
the case of arithmetic or shift operations is not as straight-
forward due to the issue of carry/borrow propagation. This
problem of carry/borrow propagation has been studied at
length and various designs have been proposed [5]-[11].
The focus of all of these efforts has been on reducing the
latency and/or increasing the throughput, albeit at the cost of
increased area and power. In contrast, this paper proposes to
circumvent the issue altogether. The motivation behind the
research becomes obvious in a small example given below
in eqn (1), where, data-flow dependencies adversely infringe
upon any potential gains of parallelism or pipelining or both.
Without loss of generality, assume that a, b, ¢ and s are all
32-bit unsigned integers and the computation is performed
using two instances of standard 32-bit adders.

s=a+b+c ey

\get/ -
Nced/ red/ ™= -— s
% -— - - - e
\ear/ - car, - car, - car, -
sum, sum sum, su
vV
s3 s2 sl s0

FIGURE 1. Example computation with state-of-the-art parallel prefix
adders [5].

Evidently, unless the intermediate result a 4 b is known,
c cannot be added to it to get the value of s. The architecture
for the given computation is, therefore, a cascade connection
of two 32-bit adders.

One such implementation, where state-of-the-art parallel
prefix adders having 8-bit valencies are deployed, is shown
in Fig. 1. The semantics of blocks gpt, red, car and sum
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have been borrowed from [5], while the dark small rectan-
gles are pipeline registers. Block gpt computes three signals
Generate(g;), Propagate(p;) and Transmit(#;) locally at indi-
vidual bit positions i. For 1-bit valency, they are defined in
equations (2, 3 and 4). Block red reduces these signals
in a tree-like fashion to compute sinals Generate(g; ;—n)
and Propagate(p; j—,) over a group of bits i to i — n. For
1-bit valency, they are defined in equation (5 and 6). The
block car computes Carry_out(C;+1) as a function of signals
Carry_in(C;), Generate(g;) and Propagate(p;) at individual bit
positions i. Once again for 1-bit valency, they are defined in
equation (7). Block sum computes all the sum bits in parallel
according to euation (8). For higher valencies the behaviors
are more complex. One can note that the architecture is
composed of 34 logic blocks of comparable complexities
and 64 8-bit registers. The resulting architecture performs the
computation in 10 cycles.

g =a;i-b; 2

pi = ai +b; 3)

ti = a; ®b; 4)

8ii-1 = &i T Di " 8i-1 (5)
Dii—1 = Pi - Pi-1 (6)
Cit1 =gi+pi-C N

5i=46®C; 3

c3 a3 b3 c2 a2 b2 al c0 b0 0x0

1]
T
e

FIGURE 2. Example computation with subscalar adders.

add, QL
sink

add,
sink

s3

In contrast to this state-of-the-art deeply pipelined archi-
tecture, if the same computation is performed using simple
32-bit carry ripple adders having the same valency of 8-bits,
the implementation shown in Fig. 2 is obtained. The blocks
captioned padd are 8-bit full adders and detailed in Section II.
They have similar complexity as the logic blocks of the
deeply pipelined implementation and the dark small rect-
angles are the same 8-bit pipeline registers. The result-
ing implementation not only performs the computation in
5 cycles but also consumes much less Silicon resources.
In fact, only 8 logic blocks of comparable complexities and
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only 29 8-bit registers are needed. Both the example imple-
mentations use two adders. Suitable data steering and
control logic may be added to implement the examples
with fewer resources. The data-path in such a case for
the former implementation will need at least 4 instances
of block gpt, 3 instances of block red, 4 instances of
block car, and 4 instances of block sum. In comparison,
the later implementation will need only 2 instances of
block padd!

The area-latency characterization of these logic blocks
were estimated with open-source digital Application Specific
Integrated Circuit (ASIC) implementation flow OpenLane
using sky130_fd_sc_hd standard cell library and are pre-
sented in Table 1.

TABLE 1. Area-latency characterization of the example blocks.

Block Area | Latency

(um?) | (nsec)
gpt 2180 60
red 2950 40
car 1690 60
sum 560 10
padd 3170 60

Both the designs will run at the same frequency as the slow-
est stage in any of the implementations takes 60 nanoseconds.
As the former takes 10 cycles and the later takes only
5 cycles to complete one iteration, the former is slower by
a factor of two. The area estimates are 0.06494 mm? and
0.02536 mm? respectively which is also better by a factor of
almost two and a half.

The idea of operating on operands with less precision has
an inherent appeal of being faster and at the same time con-
suming less Silicon resources. Often, even the exactness can
be compromised, in case the resulting inexactness is tolerable
and the gains in power consumption or Silicon resources
are disproportionately higher [12], [13]. Tensor Processing
Units [14], [15] and Graphics Processing Units [16] are clas-
sic case studies of recent times, where less precise data are
used in massively parallel systems. All of these architectures
compromise on data width in one way or the other. To the best
of our knowledge, there are no systems that preserve the data
width and still process smaller fragments of full-width data
gainfully to reduce the complexities either in space, in time,
or both, with one exception of On-line Arithmetic [17]-[19].
It operates on full precision data in a bit-serial fashion. Both
MSB first and LSB first have been proposed. The possibility
of overlapped execution of data-dependent operations was
explored in these proposals.

Our proposal on subscalar digital arithmetic differs from
that on the above mentioned On-line arithmetic in four sig-
nificant ways.

1) The On-line arithmetic uses redundant representations
for the data while in our proposal we use their
conventional 2’s complement binary representation.
This is more intuitive and better suited for hardware
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implementations. On-line arithmetic even proposes an
on-the-fly conversion from redundant representation
to conventional representation while our proposal is
natively conventional.

2) Individual slices for bit-wise computations are them-
selves more complex as compared to the very simple
logic used in the definition of our processing units. The
slices described in On-line Arithmetic necessarily have
a multiplexer to select the result bits. This multiplexer
can quickly become prohibitively oversized in the case
of higher radix implementations. The critical path of
computation as well as the Silicon resources used to do
so are higher and, thus, may offset the potential gains
of overlapped execution of data-dependent operations.
The proposed scheme in this paper is devoid of any
such issues and, hence, can scale up better for higher
radices.

3) The On-line Arithmetic is based on digit recurrence
and is capable of computing any general function,
whereas our proposal only attempts to implement
simple arithmetic operations. Computing any general
function using our proposal, therefore, needs to be car-
ried out with combinations of these small arithmetic
primitives.

4) The On-line arithmetic is bit-serial, while our pro-
posal is more like systolic arrays [20], where the
data is processed parallelly while the computation pro-
gresses fragment-by-fragment. The same is obvious
in Fig. 2.

Bit-serial On-line Arithmetic, as well as the proposed
novel subscalar digital arithmetic, have circumvented the
issue of serializing data-dependent operations in similar ways
by overlapping their execution bit-by-bit or fragment-by-
fragment, thus ensuring that the carry/borrow propagates
cycle-by-cycle. Sequential circuits are necessarily recursive
in their structure. Pipelining alone cannot help in their high
throughput realizations whereas they stand to gain by the use
of either of these techniques.

The term ““Subscalar” for our novel computing paradigm is
adapted from a similar term “Superscalar” [21] used heavily
in the realm of computer architecture. Superscalar processors
execute multiple instructions (operations) in a single cycle.
In juxtaposition, we propose to perform a single atomic
operation in multiple cycles, gainfully though. Consequently,
it would be prudent to propose this term.

The rest of the paper is organized as follows. Section II
sets the stage by describing subscalar computation as a con-
cept. Corresponding novel micro-cell libraries are presented
in section III. Evaluation of the proposal is presented in
section IV, while section V concludes the paper and points
to future research possibilities.

Il. SUBSCALAR COMPUTATION

Subscalar computation is introduced in this section using
the following three operations. They are purposefully cho-
sen. It may be noted that the operations op; and op, are
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independent of each other, while the operation op3 is data
dependent on the operation op;.

op1: x =f(a,b)
op2: y=f(cd)
op3: z=f(.e)

Without loss of generality, it is assumed that:

1) The data types of the operands and results of all the
operations are unsigned integers of 32-bit width.

2) Only one instance of the unit implementing the
operation f is available.

3) The unit implementing f can be pipelined in four stages.

4) The function f may (as in case of add, subtract, multiply,
etc.) or may not (as in case of bit-wise logical operations)
have carry/borrow propagation.

Fig. 3 presents the progress of the computation stated
above with time. The progress in case of an unpipelined
implementation of the function unit f is presented in Fig. 3(a).
As only one instance of the unit is available, all three opera-
tions have to be necessarily serialized. This case is taken as
the base implementation against which the other implemen-
tations are compared.

If the unit implementing function f is pipelined in 4 stages,
the operation op, can start execution as soon as the first stage
of the unit is free after it has executed the first phase of
the operation op;. The execution of operation op3, however,
has to stall till the operation op; has finished execution and
produced the value of the result y. It is presented in Fig. 3(b).
The throughput in the case of this implementation is higher
as expected, but due to the presence of data-flow dependence
in the computation between operations op, and op3, it is less
than the theoretically achievable limit.

The cases of unpipelined and pipelined implementations of
the class of functions where no bit to bit signal (carry, borrow,
etc.) are propagated across the 4 sub-atomic data fragments
(operands as well as results) are shown in Fig. 3(c) and
Fig. 3(d) respectively. Such functions could be bit-wise logic
operations or even SIMD-like operations on smaller width
operands. In these figures, a valency of 8 bits is assumed.
Thus a total of 4 such data fragments are shown. Obviously,
as the operands are assumed to have a valency of 8 bits, the
respective implementations consume less time to finish in
comparison to the case where they have a full-width valency
of 32 bits. The unpipelined version in Fig. 3(c) executes the
operations serially, while the pipelined version executes the
operations as shown in Fig. 3(d). It is clarified that these fig-
ures are not drawn to scale and the intent is not to convey that
the operations on 8-bit data are twice as fast in comparison
to the operations on 32-bit data. However, it is universally
true that operations on smaller precision operands are always
faster to execute as compared with similar operations on
larger precision operands.

The last two executions as shown in Fig. 3(e) and Fig. 3(f)
are subscalar. In the given case, it is assumed that the
function f is such that some signals (carry/borrow etc.) prop-
agate bit-by-bit during its execution. Here also we assume an
execution valency of 8 bits, hence, four data fragments and a
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FIGURE 3. Pipelining, sub-word parallelism and subscalar computation.

four-stage execution pipeline. As soon as the least significant
data fragment of the function f for operation op; gets com-
puted and the carry-like signal from it becomes available, its
next more significant data fragment starts getting executed.
At the same time, the resource used for computing the least
significant data fragment becomes available and thus takes
up the execution of the least significant data fragment of
the function f for operation op;. This continues even for
the function f for operation ops even if there is a data-flow
dependence on operation op,. It may be noted that this was
not hitherto possible because the operand and result data
were restricted to be atomic. In the case of subscalar com-
putation, this restriction is relaxed. The pipelined subscalar
implementation in Fig. 3(f) is obviously swifter as compared
to its unpipelined implementation Fig. 3(e). In this context,
a new concept of data wavefront is introduced. It is defined
as the temporal shape of the data in which it is consumed
or produced. It may be noted that the data wavefront in the
case of conventional implementations of functional units is a
vertical straight line. In the case of subscalar computations,
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however, it is like a staircase for operands of integer type.
It may have any arbitrary step shape for other types of data
like floating points, posits, or any other compound data types.
Only the following two restrictions need to be applied.

1) The shape of the data wavefront should be the same for
all the operands consumed and all the results produced
by every processing element.

2) Itis preserved throughout any given design entity. Only
when the entity’s boundaries are crossed the wavefront
needs to be reshaped by inserting suitable synchronizing
registers.

(a) Unpipelined

—
—

Stage 1 Stage 2

(b) Pipelined with balanced stages

—
—

Stage 1 Stage 2

(c) Pipelined with unbalanced stages

—
—

Stage 1 Stage 2

(d) Subscalar

T

Stage 1 Stage 2

FIGURE 4. Subscalar architecture for a sequential circuit explained.

It may be argued that pipelined implementations also have
a potential of increasing the throughput. This is, however,
not true for sequntial circuits. Consider for example the case
shown in Fig. 4. It is assumed that the forward path of the
given sequential circuit is composed of two cascade con-
nected satges. Stagel is assumed to have a latency of 4 time
units and Stage2 is assumed to have a latency of 3 time units.
In synchronous realizations both the stages are clocked at the
speed of the slowest stage. In the presence of the feedback
path, therefore, successive iterations can only be initiated
with an interval of 8 time units as shown in Fig. 4(a). If the
two stages are pipelined in sub-stages that have latencies
of 1 time unit for both the stages, successive iterations can
be initiated with an interval of 7 time units. This is shown
in Fig. 4(b). Unfortunately, if the pipelined sub-stages are
unbalanced as shown in Fig. 4(c), the throughput of the result-
ing pipelined implementation may deteriorate. In this case it
is assumed that Stage? is pipelined in two sub-stages, each
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having a latency of 1.5 time units. The pipeline sub-stages
of Stagel will have to be slowed down correspondingly. Evi-
dently, successive iterations on the resulting implementation
can only be initiated in an interval of 9 time units. A Subscalar
implementation of the same circuit is shown in Fig. 4(d).
Here it is conservatively assumed that the lower half of the
operands are operated upon in 3 time units and carry/borrow
like signals are passed on to the part of the unit operating on
the upper half the operands in a pipelined way. For the sake
of fair comparison, it is again assumed that the total latency
of Stagel is 4 time units and that of Stage2 is 3 time units.
This implementation achieves far better throughput of 5 time
units per iteration.

With these foundation and illustrations of subscalar com-
putation as a concept, the reader is invited to revisit Fig. 2.
There are two data-dependent additions. We have used two
instances of carry-ripple adders having a valency of 8-bits.
The synchronizing latches are inserted at the top as well as
the bottom where the so-called design entity boundaries are
crossed. The shape of the data wavefront produced by the first
adder and consumed by the second adder are all the same.

IIl. MICRO-CELLS: DEFINITION AND APPLICATIONS
Electronics Design Automation (EDA) tool vendors as well
as Silicon foundries provide optimized pre-defined layouts
for standard logic gates (also known as standard cells) and
pre-designed self-contained logic modules (also known as
macro cells) in a given technology. In this paper, we pro-
pose novel logic blocks at an abstraction that is higher than
standard cells but lower than macrocells. We call them
micro-cells. These micro-cells may be connected in var-
ious combinations and topologies to create useful arith-
metic and logic modules like adders, shifters, multiplexers,
comparators, etc., from which complete data-paths can be
synthesized.

A. DESIGN CONSIDERATIONS

The following two subsections present the design consider-
ations for micro-cells and their applications as constituent
blocks of commonly used data-path elements respectively.

a b c
V V
™ func -

V V

Y b3

FIGURE 5. A typical micro-cell.

Typically, data-path elements operate on two operands
and produce one result for most of the arithmetic and logic
functions of interest. As subscalar computation units operate
on sub-atomic data and produce partial results, we need to

56989



IEEE Access

K. S. Pandey, H. Shrimali: Novel VLSI Architectures and Micro-Cell Libraries for Subscalar Computations

TABLE 2. Functional semantics of micro-cells.

[ Cell | Connections | Functional Semantics | Implementation Logic
c = func if (funci..o =0) x0 = bocico’ + apboci’co + bo’c1’co’+
b = data_in_0 data_out1. o = (data_in_0)] ap’boc1 + aobo’c1
a = data_in_1 elseif(funci..o=1) 1 = bicico’ +aibicr’co +bi'ci’co’+
logic z = data_out data_outy. 0 = (data_in_1 & data_in_0)1..0 ai1’bic1 +aiby’cy
y = func elseif(funci.o = 2) Yo = ¢o
data_outy o = (data_in_1 || data_in_0)1..0 Yy =c1
elseif(funci.o=3
data_out o = (data_in_1 & data_in_0)1..0
b = data_in data_out_01..0 = (data_iny..0 << shamt)i. o x1 = agbg
. c = shamt data_out_11..0 = (data;n)1..0 << shamt)s. 2 Yo = a1bg
shift
r = data_outg
y = data_outy
c = func if (funci..o =1) o = bicico + boci’co
mask b = data_in data_out = data_ing, data_ing x1 = b1cico + boci’co
z = data_out elseif(funci..o =2)
x = data_iny,data_iny
c = carry_in sumi..0 = (addendi. o + augendi. o+ 0 = agbo’co’ + aog’boco’ + ag’bo’co
b = augend carry_ing)1..0 z1 = a1b1’by’co’ + a1’b1bo’co’ + a1ao’b1’co’+
padd a = addend carry_outy = (addends .o + augend; . o+ a1’ag’bico’ + arag’bi’bo’ + a1’ag’bibo’+
T = sum carry_ing)2 a1’b1'boco + a1’agbi’co + a1’ agbi’bo
y = carry_out yo = b1boco + a1boco + apbico + arapco+
aopb1bo + a1apbo + a1b1
¢ = borrow_in dif ferencei..o = (minuendi. .o — subtrahendy. o— z0 = agbo’co” + ao’boco” + ag’bo’co + agboco
b = subtrahend borrow_ing)1..0 z1 = a1b1'bo’co’ + a1agbi’co’ + aragbi’bo’+
a = minuend borrow_outy = (minuendi ..o — subtrahend; o— a1'b1bg’co’ + a1’agbico’ + a1’agbiby’+
psub x = dif ference borrow_ing)2 a1'b1'boco + a1biboco + a1’ag’bi’co+
y = borrow_out arag’bico + ai’ag’bi’bo + a1ag’b1bo
yo = a1’b1’boco + a1biboco + a1’ao’bi’co+
arao’bico + a1’ao’bi’bo + ai1ao’bibo+
ap’bi
¢ = augend product_low ..o = (multiplicand ..o X o = agboco” + by co + ag’co
b = multiplier multiplier1. o + augendi. 0)1..0 x1 = a1’agb1’boci’co + aragbi’cico+
a = multiplicand | product_highi..o = (multiplicandi..oX ag’bibocico + ai1agbibocico’+
z = product_low multiplier1. .o + augendi. 0)s3..2 at’agbici’co’ + a1by’boci’co’+
y = product_high a1ag’biby’c1 + a1'bi’cico’+
pmlit a1bi1bgcr’co + agbibocr’co’+
arag’bocr’ + b1'bo’c1 + a1’ap’c1+
yo = arao’bict’ + aragbi’boco + a1’agbiboco+
a1ag’bibo’c1 + arbibo’ci’ + a1’ agbici+
a1b1’boc1 + agbocico
y1 = arapbicy + a1biboco + aiapbibo
¢ = comp_so_far | if(data_in_0 = data_in_1 & comp_so_far = 00) yo = a1’bico’ + a1’ag’boco’ + ap’b1boco’+
b = data_in_0 data_outy. o = 00 ai’ag’c1’co + ag’biei’co + ar’bier’+
a = data_in_1 elseif(data_in 0 > data_in_1 || a1’boci’co + biboci’co
comp y = data_out data_in_0 = data_in_1 & comp_so_far = 01) | y1 = b1’'bg’c1co + a1bo’cico’ + a1br’co’+
data_outi. o = 01 aobi’cico’ + aragcico’ + arbi’cr’+
elseif(data_in 0 < data_in_1 || aob1’bo’c1’co’ + a1agbo’boct’
data_in_0 = data_in_1 & comp_so_far = 10)
data_out1. o = 10
c = select if (select = 00) o = agb1’boci’co” + a1’biboci’co” + agcico+
b = data_in_0 data_out = data_in_0 a1’bgct’co’
mux a = data_in_1 elseif(select = 11) 1 = arag’boci’co’ + arcico + bici'co’
x = data_out data_out = data_in_1 Yo = Co
y1=c1
c = select if (select = 00) o = boc1’co’
demux b = data_in data_out_0 = data_in x1 = bic1’co’
x = data_out_0 elseif(select = 11) Yo = bpcico
y = data_out_1 data_out_1 = data_in y1 = bicico

have provisions for one more operand (carry_in) and one
more result (carry_out). In the best interest of regular VLSI
layouts, we propose micro-cells having uniform interfaces of
3 inputs a, b, and ¢ and 2 outputs x and y as shown in Fig. 5.
Both the outputs are latched in output registers so that they
may be used in asynchronous formalism. The valency of all
the operands and all the results are kept constant throughout
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which, in general, may be a bit, pair (2-bit), nibble (4-bit),
byte (8-bit), or even half-word (16-bit).

Table 2 details the functional semantics and implementa-
tion logic for a micro-cell library having pair valency. The
primitives are chosen such that the library is complete (any
logic can be realized) and efficient (dedicated cells for com-
monly used data-path elements). It may be noted that all the
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TABLE 3. Area-latency characterization of the proposed micro-cells at
various valencies.

Block Area Latency
(1um?) (n sec)
2-bit  4-bit 8-bit | 2-bit  4-bit 8-bit
logic 330 430 630 30 30 30
shift 330 430 630 30 30 30
mask 330 430 630 30 30 30
padd 450 920 12,680 30 50 60
psub 450 920 12,680 30 50 60
pmlt 1,180 5,620 24,320 60 120 220
comp 80 160 320 90 150 250
mux 180 340 660 20 20 20
demux 180 340 660 20 20 20
(a) Throughput =1
Initial Delay = 1
input = p—] e ] e ] ]
output ] ] ]

(b) Throughput =1
Initial Delay = 2
input p— ] —]
output —

IT
IT
IT
IT
IT
I

I

(c) Throughput =
Initial Delay =

input f {

output

T 7T NN

(d) Throughput = 2
Initial Delay = 1

input f {

output f

FIGURE 6. Latency, throughput and initial delay.

primitives in the table have 3 inputs and 2 outputs, which may
not necessarily be all connected. For other valencies like a
nibble, byte, half-word, etc. the implementation logic can be
easily derived.

The area-latency characterization of these logic blocks
at pair, nibble and byte valencies were estimated with
open-source digital ASIC implementation flow OpenLane
using sky130_fd_sc_hd standard cell library and are pre-
sented in Table 3.

In all, we have defined nine micro-cells. The micro-cells
logic, shift and mask are used in realizing bit-wise logical
operations. The cell logic implements bit-wise logical func-
tions not, and, or and xor of the input pairs connected to a
and b depending upon whether c is 00, 01, 10 or 11 respec-
tively. The result is read from x and output y is just a delayed
copy of the input connected at c¢. This is useful in creating
bit-wise logical circuits at higher data widths as explained
in the next subsection. In the case of the operation not, the
input a is ignored. Any other logic function can be trivially
emulated by combinations of the first three. In the case of
a nibble or higher valencies, these may even be directly
encoded in the input c. The cell shift is specially designed to
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function both as left-shift and right-shift. The input a is left
unconnected while b is connected to the data to be shifted
and c is connected to the shift amount which is specified in
2’s complement representation, +ve for left-shift and —ve
for right-shift. The outputs x and y are the least significant
bit of the input data padded with a O on its right and the
most significant bit of the input data padded with a 0 on
its left respectively. This cell can be connected as described
in the next subsection to implement the shift operation for
larger data widths. In the case of the cell, mask the input a
and the output y are left unconnected. The output x is the
least(most) significant bit of the input data connected to b
replicated in both the bits if the input to ¢ is 01(10). This
cell is useful for sign extension operations and is also used
as a constituent block for shift operation. Commonly used
arithmetic operations add, subtract and multiply are emulated
by combinations of the micro-cells padd, psub and pmilt.
The micro-cells padd(psub) are just adders(subtractors) hav-
ing pair data width and provisions for carry_in(borrow_in)
and carry_out(borrow_out). The micro-cell pmlit performs
multiply-add operation on operands having pair valency. The
data connected to the inputs a and b are multiplied and
their product is added with the data connected at the input
c. The output at x is the lower pair and at y is the higher
pair of this multiply-add operation. This special design is
innovatively used to emulate the multiply operation on data
of higher widths as described in the next subsection. In VLSI,
control flow is achieved through comparators, multiplexers,
and demultiplexers. Micro-cells comp, mux, and demux are
provided exactly for this purpose. They have conventional
functional semantics, except that the second output y is just
the delayed third input c¢. This novel idea comes very handy
in creating relevant control flow implementations.

B. APPLICATIONS IN DATA-PATH ELEMENT SYNTHESIS
The micro-cells proposed above may not appear to be useful
as stand-alone units but all sorts of useful data-path ele-
ments can be emulated by their various novel combinatorial
topologies.

To characterize the subscalar designs presented in this
subsection we use the same definitions of latency, throughput,
and initial delay as used in On-line Arithmetic [17]. However,
we augment their definitions to include higher valencies of
pair, nibble, and byte along with the valency of single bit used
therein. While we describe the subscalar implementations,
we use these definitions to highlight any potential gains.
Figure 6 presents four different situations in which the def-
initions are exemplified. In the context of this paper they are
formally defined as:

Latency:

Latency is defined as the number of cycles (or equivalently,
the total time elapsed) between the first fragment (valency
number of bits) of the operands applied and the last fragment
of the results produced.

In Figure 6(a) - (d) latencies are 8 cycles each.
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(a) Adder
a3 b3 a2 b2 al bl a0 bO 0x0

sink s3 s2 sl s0

(b) Shifter
in3 in2 inl in0 shamt 0x8 0x0

V y V % VT

shift ﬁa sluft + shift mask
sink

sink out3 out2 outl out0

(c) Multiplexer
in3[0] in2[0] in1[0] in0[0]

in3[1] T in2[1] T inl[1] T in0[1] T sel
W
sink out3 out2 outl out0
(d) Logic
a3 b3 a2 al bl a0 b0 func
logic logic, logic, logic, <4j7
sink z3 z2 zl z0
(e) Demultiplexer
in3 in2 inl 0x0 in0 sel

A—J demux demux,

demux demux,
out3[1] out2[1] outl[1] out0[1]

out3[0] out2([0] outl1[0] out0[0]

FIGURE 7. Common data-path elements composed of micro-cells.

Throughput:

Throughput is defined as the number of cycles (or equiv-
alently, the total time elapsed) per fragment of opearnds
consumed or equivalently, per fragment of results produced.
In Figure 6(a) & (b) throughputs are 1 cycle per fragment
and in Figure 6(c) & (d) throughputs are 2 cycles per
fragment.

Initial Delay:

Initial Delay is defined as the number of cycles (or equiv-
alently, the total time elapsed) between the first fragment
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of the operands applied and the first fragment of the results
produced.

In Figure 6(a) & (d) initial delays are 1 cycle each and in
Figure 6(b) & (c) initial delays are 2 cycles each.

Subscalar adder(subtractor) is just a carry(borrow) rip-
ple design at higher valencies as shown in Fig. 7(a) and
Fig. 7(f) respectively. These simple designs have a latency
of 4 cycles. But the throughput and the initial delay are just
1 cycle each. This means that the designs are capable of
producing results every clock cycle block by block while
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TABLE 4. Execution time and area characteristics.

Benchmark | Implementation Execution Area
time
(m sec) (mm?)
8-bit 16-bit 32-bit 8-bit 16-bit 32-bit
diffeq Unpipelined 0.30580  1.33440 2.66880 0.22212 0.78208 2.89464
Pipelined-pair 0.39198  0.62550 1.05918 0.17972 0.64856 2.15840
Pipelined-nibble 0.68944  0.78396 1.25100 0.19016 0.63720 2.05552
Pipelined-byte 0.30580  1.03416 1.43726 0.25597 0.69402 2.42960
Subscalar-pair 0.15846  0.19182 0.26412 0.11353 0.40647 1.54003
Subscalar-nibble | 0.24696  0.31692 0.38364 0.13904 0.45476 1.63556
Subscalar-byte 0.30580  0.45276 0.58102 0.20151 0.57326 1.89405
ellipf Unpipelined 0.00924  0.01078 0.01232 0.09594 0.22698 0.52650
Pipelined-pair 0.01584  0.01848 0.02112 0.08788 0.35828 0.48724
Pipelined-nibble 0.02464  0.03080 0.03696 0.08840 0.33280 0.48880
Pipelined-byte 0.02792  0.03696 0.04620 0.11518 0.30706 0.84422
Subscalar-pair 0.00462  0.00462 0.00462 0.04680 0.09360 0.18720
Subscalar-nibble | 0.00770  0.00770 0.00770 0.04784 0.09568 0.19136
Subscalar-byte 0.00924  0.00924 0.00924 0.08242 0.16484 0.32968
gcd Unpipelined 0.24948  0.29106 0.33204 0.03829 0.08333 0.18061
Pipelined-pair 0.28980  0.33120 0.38924 0.03134 0.09778 0.15146
Pipelined-nibble 0.33120  0.38640 0.44160 0.02874 0.08748 0.14096
Pipelined-byte 0.24948  0.49680 0.57960 0.03254 0.07983 0.20391
Subscalar-pair 0.20790  0.31878 0.58160 0.02344 0.04688 0.09376
Subscalar-nibble | 0.25410  0.34650 0.53130 0.02094 0.04188 0.08376
Subscalar-byte 0.24948  0.30492 0.41580 0.02624 0.05248 0.10496
Kalman Unpipelined 2.85696  3.33312 3.80928 | 17.34844  62.54508  235.02924
Pipelined-pair 1.40160  2.61888 3.05536 | 13.97560 51.15672  174.61656
Pipelined-nibble 1.52768  2.80320 4.80128 | 14.89208  50.42736  166.30016
Pipelined-byte 2.85696  3.05536 5.13920 | 20.26164  55.29468  195.94180
Subscalar-pair 0.53568 1.60704 2.41056 8.66012  32.18564  124.61332
Subscalar-nibble | 0.49104 1.07136 1.60704 | 10.82312 36.28544  132.72592
Subscalar-byte 0.47616  0.98208 1.07136 | 15.88388  45.87336  153.68236
gsort Unpipelined 195432 2.28004 2.60576 0.62436 1.31892 2.78292
Pipelined-pair 1.00590  1.20708 1.40826 0.55060 1.46624 2.47384
Pipelined-nibble 0.95002  1.30288 1.62860 0.52282 1.35764 2.36168
Pipelined-byte 0.96566  1.65542 2.06928 0.56197 1.27734 3.01488
Subscalar-pair 0.90658  0.92031 0.93405 0.46844 0.93688 1.87376
Subscalar-nibble | 1.51096  1.53385 1.55675 0.44170 0.88340 1.76680
Subscalar-byte 1.81316  1.84063 1.86810 0.49645 0.99290 1.98580

also consuming the operands every clock cycle block by
block. In the case of state-of-the-art pipelined parallel prefix
designs, the throughput is 1 cycle but the latency and ini-
tial delay are both 5 cycles. Therefore two data-dependent
additions(subtractions) will necessarily take 10 cycles to
complete, while in the case of subscalar designs they will
complete in 5 cycles only (Section I). Moreover, the pipelined
parallel prefix designs are composed of 17 logic blocks, while
the subscalar designs are composed of only 4 logic blocks
of comparable complexity. Huge throughput-area gains are,
thus, achievable. The subscalar multiplier architecture is pre-
sented in Fig. 7(g). The design is a little irregular in a couple
of least significant blocks but is capable of achieving latency
of 6 cycles, throughput of 1 cycle, and initial delay of 3 cycles
and uses 13 blocks which are all better figures than any
conventional design of multipliers. Subscalar bit-wise logical
operator can be trivially implemented as a cascade connection
of logic micro-cells and is presented in Fig. 7(d). It achieves
throughput and initial delay of 1 cycle and a latency of
4 cycles while it is composed of 4 blocks. The design of
the subscalar shifter presented in Fig. 7(b) is a bit tricky.
Recall from the previous subsection that both the left-shift
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and right-shift partial results are produced at the same time
on the two outputs of the micro-cell shift. These outputs
have zeroes padded on either side. The outputs from adja-
cent micro-cells are then logically ored and relevant shifted
outputs are finally selected by using micro-cells mux. This
novel scheme works well even for higher valency designs.
It achieves a throughput of 1 cycle, a latency of 7 cycles, and
an initial delay of 4 cycles. Data-path elements to implement
control flow namely comparators, multiplexers and demulti-
plexers are trivially implemented as cascade compositions of
micro-cells comp, mux and demux as presented in Fig. 7(h),
Fig. 7(c) and Fig. 7(e) respectively. All of these elements
achieve throughput and initial delay of 1 cycle and latency
of 5, 4, and 4 cycles respectively.

The solid rectangles in all the data-path elements presented
in Fig. 7 are synchronizing latches and the micro-cell sink is
only a placeholder and meant to indicate that the respective
port is left unconnected.

It is worth mentioning that the latencies of data-path ele-
ments lose their significance in subscalar designs and are thus
irrelevant when used in larger algorithmic data-paths. The
throughputs for all the subscalar elements described above
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are 1 cycle each which helps in achieving overall throughput
of 1 cycle for the entire data-path irrespective of the fact
whether the sequences of operations are interdependent or
not. The initial delay is also small. In the case of dependent
operations and the case of loops higher initial delay has a
detrimental effect. This does not impact the overall gains too
much as evident in the results presented in section IV. All the
circuits, however, consume much less area and consequently
much less power as compared to their state-of-the-art high-
speed implementations.

IV. PERFORMANCE EVALUATION

To estimate possible area-throughput gains, five benchmark
circuits were chosen from MCNC Benchmark Suite [22] and
Mibench Benchmark Suite [23]. They were chosen to have
a judicious mix of both control-dominated and dataflow-
dominated circuits. These benchmark circuits are diffeq, gcd,
Kalman, ellipf, and gsort. They were synthesized at data-path
widths of byte (8-bit), half-word (16-bit) and word (32-bit)
and their layouts were generated using open-source digi-
tal ASIC implementation flow OpenLane [24], [25] using
sky130_fd_sc_hd standard cell library. Their performances
concerning die area and total time to execute the benchmarks
with their standard input test vectors were recorded. These
areas and execution times were taken as the base against
which the respective pipelined and subscalar implementa-
tions at pair, nibble, and byte valencies were compared.
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FIGURE 8. Area-throughput figure-of-merit for the chosen benchmarks
for 8-bit data-path.

The areas and execution times so recorded are presented in
Table 4. It may at once be noted that the subscalar realizations
are consistently better than their pipelined counterparts both
in terms of throughput as well as chip area. It may be noted
that the wider the data-paths the higher are the gains. Sub-
scalar designs, however, consistently show higher throughput
coupled with smaller Silicon footprints. Often it is impossible
to achieve simultaneous improvements in both. This fact for
“Subscalar Computation” is highlighted in Table 4.

The area-throughput figure-of-merit (FOM) for the
unpipelined, pipelined, and subscalar implementations at
pair, nibble, and byte valencies of the chosen benchmark cir-
cuits are plotted as histograms in Fig. 8 for an 8-bit data-path
width. The corresponding area-throughput FOM for 16-bit
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and 32-bit data-path widths are presented in Fig. 9 and Fig. 10
respectively. While this FOM is consistently better, in the case
of wider data-paths the gains are outstanding. Circuits with
wider data-paths of 64-bits or higher will potentially achieve
much higher FOM.

V. CONCLUSION

A novel digital hardware synthesis paradigm namely
“Subscalar Computation” is proposed and evaluated in this
paper. Major contributions of the paper and pointers for future
research are summarized below:

1) New data-path synthesis methodology of a partial pro-
cessing of data at a sub-word boundary is presented.

2) Cell library namely micro-cell library at an intermediate
level of complexity and functionality between standard
gates and macrocells is proposed. All the cells in the
library have a 3-input 2-output interface. They can be
implemented as hardwired circuits or as lookup tables
or even as coarse grain reconfigurable logic.

3) Designs of a few commonly used data-path elements
composed of elements chosen from the proposed
micro-cell library are presented. The designs are our
initial proposals and by no means the only possibilities.
One may think about improvements over them and may
even extend the designs with more functions of use like
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4)

5)

dividers, floating-point processors, function evaluators,
GPUs, etc.

The research can be extended towards the development
of new EDA tools and can also be adapted to be used in
reconfigurable devices.

The proposal has been evaluated on several standard
benchmark circuits and corresponding area-throughput
gains are presented. The idea can also be potentially
deployed in general-purpose computing systems ranging
from embedded to data center scale.
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